University of Huddersfield Repository

Whitaker, Simon

Some problems with the definition of intellectual disability and their implications

Original Citation


This version is available at http://eprints.hud.ac.uk/19301/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Some problems with the definition of intellectual disability and their implications
INTELLECTUAL DISABILITY
An Inability to Cope with an Intellectually Demanding World

Simon Whitaker
Intellectual disabilities is a condition created by definition a social construct
BPS (2000)

“there are three core criteria for learning disability:
• Significant impairment of intellectual functioning;
• Significant impairment of adaptive/social functioning;
• Age of onset before adulthood.”
BPS (2000)

“significant impairment of intellectual functioning ......More than two standard deviations below the mean thus corresponds to an Intelligence Quotient (IQ) of 69 or less.” Page 5.
Concerns about this

• IQ 70 is arbitrary.
• There is no specific mention of “need”.
• No specific test is specified so are we talking about measured IQ or “true intellectual ability”?
• There is a clear IQ cutoff point.
Can we measure “true intellectual ability” in the low range accurately enough to have a cutoff point?
95% confidence interval

If the degree of chance error is known then a 95% confidence interval (95% CI) can be calculated by:

\[ 95\% \text{ CI} = 1.96 \times \text{SD} \times \sqrt{1-r} \]

SD is the standard deviation of the test and \( r \) is the reliability coefficient.

It is reported to be about 4-5 points for the WISC-IV and WAIS-IV
Concerns about WISC and WAIS 95% confidence interval

• Chance error only.
• It is based on the performance of the standardization sample, who on the whole had average IQs so may not be representative of people with low IQs
• It is based on one source of error only per subtest, usually that due to a lack of internal consistency.
Sources of error in the measurement of IQ

**Chance errors:**
- Lack of internal consistency.
- Temporal error.
- Scorer error.

**Systematic error:**
- Flynn effect.
- Floor effect (low range only).
- Lack of consistency between tests.
Internal Consistency Error

Wechsler (2008) in the WAIS-IV manual. Given to 75 adults with mild ID and 35 with mod. The internal consistency was about .98 which gives a 95% confidence interval of about 4 points.
Temporal Error

The test re-test reliability check.
A meta-analysis

Whitaker (2008) A meta-analysis of the literature on the test re-test reliability of intelligence tests when applied to people with low intellectual ability (IQ<80).
The mean correlation between first and second test was 0.82.
This corresponds to a 95% confidence interval of 12.47 points.
It was also found that 14% of IQs change by 10 points or more.

Which is close to what a 95% confidence interval of 12.5 would predict.
Systematic error
The Floor effect
Floor effect:
Scaled score of 1 for low raw scores

WISC-IV Digit Span
Age group 16:00 to 16:30
Raw Score:   18   17   16   15   14   13   12   11   10   9
Scaled Score: 10    9     8    7    6     5    4     3      2     1

Age group 6:00 to 6:30
Raw Score:   11   10   9-8   7   6   5    -   4   3   2
Scaled Score: 10    9     8    7    6     5    4     3      2     1
Whitaker and Wood (2008)

50 WISC-III: Mean FSIQ 58.04; SD 9.92
49 WAIS-III: Mean FSIQ 65.20; SD 7.03
Frequency of WAIS-III scaled scores

![Frequency of WAIS-III scaled scores](image)
Frequency of WISC-III scaled scores

![Graph showing the frequency distribution of WISC-III scaled scores. The graph has a histogram with bars representing the frequency of scores across different ranges, and a smooth curve overlay that approximates the distribution. The x-axis represents scaled scores, ranging from 2 to 12, and the y-axis represents frequency, ranging from 0 to 2000. The histogram bars are of varying heights, indicating the frequency of scores in each range.]
Criteria for 16 yr olds to get a Scaled Score 2 on WISC-III and WAIS-III

Coding

<table>
<thead>
<tr>
<th>WISC-III</th>
<th>WAIS-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw score 39</td>
<td>raw score 14</td>
</tr>
</tbody>
</table>
Criteria for Scaled Score 2 on WISC-III and WAIS-III (16 year olds)

<table>
<thead>
<tr>
<th>WISC –III Vocabulary</th>
<th>WAIS-III Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw score 22</td>
<td>Raw score 4</td>
</tr>
<tr>
<td>What does brave mean?</td>
<td>Tell me what ship means.</td>
</tr>
</tbody>
</table>
Criteria for Scaled Score 2 on WISC-III and WAIS-III (16 year olds)

<table>
<thead>
<tr>
<th>WISC –III Block Design</th>
<th>WAIS-III Block Design</th>
</tr>
</thead>
</table>
| Raw score 29
Completion of one 2-block model and six 4-block models gaining full bonus points for time on three of the models. | Raw score 3
Completion of two 2-block models, being given a second trial on one model when an error occurred on the first trial. |
Criteria for Scaled Score 2 on WISC-III and WAIS-III

<table>
<thead>
<tr>
<th>WISC –III Similarities</th>
<th>WAIS-III Similarities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw score 11</td>
<td>Raw score 4</td>
</tr>
<tr>
<td>In what way are an elbow and knee alike?</td>
<td>In what way are a dog and a lion alike?</td>
</tr>
</tbody>
</table>
Criteria for Scaled Score 2 on WISC-III and WAIS-III

<table>
<thead>
<tr>
<th>WISC –III Arithmetic</th>
<th>WAIS-III Arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw score 13</td>
<td>Raw score 4</td>
</tr>
<tr>
<td>Jim had 8 crayons and he bought 6 more. How many crayons did he have altogether?</td>
<td>If you have 3 books and give one away, how many do you have left?</td>
</tr>
</tbody>
</table>
Lack of agreement between tests

We (Gordon et al 2010) compared the WISC-IV and the WAIS-III in an empirical study on seventeen 16-year-olds in special education.
## Results

<table>
<thead>
<tr>
<th>FS IQ</th>
<th>WISC-IV</th>
<th>WAIS-III</th>
<th>dif</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53.00</td>
<td>64.82</td>
<td>11.82</td>
<td>.93</td>
</tr>
</tbody>
</table>
Grondhuis & Mulick (2013)

A paper in which they compare the Leiter-R with the SB-5 in 47 children (aged 3 to 12 years) with ASD and find that the mean full scale score were:

<table>
<thead>
<tr>
<th>Leiter-R</th>
<th>SB-5</th>
<th>dif</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.11</td>
<td>64.66</td>
<td>22.45</td>
<td>.55</td>
</tr>
</tbody>
</table>
Silverman et al (2010)

A comparison of WAIS and SB on 74 individuals on a large data based used for studying older adults mainly with Downs.

<table>
<thead>
<tr>
<th>SB</th>
<th>WAIS</th>
<th>diff</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.3</td>
<td>58.1</td>
<td>16.8</td>
<td>.82</td>
</tr>
</tbody>
</table>
The Floor effect II
Distribution of Scaled Scores WAIS-III
Distribution of Scaled Scores corrected for Floor Effect
(WAIS-III)
Distribution of Scaled Scores (WISC-IV)
Distribution of Scaled Scores Corrected for Floor Effect (WISC-IV)
The Flynn Effect

The intellectual ability of the population as a whole is increasing at a rate of about 3 points a decade or 0.3 of a point per year.
Change in low IQ over the years

Flynn (1985) found that the gains appeared to be higher at the low levels: .396 per year for IQs 55 to 70 as compared to .272 per year for IQs in the range 125-140.
Recent Evidence

Teasdale and Owen (2005) looked at Danish military data, up to 2004, and found that there was a peak in average intellectual ability in 1998, followed by a decline until 2004. Also after 1995 there was an increased number of people scoring at the lower end of the tests, showing a decline in the intellectual ability for people with lower IQ.
There is therefore evidence that in Scandinavia for people with low IQs the Flynn effect may have gone into reverse.

Not clear what is happening in the US and UK.
Conclusions re the measurement of low IQ

• Measured IQ is only a rough estimate of “true intellectual ability” and we need to maintain a clear distinction between the two.

• We cannot measure “true intellectual ability” in the low range accurately enough for a definition to have a measured IQ cut-off point.
Problems with the current definition

- People who are not able to cope with the intellectual demands of their world may not get a service.
- People who can cope may get a stigmatizing label.
Defining Intellectual Disability

• Intellectual disability is not something that can be precisely defined in terms of measurable variables.

• We need to develop a series of qualitative definitions that meet the needs of various stakeholders.
INTELLECTUAL DISABILITY
An Inability to Cope with an Intellectually Demanding World

Simon Whitaker