A review of mechanical seals tribology and condition monitoring

Mr H. Towsyfyan
Computing and Engineering

Supervisor: Dr F.Gu, Prof A. Ball

Introduction
Mechanical seals are leakage control devices, which are found on rotating equipment such as pumps to prevent, or reduce to a minimum, acceptable level leak of gas or liquid from between component surfaces. The seal is made between the very smooth, very flat faces of two rings, one is attached to and rotates with the shaft, and the other is attached to the housing and is stationary.

Tribological behavior of seals

An optimum operational region would be around the transition from HL to ML (position a). In this region a low coefficient of friction is accompanied by a low wear rate and a low leakage.

Condition monitoring of seal faces

- Several attempts have been made to monitor the condition of mechanical seals using Acoustic Emission (AE) technique.
- Some researchers applied advanced signal processing methods to reduce the effect of background noises.

Previous researches

- Tribological behavior of mechanical seals
- Finite Element Method (FEM) analysis
- Condition monitoring (CM) of seals.

Future Works (research objectives)

- Modelling the AE of frictional wear in seal faces.
- CFD analysis of working condition.
- Application of advanced signal processing techniques to AE raw signals.

Finite Element Method (FEM) analysis

The maximum penetration occurs at the inner side of the contact region at high temperatures.
(Carmen Sticlaru 2004)