
University of Huddersfield Repository

Gubb, David

Implementation of A Condor Pool At The University Of Huddersfield That Conforms To A Green
IT Policy

Original Citation

Gubb, David (2013) Implementation of A Condor Pool At The University Of Huddersfield That
Conforms To A Green IT Policy. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/19036/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

MSC BY RESEARCH

Implementation of A Condor Pool At The University
Of Huddersfield That Conforms To A Green IT

Policy
Author:
David GUBB

Supervisor:
Dr. Violeta HOLMES

January 31, 2013

Abstract

The University of Huddersfield has a large number of computers lab-
oratories on campus that are used to capacity during timetabled session
but out of these sessions the machine can be unused for long periods of
time. Whilst these machines have power management software installed
to reduce the universities electricity bill. The idle machines could be used
to perform complex calculations and simulations to benefit the research
community through cycles stealing techniques and High Throughput Com-
puting (HTC) middlewares.

In order to provide a suitable HTC service an investigation was under-
taken into what middlewares are available and how they compared against
each other. This study also looked at what is green IT and how the chosen
HTC middleware has been adapted to conform. The investigation also in-
volved looking into publication from other universities to see how it is used.

A survey was conducted into how useful a Condor HTC grid could fit
in with other universities High Performance Computing (HPC) clusters and
how beneficial Condor is. The survey also looked at how Condor is funded
and how it is administered. Overall the results show that Condor is an
extremely useful and low cost HTC solution.

Condor has been deployed within Canalside East within the University
of Huddersfield as a test bed with plans to expand the Condor pool across
campus. To help Condor fit within the green IT policy the compute nodes
were configured to allow the machines to go into a low power state when
required.

To be able to prevent the possibility of having a large job queue with
very few nodes online a number of scripts were created that would collect
the information required to remotely wake machines up using Wake on
LAN (WoL). The scripts will wake machine when a number of jobs are idle
and there are machine available that are offline.

In order to make Condor able to run programs that have been devel-
oped for Windows and Linux a dual Condor client system has be imple-
mented. This has been achieved by using the standard Windows client
and a virtualized Linux client with Condor on called Pools of Virtual Boxes
(PoVB). These clients run as a Windows service that can be remotely
switched on and off when required remotely within the same script that
can wake machines when required.

Acknowledgements

I would like to express my gratitude to my supervisor Dr Violeta Holmes for
her continued support and encouragement optimism.

I am truly indebted and thankful to my collages and friends Ibad Kureshi,
Yvonne James and Shuo Liang. They have provided me with advice, tech-
nical help, support and for just been there provide prospective when all
was lost.

Finally I cannot put into words how grateful I am for my parents help and
support throughout my Master project because without them this could not
have been possible.

1

Contents

List Of Abbreviations 6

1 Introduction 7
1.1 Introduction . 7
1.2 Queens Gate Grid . 7
1.3 Aims . 9
1.4 Objectives . 9
1.5 Summary of Chapters . 9

2 Literature Review 11
2.1 What is Green IT and How it is used? 11

2.1.1 Green IT . 11
2.1.2 Green Data Centres 12

2.2 High Throughput Computing 13
2.3 High Throughput Parallel Computing 13
2.4 HTC Middlewares . 14

2.4.1 Windows HPC (HTC options) 14
2.4.2 BOINC . 14
2.4.3 Condor . 15

2.5 Which Middleware? . 16
2.6 How Other Universities Use Condor? 16

2.6.1 Liverpool University 16
2.6.2 Newcastle University 18
2.6.3 Reading University 18
2.6.4 Bristol University . 19
2.6.5 Oxford University . 19
2.6.6 Cambridge University 20
2.6.7 Cardiff University . 20

2

3 Campus Grids Special Intrest Group Condor Survey Results 22
3.1 Survey methodology . 22
3.2 Survey Results . 23

3.2.1 Condor Pool Information 23
3.2.2 Alternative Computing Resources 25
3.2.3 Payment Schemes 26
3.2.4 Users of the Condor Pool 27
3.2.5 Support and Encouraging New Users 27
3.2.6 Monitoring Tools . 29
3.2.7 Condor Pool Configuration 29
3.2.8 Institutional Views 31

3.3 General Comments About Condor 32

4 Condor Deployment at the University of Huddersfield 33
4.1 Available resources . 33
4.2 University of Huddersfield Deployment 35
4.3 Configuration of QGGCondor 36
4.4 Executable Machine Configuration 38

4.4.1 Windows Condor Execute Machine Installation . . . 39
4.4.2 Pools of Virtual Boxes 39
4.4.3 Pools of Virtual Boxes Configuration 40

4.5 Automation of IP and MAC address collection for 41
4.6 Power Management . 42

4.6.1 The University of Liverpool script 42
4.6.2 Extraction of Information 43
4.6.3 Controlling Services Locally 44
4.6.4 Controlling Services Remotely 44
4.6.5 Final Power Management Script With Service Control 45

4.7 High Throughput Parallel Computing Implementation 46
4.8 Creating an MSI . 46

5 Conclusion 49
5.1 Further Work . 50

Bibliography 51

A Modifications made to Windows condor config 55

B [mac.pl] Automation of MAC and IP Collection 56

C Condor wake on script from Liverpool 58

3

D Source code condor power v1 60

E HTPC Settings 64

F Final Script 67

4

List of Figures

3.1 Number of Cores in Condor Pool 23
3.2 Type Operating Systems Condor Pool Operates On 24
3.3 Who Administers The Condor Pools 25
3.4 How Many Institutions Have a Payment Scheme For 26
3.5 How Condor Pool Are Advertised 28
3.6 Condor View [1] . 29
3.7 Network Speed for Condor Pools 30
3.8 Power Managment . 31

4.1 QGG Utilisation for 2012 . 34
4.2 System layout . 35
4.3 Changes made to condor config 37
4.4 Changes made to condor config.local 37
4.5 Changes made to /etc/profile 38
4.6 condor status output . 38
4.7 condor q output . 38
4.8 Windows Power Saving Settings Made To C:\condor config 39
4.9 PoVB Hard Drives[2] . 40
4.10 Changes made to condor congig.policy 40
4.11 Changes made to povb config 41
4.12 WOLinfo.txt Output . 42
4.13 Condor Power Script Version 1 43
4.14 Commands To Get The Hostnames To Compare 46
4.15 Installation of Condor using Batch Script[3] 47
4.16 Installation of Condor using Batch Script 48

5

List Of Abbreviations

BLCR Berkley Lab Checkpoint/Restart.

CALs Client Access Licenses.

CG-SIG Campus Grids Special Intrest Group.

HPC High Performance Computing.

HTC High Throughput Computing.

HTPC High Throughput Parallel Computing.

MRF Midnight Render Farm.

NAT Network Address Translation.

NGS National Grid Service.

NW-GRID North West Grid.

PoVB Pools of Virtual Boxes.

QGG Queens Gate Grid.

SETI Search for Extra Terrestrial Intelligence.

SLA Service Level Agreement.

WoL Wake on LAN.

6

Chapter 1

Introduction

1.1 Introduction

The University of Huddersfield has a large number of computer labs that
are used to capacity during the courses delivery. Out of scheduled teach-
ing and learning sessions the computer labs are not used at full capacity.

After a set period of time the power saving software that is installed
(Energy Star EZ GPO)[4] on the laboratory computers recognises that the
computer has become idle and it will force the computer to go into hiberna-
tion. When a user comes to use the machine that is hibernating, the user
can easily and quickly wake the machine up by either moving the mouse
or by pressing a key on the keyboard.

While having computer laboratories go into hibernation saves money
on the University electricity bill. These idle computers could be used to
benefit the research community by performing complex calculations or
simulations. This can be achieved by using cycle stealing techniques used
with High Throughput Computing (HTC) such as Condor[5].

1.2 Queens Gate Grid

Adding a HTC resource would be extremely valuable to the University of
Huddersfield super computing grid the Queens Gate Grid (QGG).

QGG was established as part of a MSc project that evaluated the re-
quirements of the research community at the university and the need to
have a High Performance Computing (HPC) resource that can benefit the
research community[6]. The research community itself has expanded fur-
ther with the newly formed particle physics research group as well as other

7

researchers who have found they need to use HPC to further their re-
search.

Originally the QGG had just the Eridani cluster, which is a 152 core
beowulf Linux cluster, and the Tauceti cluster, inherited from the School of
Applied Sciences which is a 30 Core AMD Cluster. These clusters then
used a 16TB network storage device named Mimosa.

Now the HPC resources of the QGG still include the 152 core Intel
Beowulf cluster but Tauceti is now the test platform for the administrators
of the QGG and has been broken down to 16 Core cluster with the other
nodes have been made available for student projects. The new jewel of the
QGG is the 256 core AMD Sun cluster called SOL that is now hosted in the
university data centre. The cluster is hosted in the data centre because it
is connected directly to the university networking back bone so that users
can connect and move data as fast as possible with the lowest amount
of latency to the users. Another advantage of SOL been installed in the
university data centre is that the cluster is powered directly from a UPS
so it can operate 24 hours without external power and in case of power
failure, there is a generator back up so the cluster can continue to operate.

The storage has been upgraded to a 24TB mirrored Gluster storage
devices that allows us to have a back up of all the user data that has been
synchronised. Gluster system itself automatically synchronises the data
as it is changed across the network. The mirrored devices are put into
the two of the QGG data centres. This allows each cluster to retrieve data
across the network with as low a network latency as possible.

The QGG has also expanded into GP-GPU technology which uses
specially designed graphics cards to perform parallel calculations. This
system is the Vega cluster which at the moment uses 2 Nvidia M2050 GP-
GPU cards. The Vega cluster is also the only Windows HPC the QGG
has.

Since the writing of this thesis the computing resources have grown
to have an offsite 216 core Linux cluster in an agreement with Daresbury
laboratory[7].

Midnight Render Farm (MRF) which is used to render image or videos.
This uses Autodesks Back Burner[8] software in one of the computer lab-
oratories when it is closed on an evening.

The QGG has a wide range of users, such as Mechanical engineers,
Chemists, Physicists, biologists, Software engineers and Graphics render-
ing.

8

1.3 Aims

The aim of this project is to implement a HTC computational grid that con-
forms to a green I.T. policy which allows long running serial calculation.
This grid must be integrated into QGG so that existing users can log on
and are able to use it to submit jobs to the HTC grid. This grid also need to
be able to support as many different applications so that it could potentially
run Windows or Linux jobs depending on the suitability.

1.4 Objectives

• Perform a literature review into the relevant technologies available
and the guidelines available for green IT

• Analyse other universities Condor deployments

• To perform a survey to gain the opinion of other institutions regarding
Condor and how it fits into the institutions HPC resources

• Create a script that works with Condor that enable control of the
power state of the laboratory computers

• Create an executable that enables an easier deployment of Condor
within the universities computer image

• Refine Condor so that it can conform to the universities Green IT
policy

• Implement Condor which conforms to the green I.T. policy

1.5 Summary of Chapters

Chapter 1 (Introduction) Discusses why HTC computational grid may be
useful to the University. The aims and objectives are also outlined.

Chapter 2 (Literature Review) In depth review of Green IT, the available
HTC middlewares, how Condor is used and deployed at other insti-
tutions.

Chapter 3 (Condor Survey) This will present and discuss the results of
a survey conducted to find out how Condor fits into the respondents
HPC resources.

9

Chapter 4 (Condor Deployment) The actual deployment of Condor for
the University of Huddersfield based on the research performed pre-
viously in the previous chapters.

Chapter 5 (Conclusions and Further Work) Conclusions are made on
the implentation of Condor at the University of Huddersfield with any
work that could be added to the project to improve it.

10

Chapter 2

Literature Review

This section will cover what is green IT, what is HTC, what HTC middle-
wares are available and how do other universities use Condor.

2.1 What is Green IT and How it is used?

In order to make a HTC computational grid that conforms to a green IT
policy, green IT has to be defined and how it can be used within an IT
infrastructure.

2.1.1 Green IT

Green IT first appeared in 1992 as part of a joint project between the U.S
Environmental Protection Agency and the U.S Department of Energy who
formed ENERGY STAR. The aim for ENERGY STAR was to help save
money and protect the environment through energy efficient products and
practices.[[9]

ENERGY STAR initially introduced a voluntary labeling system to iden-
tify products are energy-efficient and can reduce the production of green-
house gases[9].

Green IT for most companies is about reducing the amount of time that
a computer is using power and the amount of time a computer sits idle
thus saving power and money. In this project the aim is to introduce a HTC
grid that uses the computers to their potential without adding anymore time
where the computer may be idle.

11

2.1.2 Green Data Centres

In most data centres the majority of the running costs are from cooling the
servers and from powering the servers. Reducing these two aspects can
make the data centres greener whilst reducing overall running costs.

The easiest way to reduce the amount of power used and the heat
created is by using the servers built in power saving features and CPU
throttling. For example by enabling the power saving features on an AMD
Opteron could reduce the power consumption by up to 65% if the CPU
utilization is less than 50% [10]. This option requires no extra investment
and it will have very little impact on the performance of the server.

The best way to reduce power consumption is to replace old service
with newer more energy efficient servers. Another advantage in having
newer servers is that they will perform better than the old ones because
there can be more CPU cores within the server. The University of Cal-
ifornia at San Diego did this and saved 6.5KW with the same comput-
ing power”[11]. By upgrading the servers reduced power consumption by
81.25%, which will reduce the cost of running the servers as well as re-
ducing the amount of cooling required for the servers.

As the number of cores increase per CPU it has become more econom-
ical to combine servers that may have had one service running to consol-
idate into fewer servers. This is achieved by virtualizing these services
into individual virtual machines that can share the computing resources
of these powerful servers. By migrating the service into virtual machines
it keeps the reliability of having multiple machines running with a lower
power requirement and footprint[11]. This is achievable because quite a
few services require low amounts of CPU utilization for long periods of time
making it more cost effective[11].

The ideal data centre belongs to AISO.net who run their data centre
completely from solar power[12]. This is achieved by using 120 solar pan-
els that produce 12KW of power that runs the servers and charges batter-
ies for use on rainy days[12]. They have invested into VMware and new
hardware so that they could consolidate 120 servers into 4![12] Unfortu-
nately this is not an option in the U.K. even though we might want to.

The standard temperature the air-conditioning units in data centres has
changed from been 13�C to 27�C[13]. This has been found to be the per-
fect balance between keeping the servers cool enough without the fan
throttling too high which consumes a larger amount of power[13]. As a re-
sult the air conditioning units uses less energy to cool the data centre[13].

12

2.2 High Throughput Computing

HTC systems concentrate on how many compute jobs that can be per-
formed over large periods time such as weeks, months and even years
rather than with HPC systems that concentrate on how many calculations
per second[14].

The hardware for HTC can be dedicated hardware such as servers
or even some computer clusters although it usually makes more financial
sense to use HTC middlewares that allow for cycle stealing techniques.
The ability to cycle steal allows for a better use of existing hardware. Using
existing hardware in an institution such as a University where there are
large amounts of computing hardware that can remain idle for hours.

HTC systems excels at running embarrassingly parallel tasks as well
as long running serial jobs. Embarrassingly parallel task is when each
task is so independent that it can be performed without needing any of
the other tasks. Most parallel application have parts that are dependant
on others tasks to be done before all tasks can be complete. This can
be taken into account using Condor DAGMAN scripts[15] that allows for
dependence to be defined but this is not as easy implement with closed
source applications or precompiled MPI applications.

2.3 High Throughput Parallel Computing

High Throughput Parallel Computing (HTPC) takes the advantage of been
able to use machines that already configured to run HTC tasks but adds
the ability to run parallel jobs on the machine itself[16]. This has become
possible because CPUs can have multiple cores on a single processor and
the amount of RAM a machine can use has increased.

While users could argue that they could perform these small parallel
jobs on their own machines. The problem with this idea is if they have a
large number of parallel jobs to run then they loose the use of the machine
until complete which could be days or weeks.

The user could run these parallel tasks on a HPC cluster but if their
parallel job can fit onto a desktop machine then it would be a waste of
a node that could be used for larger parallel tasks. If there are a large
number of small parallel job to run, this could create a long backlog of jobs
that would disadvantage other users of the cluster. In many universities
there are more desktop machines than HPC dedicated machines available
for running HTPC jobs. Therefor this resource will enable the large number
of parallel jobs to run quicker.

13

2.4 HTC Middlewares

In order to develop a suitable HTC grid for the QGG, an analysis of the
different middlewares need to be evaluated to determine if there are any
better alternatives to Condor.

2.4.1 Windows HPC (HTC options)

Windows HPC Server 2008 R2 is primarily used to create and manage
Windows HPC Clusters. Windows HPC Server 2008 R2 can also work as
a HTC middleware[17] using workstations and dedicated servers.

The workstations can be configured to cycle steal which can monitor
the CPU usage, keyboard activity and mouse usage to determine if a use
has come back to the computer[17].

Workstations can be scheduled to become a dedicated HTC node be-
tween certain times of the day, such as out of office hours and bank holi-
days. If additional resources are required then the administrators from the
head node can manually switch on any machines that have been switched
off. Windows HPC Server 2008 R2 can only run software developed for a
Windows environment[17].

Windows HPC Server 2008 R2 has a high start up cost associated
with deployment because each compute node requires its own licence for
Windows 7, Client Access Licenses (CALs) and HPC Server 2008 R2.
For Organisations with an existing pool of computers that run Windows 7
can easily start cycle stealing with the majority of the cost been the HPC
Server 2008 R2 Licence and the CALs[17].

2.4.2 BOINC

BOINC is a piece of software designed to sit on a computer and cycle steal
which is developed at the University of California [18].BOINC will allocate
jobs to machines that have been installed with BONIC and is registered to
a specific project[19].

One of the biggest BOINC projects is the SETI@home whose aim is to
Search for Extra Terrestrial Intelligence (SETI). SETI works by sending a
small sample of data from a radio telescope which is 0.25MB[20] in size.
The data is then processed on the compute node by a program called
splitter [20]. Once complete the results are sent back to the SETI servers.
Each piece of data is processed three times to verify if there have been
any errors in processing the data [21].

14

The advantage of running BOINC for types of project like SETI is that
people turn processing the data into competitions because each processed
data set is allocated a certain number of points. This is one of the ways
that the projects entice people into performing their calculations for free.

An example of how powerful BOINC could be if it was all in one data
centre is that the SETI project has 3,281,277 hosts registered to process
data. If each host had only 1 processing core then SETI has almost double
to processing cores than the top supercomputer in the world Sequoia with
1572864 cores [22]. Admittedly Sequoia would consume less power and
each core will most likely be more powerful as well as having access to
more RAM.

2.4.3 Condor

Condor is an open source HTC middleware developed by the University of
Wisconsin-Madison in 1986[23]. Condor is a grid middleware that allows
for computing jobs to be run on distributed computing resources. Condor is
capable of running parallel jobs as well as serial jobs[24]. The great thing
about Condor is that it is compatible with Mac OSX, Linux and Windows
meaning that no matter what hardware or operating system is available to
use Condor can be configured to run[24].

Condor is highly effective at cycle stealing from desktop machines. This
is achieved by monitoring the machine CPU, keyboard and mouse activity
to determine if it is idle. Condor can also be configured to use dedicated
machines which is the best way to make a computer cluster and run par-
allel applications[24].

When code is compiled using condor compile the code can stop on
that machine and start up again on another available machine from the
last time it save its progress, this is called checkpointing[24]. Checkpoint
is only available when running Condor on Linux or Mac OSX. Condor can
be configured when a computer changes into an owner state to either stop
running the job and keep the data in its RAM or to drop the job completely
and start it again on another available machine[24]. Whilst keeping the job
in the RAM so the job doesnt have to start again would be convenient to the
person running the job it could severely interfere with the user experience.
The user would probably restart the machine that would force the job to
start again on another machine defeating the whole purpose.

The data for the jobs can be transferred using Condors own data trans-
fer mechanisms so that network drives dont have to mounted on every
single computer.[24].

15

Condor can be used to submit jobs to other systems using Condor-
G, which can submit to Globus job managers[24]. Collaboration can be
achieved with other Condor pools by using a mechanism called Flocking
which will run the job on another machine in the linked pool when the
current pool has too many jobs are queued[24].

2.5 Which Middleware?

Condor will be used as the HTC middleware because it can be used on
almost any operating system. A Linux head node for Condor con allo-
cate jobs to any nodes regardless of the compute nodes operating system
which allows it to be integrated with the existing QGG infrastructure.

Condor is also used by a large number of universities around world so
it must be effective and easily configurable to work in different IT infras-
tructures.

Condor is open source, which is useful if any modifications need to be
made and its free to own and develop making it more cost effective. The
Condor project is actively been developed with a new updated version is
released nearly every month that can add new features as well as fixing
bugs and security issues.

2.6 How Other Universities Use Condor?

2.6.1 Liverpool University

At the time of the article (2009) the Condor compute nodes were Intel
Core 2 Duo machines with 2GB of RAM and they were running Windows
XP [25].

The Condor pool had around 300 laboratory machines to perform cal-
culations but there are around 2000 computers at the University of Liver-
pool campus. They chose to only use the most powerful computers. This
was done because the most powerful machines will be newer more energy
efficient machines as well as been able to complete the jobs quicker. The
main problem with this approach is if the Condor queue is extremely sat-
urated then having a few more slots would help clear the queue quicker.
[25].

Condor has been configured so that it will drop a job when a user
comes to use the machine and then it will wait 10 minutes before it powers

16

down. Each machine has been configured to use a job slot for each core
(2 job slots) to maximise the amount of jobs that can run at a time [25].

The Condor head node is configured as a combined job manager and
scheduler as well as been able to submit jobs via Condor-G. They monitor
the long term usage of Condor using Condor View [25].

Initially the computers we left on most of the time, which would waste a
lot of energy. Then a policy came in to introduce power saving by sending
the machines into standby. The problem with leaving a machine in standby
is that it still uses a lot of the power because the system data is stored on
the RAM of the machine that requires power to keep the data [25].

It was decided that putting the machine into hibernation instead of
standby is a better idea because the system data is written temporarily
to the hard disk. The advantage of doing this is that most of the system
can power down only leaving enough to check for an input from a keyboard
or mouse. It is also better for the user because a machine takes less time
to power back up from hibernation than it does standby [25].

User of GAMESS and PC-GAMMESS can submit jobs through a web
portal created by Liverpool to make it easier for the user to submit jobs[25].

Liverpools first attempt at power saving for Condor was to use a DOS
batch script to check if a user was logged in but Condor itself does not run
as a user. The machine would turn itself off even if a job was running[25].

The solution was to make the batch file look to see if a condor exec.bat
existed in the working directory for Condor. When Condor transfers an
executable to an node it calls it condor exec which stays there while the
job runs. Sometime the files would stay there when the job had finished
because Condor had not run its scheduled job condor preen which is sup-
posed to remove all the contents of the working directory when a job fin-
ishes. This resulted in machines staying on longer than required[25].

The final attempt uses Data Synergys PowerMan Software that moni-
tors the power usage of computers and records the data. PowerMan has
the feature to allow administrators to wake and hibernate machine when
required. PowerMan can be configured to wait for a specific running pro-
cess to finish before hibernating a machine[25].

All of the execute nodes have Wake on LAN (WoL) enabled so that the
machines can be woken up on demand. These machines can be woken up
when required by a Perl script that runs every 15 minutes using Crontabs
on the head node. When required machines are woken up a computer
laboratory at a time until sufficient machines are awake. This has proved
to have an unexpected flaw of been very noisy to the point some students
were unplugging machine to prevent it from happening [25].

Adjustments had to be made to the Condor configuration on the ex-

17

ecute machines when the power options were changed from hibernation
after 30 minutes to hibernation after 15 minutes. This had to be done
because if a machine was idle for 15 minutes then PowerMan would hiber-
nate the machine even though it was been picked up as idle. Condor has
been changed to wait for 5 minutes of no user activity before it will start to
run jobs [25].

Liverpool have tried to implement the built in power saving policy for
Condor but found it complicated and they had a perfectly good solution so
they stuck to the home grown approach [25].

2.6.2 Newcastle University

Newcastle University has a Condor pool that uses idle Information System
and Services computer laboratories. These machines run Windows 7 and
they have Intel Core2Duo or quad core PC’s with 8GB RAM. The Comput-
ers are restarted every day at 5 am so that any software updates can be
installed[26].

These computers run on the policy of powering down after a certain
amount of time of been idle. The Arjuna Agility Cloud Platform controls the
waking of machines. This is used because it allows a Service Level Agree-
ment (SLA) to be implemented and enforce within a Condor pool. These
policies are programmed into the configurations of the Arjuna Cloud[27].

The cloud works by having two domains. The first one is the Client
domain that represents the users privileges and the second is the Condor
domain that represents the Condor head nodes. Depending on the users
privileges users can specify if a job is a low priory so that Condor will
only use machines that are online and it will not wake any machines up.
If there are a large number of low priority jobs in the Condor queue then
the cloud can make the decision to wake up some machines to clear the
queue out[27].

2.6.3 Reading University

Reading University has a Condor pool of around 500 machines provided
by the Computing Services and the School of Systems Engineering com-
puter laboratories. These machines have various amounts of RAM that
can be important in requesting a suitable machine to run a job[28]. These
machines use a form virtualization called Cooperative Linux or more com-
monly known as CoLinux. [29]

18

Having a virtualized Linux Condor pool allows for checkpointing of jobs
provided the code has been compiled with the Condor headers[29].

Each user of the grid has their home folders mounted automatically
to the execute machines so that it doesn’t need to use the Condor data
transfer methods[29]. Each compute node has a 20GB temporary storage
space allocated as well been able to use a mounted scratch space of up
to 600GB[28]. This is a cost effective way of running jobs that have large
data sets or large outputs the only problem is this introduces a bottleneck
in the speed of data to be transferred.

The head node runs Centos 5.2 with Globus so that users from the Na-
tional Grid Service (NGS) can submit jobs to the Reading Condor pool[29].

There is also negotiation with Oxford University so that users of the
Reading University Condor Pool[29] could flock to the OXGRID.

Users can also use Berkley Lab Checkpoint/Restart (BLCR) which is
on the login node which is a wrapper that a user uses checkpoint submit
command to allow code to use checkpointing without been compiled using
the Condor Headers[28].

2.6.4 Bristol University

The University of Bristol has Condor installed on over 720+ machines
across 6 departments within the university. Each department can flock
jobs between the different pools when there are enough jobs sat idle.

By default Condor will drop the compute job when a user comes along
and these are running Windows XP. Each compute node is at least 2GB of
RAM and has a multicore Intel Processors.

They share their Condor pool on the NGS[30].

2.6.5 Oxford University

Oxford University is installed on the computer laboratories within 38 of
the universities collages. Each collage/department has a head node to
control the nodes connected. The Universities Computing Services hosts
the Condor Master where users need to login to in order to submit jobs
and this allows flocking between the different Condor pools[31].

The Condor pool supports Windows and Linux through virtualization
using Co-Linux. This is controlled remotely by using Net RPC Commands
to start and stop the Co-Linux Service. The Linux flavour used by Co-Linux
is Debian.[31].

19

In order to easily deploy this setup a MSI installer is created that can
deploy and configure the Linux and the Windows Condor services.[31].

Condor will run jobs when there is at least one processor free so that
jobs can run in the background. The Windows Client controls the Co-
Linux.[31].

Uses WoL to wake machines when nodes are required for the jobs
across the university.[31]

2.6.6 Cambridge University

Cambridge’s University Condor pools are setup and created by research
groups and departments, which can then flock across different pools cre-
ating the CAMGRID. These machines are either desktop or servers. The
universities Computing Services department coordinates the CAMGRID.
Each group can decide on the overall cycle stealing policy that is imple-
mented within their own pools[32].

Overall the CAMGRID is around 1150+ cores. The grid itself is de-
signed to run large numbers of serial jobs and is also capable of running
parallel jobs using the MPI universe on a single machine.

They have created a web GUI that allows users to their files anywhere
on campus. There is also a GUI that creates DAGMAN Scripts called
PyDAG. This is useful for staging jobs that may be dependent on other
parts of the job. [33]

2.6.7 Cardiff University

The University of Cardiff has a Condor pool of around 1600 machines with
a theoretical performance of 1 TFlops [34]. These machine operate within
computer laboratories that run Windows XP[35].

The University provides a one on one service for developing bespoke
application development to encourage users to use the Condor pool[35].

200 of the machines are available for use through the NGS[36].

20

To fully understand Condor deployment and management it was de-
cided to conduct a survey across many universities in the UK. The results
of this survey will be considered in the following chapter.

21

Chapter 3

Campus Grids Special Intrest
Group Condor Survey Results

This survey was commissioned by the Campus Grids Special Intrest Group
(CG-SIG) to determine how Condor is used and how it fits in alongside
HPC resources to help improve computational research that is carried out.

A benefit of carrying out this survey that it also produces some primary
information into how Condor is currently been used and if there are any
key issues that may need to be considered later on.

3.1 Survey methodology

The survey was split into 8 major sections that would group the survey
question into logical groups.

• Condor Pool Information

• Alternative Computing Resources

• Payment Schemes

• Users of the Condor Pool

• Support and Encouraging new users

• Monitoring Tools

• Condor Pool Configuration

• Institutional Views

22

The information from these sections could determine if owning a Con-
dor pool for the University of Huddersfield would be a useful asset. The
members of the GC-SIG will be able to create a business case for using
Condor from this information. These business cases will help them to a
case for expanding existing Condor Pools or even to establish a Condor
Pools.

3.2 Survey Results

3.2.1 Condor Pool Information

This questions asked in this section of the survey was to determine the
size, Operating System, who administers the Condor pool and if there is
any charge for the use of the pool.

Figure 3.1: Number of Cores in Condor Pool

23

Typically most Condor pools have around 1000-2000 Cores and above.
This is easily done with smaller numbers of computers due to most stan-
dard desktop machine available are quad core processors or a few just
dual cores.

Figure 3.2: Type Operating Systems Condor Pool Operates On

TThis chart Figure 3.2 shows some extremely interesting information.
The fact that there are equal number of pool using either Linux or Windows
Condor Clients showing that it effective on either operating system.

More interestingly is the information gained by using it on both Win-
dows and Linux. These users either rebooted lab machines out of hours
into a flavour of Linux or ran the Linux Condor client or they were flocking
between research pools or virtualised Linux.

Most of the users of the QGG are Linux users but most of the PC’s
in the University of Huddersfield user Windows so a suitable solution will
need to be found.

24

Figure 3.3: Who Administers The Condor Pools

Most of the Condor pools are administered by Computing Service staff
at the respected institutions as shown in 3.3. This makes getting permis-
sion to deploy the pool across a larger number of computers easier espe-
cially if the computer laboratories are run by Computing Services. There
is no surprise that researchers administer some of the Condor pools be-
cause if there is a need of extra computing power then researchers will try
to find a way.

None of the institutions charge for use of the Condor pools but one asks
researchers to make a contribution when they apply for research grants
and funding.

3.2.2 Alternative Computing Resources

This section of the surveys aim was to find out what sized HPC/GPU clus-
ters the institutions have access to so that it can be determined that it is
useful to have Condor operating along side the HPC Clusters.

25

All but one respondent has some form of local HPC Cluster available
to their users. 62.5% has access to external resources such as HEC-
ToR,HPC Wales, NGS and North West Grid (NW-GRID).

50% respondents have access to a local GP-GPU cluster and 25% use
remote GP-GPU at HECToR.

3.2.3 Payment Schemes

We were also interested how other institutions funded their HPC cluster.

Figure 3.4: How Many Institutions Have a Payment Scheme For HPC

Most institutions do not have a payment scheme. The three that do
charge have the following methods.

• By the CPU hour depending on the cluster

• Researcher by a blade to add to the cluster where they have dedi-
cated access plus any that are idle

26

• CPU time is sold via the use of enCore cluster via on agreement with
OCF. The University of Huddersfield has paid for time on the cluster.
Some individual projects pay for resource to be hosted.

The contribution model seems to be the most sustainable model for
universities because then HPC departments can then use the money to
expand/maintain equipment that they have when required.

3.2.4 Users of the Condor Pool

This sections aim is to determine the subject areas that are able to use
Condor as well as how many and whether it is used purely for research.

From the responses Condor pools have anywhere between 10 to 120
users.

In general Condor pools are used for research but there are some mod-
ules that use the pool for projects. Such as one of the respondents use it
for 3rd year projects in biology and earth science. Interestingly one of the
pools lets students use it freely without permission.

3.2.5 Support and Encouraging New Users

This section is determining how users are recruited and how are current
users supported.

So all of the institutions offer a general Wiki page where users can
learn the basics in order to connect and to run certain types of code. This
feature reduces the amount of time administrators need to put into getting
a new user who is computer literate onto Condor and running basic jobs.
The downside to this is that it can either put off or confuse users who
are not very computer literate or don’t have the time to disseminate the
information.

It is a very good sign that 5 out of 8 of the respondents run training
sessions to help people use Condor. Training sessions are a good way of
getting everyone who wants to use Condor because any problems or lack
of understanding can rectified quickly. Running training sessions also help
administrators see what types of users there are on the pool but it also
allows users to be able to get to know who they should go to if they have
any problems.

Only two of the institutions offered code support session. This could be
very effective in getting users codes to run more efficiently on the Condor
pool as well as on HPC clusters. In order to be able to run sessions there

27

need to be a member of staff who understands what good code is which
can be hard to find.

Figure 3.5: How Condor Pool Are Advertised

Surprisingly two of the responded do not advertise their Condor pools!
So the general opinion is that word of mouth is seen to be the most

effective. This could be because as user comes to sign up to use the
HPC resources it could be easier to direct people into using Condor for the
applications that are more suitable. One of the users introduced it in their
introductory workshops for HPC; presumably it is easier to get people to
use it if they have a suitable application.

It is good to see that one institution uses a newsletter for Condor that
can be used to keep users up to date on the state and usage of the Condor
pool. While this is effective at keeping users up to date it would be difficult
trying to get new users without sending out to the entire university, which
could annoy people who do not need or intend to use Condor.

28

3.2.6 Monitoring Tools

All but one of the respondents use some form of monitoring tool. More
users use a homemade monitoring solution rather than one that is avail-
able widely. This is due to either what is available is not good enough
or that certain administrators want specific information from the Condor
pool that is easier to extract using scripts that call upon certain Condor
commands.

One respondent uses the Condor Quill add on that collates all the log
files that Condor creates and puts them into a central database[37]. Con-
dor Quill could be used to determine how effectively a Condor pool has
been used so that any significant bad put can be identified.

Another respondent uses Condor View which reads the data in the
Condor logs looking for how much time the execute machine have been
idle, used by owner or executing Condor jobs and then generates graphical
output displaying the data as shown in Figure 3.6.

Figure 3.6: Condor View [1]

3.2.7 Condor Pool Configuration

This section will look at how Condor is generally configured.

29

Figure 3.7: Network Speed for Condor Pools

As you can see in Figure 3.7 the typical network speed is 100 MBits/s
this is due to most execute nodes are cycle stealing from a large number of
computer laboratories so a standard low cost network is more suitable. To
be able to run Condor on a 1 Gbit link would not normally be economically
viable over large networks with lots of interconnects.

Security used is limited to some standard security such as using an
LDAP for user authentication as well as the use of SSH and GSI-SSH
keys, Kerberos, limiting which machines can submit to Condor, standard
Linux authentication PAM.

30

Figure 3.8: Power Managment

It is unexpected that over half of the respondents did not use any power
management on their Condor pools when there is such a push for green IT
and money saving. All who do use power management allow the compute
nodes to power down/put to sleep after it has become idle without jobs. 3
out of the 4 do use WoL when required. To note one of the respondents
tried to use the Condors built in power management but had too many
difficulties so they when for a home made solution.

3.2.8 Institutional Views

So the general consensus of the users of the laboratory machines that are
setup as execute nodes is that the users do not know Condor is installed or
running in the background. The only complaint that there has been is one
of the jobs was too memory intensive and it ended up locking the machine
up. One institution that ran Condor out of hours had to be wary of update
or virus scans running too long.

31

The institutions computing service generally allow the use of Condor
over the networks and on the computer laboratory machines. One insti-
tution hosts the Condor Master which is a good option providing it is in
their data centre so that it will have the best connection to the university
network backbone as well as having a good UPS/Cooling for the node.
Another has a member of staff allocated which looks after the Condor
service. Also Condor execute software at another institution is updated
annually with the new system image.

The benefits of Condor to the institution is that it is a low cost, low capi-
tal resource that is extremely powerful that can be used to further research
depending on the applications. Also it can be used to alleviate the stress
from computer clusters for serial and embarrassingly parallel tasks.

Some of the disadvantages of Condor in the view of institution it is
run at is that Condor can be difficult to program for and it is suitable for
certain types of jobs. As a side effect of Condor using idle laboratory
machine is that the number of idle machine is very low making the Condor
pool also very small so there will be less jobs run during the day. One
institution has had complaints from the University energy officer about the
computing cycles Condor uses was seen as ”wasted energy”. Another
was that Condor was undercutting other paid HPC resource so there were
complaints about under cutting these resources.

3.3 General Comments About Condor

One important comment for UK universities is that there is a heavy bias
towards Linux Condor pools within the Condor documentation and more
support provided by Condor. When most computers those are available to
run Condor as compute nodes tend to be Windows based but would make
more sense to have a bit more support.

While Condor View can be a useful monitoring tool it can be too basic,
so it would be better to have something similar to Ganglia with a better
interface and a greater detail of information when needed.

One of the respondents that used Condor purely on Linux machines
praises Condor but they have not seen a demand for Windows Condor
machines so they will not be expanding the pool in that direction.

32

Chapter 4

Condor Deployment at the
University of Huddersfield

Originally the Condor deployment concentrated on developing a green way
of deploying it, but this developed further into allowing users to be able to
use a Linux version when required.

4.1 Available resources

The University of Huddersfield has a large amount of computer labora-
tories for the use of students to use for assignments and tutorial work.
During the day there may be times where the computers laboratories are
extremely busy and there may be times of the day where the scheduled
teaching session may not have enough students to fill the computer. This
means there could be a large number of machines available to run Condor
even during busy times of the day.

These computers have power saving policies implemented on them so
they will go into hibernation to save power so its not a big problem that all
computers are not been used 100% of the day.

The University of Huddersfield HPC resources are current at used on
average at 55% throughout the year of 2012 but during peak times the
usage can increase up to 92% making queue time longer than expected
show in Figure 4.1. The main problem is that the user base is expanding as
well as users simulation increasing in the amount of time to run faster than
new resource can come online. With a lack of funding available to expand
local HPC resources it is essential to make use of any other available
resources. Moving serial applications to a HTC resource would free HPC
cluster to run more parallel application.

33

Figure 4.1: QGG Utilisation for 2012

The University has introduced a minimum specification policy for com-
puters in teaching laboratories of a minimum of a quad core processor that
benefits the Condor pool because of the extra number of cores that is on
the processor increases the number of possible job slots for the Condor
pool. Having computers with more cores brings in the possibility of been
able to run parallel tasks as described later on in HTPC section. The newer
processors have a greater support for Virtualization such as Intel VT-d and
the AMD AMD-V modules that make virtual machines run more efficiently.
The machines also run Windows 7 64-bit images.

In the department of Engineering alone there are approximately 500
cores available in computer laboratories. That currently provide more com-
pute cores that is available on any of the QGG clusters.

34

4.2 University of Huddersfield Deployment

Figure 4.2: System layout

Condor will be deployed so existing users of the QGG can easily use this
extra service. This will be achieved by using the existing login node Bella-
trix using SSH key authentication which queries the QGG LDAP. The users
will then SSH over to Qggcondor to be able to submit jobs. Users will also
be able to submit jobs using Condor-G to other offsite resources.

The users home folders will be mounted on the head node so that they
have access to their data when they submit a job.

35

Application that have been tested by administrators will be mounted as
the \condor apps folder with example submission scripts for these appli-
cation so that the user doesn’t have to waste time trying to get the job to
run. Also it means that the executable can be kept for a local repository.

The power management scripts will run on the head nodes using Crontabs
every 15 minutes.

The following steps outline are describe what steps are needed to be
completed in order to have a working Condor pool;

• Configure a working Condor Master

• Configue Windows Condor Executable nodes are implemented

• Configure the Pools of Virtual Boxes (PoVB) image so that it is secure
and Checkpointing is implemented.

• Automate the way that IP and MAC addresses are collected for use
with WoL

• Modify the existing power script from University of Liverpool so that
it can also control services

• Modify the PoVB and Windows Condor services so that HTPC is
possible

• Describe the steps taken to create an easily deployable MSI installer

4.3 Configuration of QGGCondor

Condor will be installed on dual socket Quad Core Opteron 2350 2GHz
processor with 16GB of RAM. Using Condor Version condor-7.6.7, which
was the current stable release at the time of deployment.

Once downloaded from the Condor website the file should be extracted
and then moved to the desired location which in this case is /opt/condor-
7.6.7

Then use the following command from the location of the Condor in-
staller.

./condor config --install=/opt/condor-7.6.7 --local-dir=/opt/condor-7.6.7/
local.qggcondor --type=submit,manager --central-manager=10.71.88.84 -
-owner=root

This command configures Condor to be installed entirely from /etc/condor-
7.6.7 so that when a newer version of Condor is installed then it can be

36

tested from another directory before it can go production. This head node
has been configured to be the Scheduler and the Resource Manager. This
has been done because it reduces the complexity of the system.

Once Condor has finished installing the following changes need to be
checked, modified or added to the /opt/condor-7.6.7/etc/condor config

RELEASE DIR = /opt/condor-7.6.7
LOCAL DIR = /opt/condor-7.6.7/local.qggcondor
LOCAL CONFIG FILE = /opt/condor-7.6.7/local.qggcondor/

condor config.local
ALLOW WRITE = *
DAGMAN LOG ON NFS IS ERROR = False

Figure 4.3: Changes made to condor config

The first 3 are to define where Condor will find these locations.
The ALLOW WRITE is very important or otherwise Condor will not run

jobs.
There is a common issue with using the DAGMAN scripts from a net-

work file share and Condor so the solution is to add the line at the bottom
of the figure 4.3.

Check that the /opt/condor-7.6.7/local.qggcondor/condor config.local has
the following values.

CONDOR HOST = 10.71.88.84
RELEASE DIR = /opt/condor-7.6.7
LOCAL DIR = /opt/condor-7.6.7/local.qggcondor
DAEMON LIST = COLLECTOR, MASTER, NEGOTIATOR, SCHEDD

Figure 4.4: Changes made to condor config.local

The first three needs to be check so Condor is looking at the correct
directories and it is important that the DAEMON LIST has the daemons
mentioned in figure 4.4 otherwise it will not schedule jobs and run them.

Once complete add the following to either just the individual users
.bashrc or to the /etc/profile so that the Condor commands can be used
by all of the users of the system.

37

export CONDOR CONFIG=/opt/condor-7.6.7/etc/condor config
export PATH=/opt/condor-7.6.7/bin:${PATH}
export PATH=/opt/condor-7.6.7/sbin${PATH}

Figure 4.5: Changes made to /etc/profile

The results shown in Figure 4.6 show a working Condor Master that
has a single execute machine.

Figure 4.6: condor status output

Also run condor q and it will show an empty queue such as shown in
figure 4.7.

Figure 4.7: condor q output

ENLARGE
Checkpointing is configured by default to periodically perform once ev-

ery 3 hours ± 30mins and this will be saved from the location where the
job is submitted i.e. qggcondor

4.4 Executable Machine Configuration

The University of Huddersfield has a large number of idle Windows ma-
chines so to make the most of this untapped resource these machines
will run the Windows Condor executable as well as having the option of
running PoVB for Linux Applications.

38

4.4.1 Windows Condor Execute Machine Installation

This is easily done by downloading the MSI installer for the latest stable
version of Condor from the website. When running the installer make it
add an existing Condor pool and direct it to QGGCondor. Then select the
option for ”Wait for 15 minutes of keyboard and CPU activity” and to drop
the job when a user comes back. Then change the permission to write to
”*”. Then click next till the install location and keep it to the C:\condor

Once installed restart the machine and then copy over the Windows
Condor condor config into the C:\condor folder.

The additions made to the configuration are the following:-

TimeToWait = (30 * $(MINUTE)
Should Hibernate = ((KeyboardIdle >$(StartIdleTime)) \

&& $(CPUIdle) \
&& ($StateTimer) >$TimeToWait)))

Figure 4.8: Windows Power Saving Settings Made To C:\condor config

This allows Condor to stop waiting and it lets the system power settings
to then take over. The Windows client will then wait for 15 minutes to see
if the system is idle and then after another 15 minutes it will then allow the
machine to go into the planned hibernation.

The modifications made to the Windows condor config is in Appendix
A

4.4.2 Pools of Virtual Boxes

PoVB was created by the University of Marquette to allow Linux Condor
jobs to be run on Windows computers. These Windows machines virtu-
alise Linux using Sun Virtual Box which has Condor pre-installed its is
easily deployed. PoVB is capable of detects the activity of the Windows
machine so that if a user comes along then the job is dropped and started
when a machine becomes available.

The configuration files for PoVB is located in the C:\povb\shared and
from these each time the PoVB service starts it regenerates the snapshots
that virtual box uses. The advantage of regenerating the snap shot each
time is that it stops the virtual machine from using too much storage space.
Another advantage is its easier to change the configuration for Condor
without having to boot the virtual machine and make the changes.

39

Figure 4.9: PoVB Hard Drives[2]

The primary hard drive has the operating system and it is where the
shared folder is mounted for the Condor configuration.

The Condor hard drive has the Condor files

The Packages hard drive allows for deployment of software so that it
doesn’t have to be transferred to every time that it is run.

4.4.3 Pools of Virtual Boxes Configuration

Installation of PoVB is done by downloading the installation folder from
[38]. Then extract the folder and then edit the following files with these
changes in table 4.10

KeyboardBusy = (POVB HostOsKeyboardIdle <15 * $(MINUTE))
ConsoleBusy = (POVB HostOsKeyboardIdle <15 * $(MINUTE))
StartIdleTime = (15 * $(MINUTE))
ContinueIdleTime = (15 * $(MINUTE))
TimeToWait = (30 * $(MINUTE))
ShouldHibernate = ((POVB HostOsKeyboardIdle >$(StartIdleTime)) \

&& $(CPUIdle) \
&& ($StateTimer) >$TimeToWait)))

Figure 4.10: Changes made to condor congig.policy

40

The First four lines make sure that PoVB appears as idle while the last
two line are a slightly modified version of the power saving settings made
to the Windows Clients but adjust for the different variables.

The next changes are to configure the PoVB installation, which simply
points PoVB to the Condor Master and then configures it to use Network
Address Translation (NAT). NAT is used because it does not request a
new IP address from the DHCP server that would double the effective IP
addresses, which could cause trouble in the future.

CONDOR MASTER = 10.71.88.84
NETWORKING TYPE NAT

Figure 4.11: Changes made to povb config

To install PoVB navigate to its unpacked location from a command
prompt and run the following command ”povb-x86 64-2.0.1\povb installer.exe
--vbox-download http://download.virtualbox.org/virtualbox/3.1.8/VirtualBox-
3.1.8-61349-Win.exe”. This command will install PoVB to C:/povb and it
will also download and install Virtual Box 3.1.8 which is the maximum ver-
sion supported. Once installed from Services change the startup of PoVB
service to manual start-up. Copy over a modified povb packages hd.vid if
required and then restart the machine.

4.5 Automation of IP and MAC address collec-
tion for WoL

With the power saving for Condor and PoVB so that machines will go into a
lower power state it means that there could be the possibility of not enough
machine will be awake to run the jobs that are in the queue so having the
ability to wake machine remotely using WoL Protocols.

WoL requires the MAC and IP of the machine that is going to be woken
so that it can wake machines up in any subnet. Collecting this informa-
tion whilst installing Condor and PoVB is a solution it becomes impractical
when large numbers of machines are been imaged so a better solution
need to be created.

The solution that has been created allows for autonomous collection of
the information, which can also serve as a record of the size of the Condor
pool.

41

Extracting the information from the condor status and then populating
this information into a file called WOLinfo.txt that achieves the information.
This file is then sorted and any duplicated information is then removed.

Figure 4.12: WOLinfo.txt Output

The output looks like Figure:4.12 above. The first coulomb shows the
hostname for the corresponding machine and the second is the IP address
and the last is the corresponding MAC address.

The script that generates the file is found in Appendix B and the script
is called mac.pl. It runs once every hour because as long as the machine
is on and has Condor installed then the information can be extracted and
updated.

4.6 Power Management

4.6.1 The University of Liverpool WoL script

The original script came from a post from Ian Smith on the Condor forums[39]
that is shown in Appendix C. The script was written in Perl and is designed
to run as a Cron job. The script is designed to be able to wake powered
down PC’s using WoL. The MAC addresses that are required for WoL are
collected and then kept in files for each computing laboratory.

When there are more than 10 idle Condor jobs then the script will try to
wake up all of the machines that are in a low power state. When machines
are woken up an email is sent detailing the amount of machines woken for
the number of idle jobs.

42

While this is effective the Waking of the machines is too much of a
blanket approach to waking the machines up, which could cause stress to
the components. This approach could also annoy users of quiet computer
labs due to the noise of all the machines waking up as concluded in Ian
Smiths paper[40] that has been used in the Literature Review.

4.6.2 Extraction of Information

For the university of Huddersfield it is important to be able to run dual
operating systems for the users. This required the investigation of been
able to control services in Windows 7 remotely as well as how to provide
a dual operating system Condor pool.

The first task is to modify the script so that it can extract all of the
details so that the number of machine awake and the types of machine
online such as Windows 7, Windows XP or Linux. This data is extracted
from the condor status and condor q commands.

Figure 4.13: Condor Power Script Version 1

The Figure 4.13 shows the output required to check how many ma-
chines are idle/busy and the types of machines that are idle. The number

43

of machines that are required for the jobs are identified and then a mes-
sage indicates if there are not enough machines and how many jobs slots
are required. The message appears at the bottom. The code is displayed
in the Appendix D.

The information gathered from this script is used as the basis for the
further work carried out. The next step would be to introduce the basic step
of using WoL to wake machines to meet the demand required by excessive
number of jobs.

4.6.3 Controlling Services Locally

So initially it was worth investigating a back up plan in case remote control
of the service is not possible. The back up plan was to schedule the PoVB
service to start when the computer laboratory shut and then stop the ser-
vice when the labs opened again. This involve in creating a simple text file
that turns the PoVB service on and one to switch it off again. So to turn
off the Windows Condor Client it would look like ”net stop condor” and to
start PoVB ”net start povb”

The next step is to configure the Windows 7 scheduler to turn the ser-
vice on and off. This requires the user to be an administrator to create the
scheduled task.

The issue with scheduling tasks is that the job queue may be over-
loaded but the main issue that when the lab shuts only a few computers
may be online at that time which would either mean that the queued jobs
would have to run through on a few machines.

Alternatively WoL could wake all the machine when the lab shuts but
it means that extra machines would be online when they are not required.
The main issue is if there was a queue of jobs that have not finished
overnight they would end up queued for the next day, which would not
be efficient.

It would me more efficient if individual machines could have been wo-
ken up and have the PoVB service started so that jobs can be dealt with
when required with machines that are already powered up.

Not all labs shutdown at the same time so it causes initial issues cus-
tomising the scheduled tasks according to each computer lab.

4.6.4 Controlling Services Remotely

Ideally it would be more efficient to run Linux jobs when required. This
required working out a way of turning Windows services on and off from

44

a Linux server (Condor Master Node) so that the power script could be
modified to perform this task autonomously. Which can be done by us-
ing the following command: ”net rpc service stop/start -I $IPADDRESS -U
$USERNAME%$PASSWORD $SERVICE NAME” [41]. So this command
can effectively control any service providing the user has permission to and
providing that ”Remote Service Management (NP-In) Domain” is allowed
within the firewall of the machine giving the option to automate which Con-
dor version needs to run depending on the jobs in the queue.

4.6.5 Final Power Management Script With Service Con-
trol

The final script uses a combination of the scripts and information from the
previous sections that when combined allows for the control of waking up
machines when required and controlling services remotely.

Using the first script which extracts the types of jobs are in the queue
and then adding conditional statement that will either wake machines up
or change the service that is been run on the execute machines.

The additions to the script will do the following

• Determining which machines are offline

• Determining which machines are running the Condor Client

• Determining which machines are running the PoVB Client

• Waking machines from the offline list

• Changing Windows clients to PoVB Clients

• Changing PoVB clients to Windows Clients

In order to determine the state of a machine the output from the MAC
and IP collection script is read in and then compared to the command so
that it can be known which machines are offline, running Windows Condor
Client or PoVB Each one of the commands fills an array with the host-
names of the machines that meet the criteria and it will be compared with
the WoLinfo.txt.

A while loop is initiated that for every line will check each array to see if
the hostname exists within. If it is true for any of the arrays then the host-
name populates that array. If it doesn’t match any case then this means
that the machine is offline and it populates that array.

Using these arrays can be used to wake machines using the offline
array or using the Windows array machines can change services to PoVB.

45

my @WINDOWS=scalar(‘condor status |grep ’WINNT’|grep ’Idle’|cut -c 7-
18|uniq|cut -f1 -d”.”‘);

my @LINUX=scalar(‘condor status |grep ’LINUX’|grep ’Idle’|cut -c 7-
19|uniq|cut -f1 -d”.”‘);

my @BUSY= scalar(‘condor status |grep ’Claimed’|Owner’|cut -c 7-
19|uniq|cut -f1 -d”.”‘);

Figure 4.14: Commands To Get The Hostnames To Compare

4.7 High Throughput Parallel Computing Imple-
mentation

In order to allow Condor compute node to perform HTPC a few modifi-
cations need to be made to the condor config for the Windows client or
condor config.policy for the PoVB. Using the information found here [42]
or the amended version in Appendix E, this allows for the whole machine to
be booked. Booking is required so that Condor can run the parallel code
across the machine without a risk of another job appearing which could
crash the machine or make it extremely slow. Been able to book an entire
machine may be extremely useful for jobs that require large amounts of
RAM.

In order to be able to run the parallel job Condor requires a local
compilation of an MPI library such as OpenMPI or for the drive to be
mounted such as in the PoVB setup the MPI library is located in the
povb packages hd.vdi.

4.8 Creating an MSI

In order to be able to deploy Condor and PoVB easily across campus there
needs to be a way of installing the program. This can be achieved by using
Group Policies that require an MSI in order to install programs.

The MSI for Condor has been created by creating a batch script with
the required variables and then converting from a .bat to an .exe with a free
piece of software, then from an .exe to a .msi using some more free open
source software. Once this is done test the MSI to check that it performs
as required.

The batch script for the installation of Condor is shown in Figure 4.15.

46

@echo on

set ARGS=NEWPOOL=”N”

set ARGS=%ARGS% POOLNAME=””

set ARGS=%ARGS% RUNJOBS=”C”

set ARGS=%ARGS% VACATEJOBS=”Y”

set ARGS=%ARGS% SUBMITJOBS=”N”

set ARGS=%ARGS% CONDOREMAIL=”hpc-rc@hud.ac.uk”

set ARGS=%ARGS% SMTPSERVER=”smtp.localhost”

set ARGS=%ARGS% HOSTALLOWREAD=”*”

set ARGS=%ARGS% HOSTALLOWWRITE=”*”

set ARGS=%ARGS% HOSTALLOWADMINISTRATOR \
= ”qggcondor.qgg.hud.ac.uk”

set ARGS=%ARGS% INSTALLDIR=”C:\Condor”

set ARGS=%ARGS% POOLHOSTNAME=”qggcondor.qgg.hud.ac.uk”

set ARGS=%ARGS% ACCOUNTINGDOMAIN=”ad.hud.ac.uk”

set ARGS=%ARGS% JVMLOCATION=”C:\Windows\system32\java.exe”

set ARGS=%ARGS% USEVMUNIVERSE=”N”

set ARGS=%ARGS% USEHDFS=”N”

msiexec /qb- /i condor-7.8.6-winnt-x86.msi %ARGS%

Figure 4.15: Installation of Condor using Batch Script[3]

The batch script to install PoVB simply contains ”povb-x86 64-2.0.1\povb installer.exe
--vbox-download http://download.virtualbox.org/virtualbox/3.1.8/VirtualBox-
3.1.8-61349-Win.exe” from the PoVB installation chapter.

Then to finish the full configuration a final batch script is run that copies
over any configuration files, from a server called Vega, which cannot be
automatically during installation, generated which looks like Figure 4.16

47

and then restart the machine.

xcopy \\vega\Installer\condor\condor config C:\Condor /Y

xcopy \\vega\Intsaller\povb\shared\condor config.policy \
C:\povb\shared\condor config /Y

net stop povb

sc config povb names start= demand

shutdown -r -t 01

Figure 4.16: Installation of Condor using Batch Script

When these scripts have been used then the script should be converted
into an MSI at the beginning of the chapter and then applying the group
policy to a computer laboratory that will then install Condor and PoVB as
desired.

48

Chapter 5

Conclusion

The literature review that was carried out identified that green IT is about
reducing the amount of energy used within IT, which in tern reduces the
production of carbon emissions.

By researching into the different HTC middleware option showed that
Condor was the most adaptable system available because it has been
used in a number of different UK universities. By analysing how Condor
has been used revealed some of the useful tools and techniques that can
be used by Condor to make it greener

The survey was an incredibly useful tool because it revealed how other
UK universities run Condor alongside existing HPC resources. This survey
also showed how Condor has been configured so that users can get the
most use out of it for research.

The power management scripts that were developed are not only able
to power up extra machines when the queue status requires it. The ad-
ditional option of been able to switch between the different Condor clients
will be a useful addition. This makes the Condor pool able to cater to far
more of the research community who use Windows or Linux applications.

The creation of a MSI that can deploy the Condor solution developed
makes deploying the Condor pool a easier and quicker task.

Condor on the execute machines conform to the green IT policy be-
cause after 15 minutes of been idle it will start a job but if it has been idle
for a further 15 minutes it will go into a low power state. Condor will also
not interfere with the user experience because it will drop the job as soon
as a user comes to the computer and it will start on another computer that
is idle.

It can be concluded that the original project aims and objectives have
been achieved. This work on Condor has resulted in a publication at Digital
Research 2012[43] where the reviewers gave very positive feedback.

49

5.1 Further Work

Many machines in the Condor pool have a graphics card installed that
could also be utilised if configured correctly. This could be an extremely
useful addition because it makes Condor able to cater to even more re-
searchers who may be programming code in CUDA.

A refinement that could be made is to modify the IP and MAC collec-
tion script to populate a database that would also contain benchmark in-
formation so that the most powerful machines could be woken more often.
This would be improvement because the more powerful machine are of-
ten newer more green machines that would save energy. These machines
would complete jobs quicker so that fewer machines will need to be woken
up.

50

References

[1] “UW-Madison Comp Sci Condor Machine Statistics for Month.”
http://condor-view.cs.wisc.edu/condor-view-applet/Month.html.

[2] C. A. Struble, “Pools of Virtual Boxes A Year Later.”
http://research.cs.wisc.edu/htcondor/CondorWeek2010/condor-
presentations/struble-pools-virtual-boxes.pdf, Apr. 2010.

[3] “3.2 installation.” http://research.cs.wisc.edu/htcondor/manual/v7.9/3 2Installation.html.

[4] “EZ GPO:ENERGY STAR.” http://www.energystar.gov/index.cfm?c=power mgt.pr power mgt ez gpo.

[5] “Condor Project Homepage.” http://research.cs.wisc.edu/condor.

[6] I. Kureshi, “Establishing a university grid for hpc applications.”
September 2010.

[7] “Daresbury laboratory: Facilities and services | STFC.”
http://www.stfc.ac.uk/About+STFC/342.aspx.

[8] “Autodesk - backburner 2012.1.1.” http://usa.autodesk.com/adsk/servlet/ps/dl/item?siteID=123112&id=18699866&linkID=9242259.

[9] “History : ENERGY STAR.” http://www.energystar.gov/index.cfm?c=about.ab$0history.

[10] R. L. Mitchell, “SEVEN STEPS TO a green data center,” Computer-
world, vol. 41, pp. 23–26, June 2007.

[11] C. Garretson, “Inside a green data center,” Network World, vol. 24,
pp. 49–52, Nov. 2007.

[12] G. Anthes, “Green grows the data center,” Computerworld, vol. 41,
p. 38, Sept. 2007.

[13] R. McFarlane, “Cooling the green data center,” EC&M Electrical Con-
struction & Maintenance, vol. 111, pp. 14–16, Apr. 2012.

51

[14] A. Beck, “High Throughput Computing: An Interview With Miron
Livny.” http://research.cs.wisc.edu/condor/HPCwire.1, June 1997.

[15] U. o. W. Center for High Through-
put Computing, “2.10 DAGMan Applications.”
http://research.cs.wisc.edu/htcondor/manual/v7.6/2$010DAGMan$0Applications.html,
2012.

[16] “High Throughput Parallel Computing(HTPC).”
http://research.cs.wisc.edu/condor/CondorWeek2010/condor-
presentations/thain-fraser-hptc.pdf, Apr. 2010.

[17] Microsoft, “Cluster of workstations.”
http://download.microsoft.com/download/3/C/9/3C9BE860-51F4-
4A7A-BEE1-97F4DDA54FBC/Cluster of Workstations SP2.docx,
June 2011.

[18] University of California, “BOINC.” http://boinc.berkeley.edu/, Nov.
2012.

[19] University of California, “Choosing BOINC projects.”
http://boinc.berkeley.edu/projects.php, Oct. 2012.

[20] R. Hipschman, “About SETI@home page 2.”
http://seticlassic.ssl.berkeley.edu/about seti/about seti at home 2.html,
2003.

[21] R. Hipschman, “About SETI@home page 3.”
http://seticlassic.ssl.berkeley.edu/about seti/about seti at home 3.html,
2003.

[22] “TOP500 List - June 2012 (1-100) | TOP500 Supercomputing Sites.”
http://top500.org/list/2012/06/100, June 2012.

[23] “How did the Condor project start?.”
http://research.cs.wisc.edu/condor/background.html, Jan. 2013.

[24] “What is Condor?.” http://research.cs.wisc.edu/condor/description.html,
Jan. 2013.

[25] I. C. Smith, Experiences with Running MATLAB Applications on a
Power-Saving Condor Pool. Sept. 2009.

[26] “IT Service-Newcastle University.” http://www.ncl.ac.uk/itservice/condor/aboutcondor,
2012.

52

[27] C. Gerrard, P. Haldane, S. Hamlander, S. McGough, P. Robinson,
D. Sharples, D. Swan, P. Watson, and S. Wheater, “Intelligent Power
Management over large Clusters,” 2010.

[28] D. Spence, “Reading Campus Grid User Guide.”
http://www.reading.ac.uk/nmsruntime/saveasdialog.aspx?lID=36146&sID=89514,
Oct. 2009.

[29] “Campus Grid-University of Reading.”
http://www.reading.ac.uk/internal/its/e-research/its-eresearch-
campusgrid.aspx.

[30] B. Cregan, “Condor.” https://www.acrc.bris.ac.uk/condor.htm, Dec.
2009.

[31] D. Spence, M. Tiejun, X. Xin, and W. David, “12 00 Spence-OxGrid-
EU-Condor.ppt,” Oct. 2008.

[32] “CamGrid.” http://www.ucs.cam.ac.uk/scientific/camgrid, 2012.

[33] “Technical Details.” http://www.ucs.cam.ac.uk/scientific/camgrid/technical,
2012.

[34] “Condor.” http://www.cardiff.ac.uk/insrv/it/condor/index.html.

[35] J. Osborne and A. Hardisty, “Cardiff universitys condor pool: Back-
ground, case studies, and fEC,” in Proc. AHM, p. 361364, 2006.

[36] “Cardiff university | NGS.” http://www.ngs.ac.uk/institutes/cardiff.

[37] J. Huang, A. Kini, E. Paulson, C. Reilly, E. Robinson, S. Shankar,
L. Shrinivas, D. DeWitt, and J. Naughton, “An overview of quill: A
passive operational data logging system for condor,” Computer Sci-
ences Technical Report, University of Wisconsin, 2007.

[38] “Pools of virtual boxes - browse /povb-2.0.1 at SourceForge.net.”
http://sourceforge.net/projects/poolsofvirtualb/files/povb-2.0.1/.

[39] I. Smith, “Re: [Condor-users] condor with power saving PCs,” July
2007.

[40] I. C. Smith, “Towards a greener Condor pool: adapting Condor for use
with energy-efficient PCs,” 2010.

[41] Microsoft, “Net start.” http://technet.microsoft.com/en-
us/library/bb490713.aspx, 2013.

53

[42] “HTCondorWiki: whole machine slots.” https://htcondor-
wiki.cs.wisc.edu/index.cgi/wiki?p=WholeMachineSlots, Nov. 2012.

[43] D. Gubb, H. Violeta, and I. Kureshi, “Implementing
a condor pool using a green-IT policy.” http://digital-
research.oerc.ox.ac.uk/papers/implementing-a-condor-pool-using-a-
green-it-policy/view, Sept. 2012.

54

Appendix A

Modifications made to Windows
condor config

##Par t 1

What machine i s your c e n t r a l manager?
CONDOR HOST=10.71.88.84

##Par t 2
ALLOW READ=⇤

ALLOW WRITE=⇤

##Par t 3

Enable Condor to go i n t o low power s ta tes
TimeToWait = (30 ⇤ $ (MINUTE)
Should Hibernate = ((KeyboardIdle >$ (S ta r t I d l eT ime))

\
&& $ (CPUIdle) \
&& ($StateTimer) >$TimeToWait)))

55

Appendix B

[mac.pl] Automation of MAC and
IP Collection

! / usr / b in / p e r l

#get the Hostnames F i r s t
@host= ‘ condor s ta tus �long | grep ’ Machine = ’ | uniq | cut

�c 12�40| cut �f1 �d ” . ” ‘ ;

f i n d the i p and mac addresses
@ipadd =(‘ condor s ta tus �long | grep ’ S ta r td IpAddr = ’ |

uniq | cut �f1 �d ” : ” | cut �c 18�40 ‘) ;
@macadd=(‘ condor s ta tus �long | grep HardwareAddress |

uniq | cut �c 20�36 ‘) ;

#Find number o f machines
my $end= ‘ condor s ta tus �long | grep ’ Machine = ’ | uniq |wc

� l ‘ ;

i =$RANDOM;
#RANGE=$end ;

l e t ” i %= $RANGE” ;

#open the f i l e f o r WOL i n f o
open (MYFILE , ’>>WOLinfo . t x t ’) ;

#removes next l i n e from each ar ray element

56

chomp @host ;
chomp @ipadd ;
chomp @macadd;

f i l l s the f i l e w i th the requ i red i n f o r m a t i o
for ($count = $end ; $count >= 0; $count��)
{
pr in t MYFILE ” $host [$count] $ipadd [$count] $macadd [

$count]\n ” ;
}

#closes f i l e
close (MYFILE) ;

#checks t h a t there are not any d u p l i c a te i p ’ s or mac
addresses

system (‘ ca t WOLinfo . t x t | sort | uniq>WOLinfo . t x t ‘) ;

57

Appendix C

Condor wake on script from
Liverpool

������������������� cron job p e r l s c r i p t
������������������������

! / usr / l o c a l / b in / p e r l

use s t r i c t ;

my $condor bin = ’ / opt1 / condor / b in ’ ;
my $queue args = ’�c o n s t r a i n t ” JobStatus==1”� f ”%d\\n ”

c l u s t e r i d ’ ;
my $condor q = ” $condor bin / condor q $queue args ” ;
my $s ta tus a rgs = ’�c o n s t r a i n t \ ’ S ta te ==” Unclaimed ”\ ’� f

”%s\\n ”Name ’ ;
my $condor s ta tus = ” $condor bin /

condor s ta tus$s ta tus a rgs ” ;

my $ g e t i d l e j o b s = ” $condor q |wc� l | t r �d ’ ’ ” ;
my $get id le mach ines = ” $condor s ta tus |wc� l | t r �d ’ ’ ” ;

my $ n o o f i d l e j o b s ;
my $IP address ;
my $MAC address f i le ;
my $no of id le mach ines ;
my $ e m a i l f i l e ;
my $centre ;
my $broadcast address ;

58

ac tua l broadcast addresses removed f o r s e c u r i t y
reasons

my %a l l c e n t r e s = (”ROTC”=>” 138. xxx . xxx .255 ” ,
”ARC2”=>” 138. xxx . xxx .255 ” ,
”CDTC”=>” 138. xxx . xxx .255 ” ,
”ERTC”=>” 138. xxx . xxx .255 ”) ;

my $wakeup root = ” / opt1 / condor wakeup ” ;
my $wakeup = ” $wakeup root / wakeonlan ” ;
$ e m a i l f i l e = ” $wakeup root / s ta tus ” ;

$ n o o f i d l e j o b s = ‘ $ g e t i d l e j o b s ‘ ;
$no o f id le mach ines = ‘ $get id le machines ‘ ;

open (EMAIL , ”>” , $ e m a i l f i l e) ;
pr in t EMAIL ” no of i d l e jobs = $ n o o f i d l e j o b s ” ;
pr in t EMAIL ” no of i d l e machines =

$no of id le mach ines ” ;
close (EMAIL) ;

i f ($ n o o f i d l e j o b s � $no of id le mach ines > 10)
{

t e s t i n g only
‘ / usr / b in / mai lx �s ” woke up Condor pool ”

asdasuyuy\@liv . ac . uk < $ e m a i l f i l e ‘ ;

while (($centre , $broadcast address) = each %
a l l c e n t r e s)

{
$MAC address f i le = ” $wakeup root / MAC addresses / ”

. $centre ;
pr in t ” $wakeup � i $broadcast address � f

$MAC address f i le \n ” ;
pr in t ‘ $wakeup � i $IP address � f

$MAC address f i le ‘ ;
}

}
[39]

59

Appendix D

Source code condor power v1

! / usr / b in / p e r l

use s t r i c t ;

my $condor bin = ’ / opt / condor �7.6 .7 / b in ’ ;

my $queue args = ’�c o n s t r a i n t ” JobStatus ==1” � f ”%d\\n
” c l u s t e r i d ’ ;

my $queue win = ’�long �c o n s t r a i n t ” JobStatus ==1” |
grep WINNT ’ ;

my $queue l in = ’�long �c o n s t r a i n t ” JobStatus ==1” |
grep LINUX ’ ;

my $condor q = ” $condor bin / condor q $queue args ” ;
my $condor q win = ” $condor bin / condor q $queue win ” ;
my $condo r q l i n = ” $condor bin / condor q $queue l in ” ;

my $status windows7 = ’�c o n s t r a i n t \ ’OpSys==”WINNT61”
&& State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $status windowsxp = ’�c o n s t r a i n t \ ’OpSys==”WINNT51”
&& State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $ s t a t u s l i n u x = ’�c o n s t r a i n t \ ’OpSys==”LINUX ” &&
State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $s ta tus a rgs = ’�c o n s t r a i n t \ ’ S ta te ==” Unclaimed ”\ ’
� f ”%s\\n ”Name ’ ;

my $sta tus busy = ’�c o n s t r a i n t \ ’ S ta te ==” Claimed ”\ ’ � f

60

”%s\\n ”
Name ’ ;

my $condor s ta tus = ” $condor bin / condor s ta tus
$s ta tus a rgs ” ;

my $condor s ta tus win7 = ” $condor bin / condor s ta tus
$status windows7 ” ;
my $condor s ta tus winxp = ” $condor bin / condor s ta tus
$status windowsxp ” ;
my $ c o n d o r s t a t u s l i n u x = ” $condor bin / condor s ta tus

$ s t a t u s l i n u x ” ;
my $condor s ta tus busy = ” $condor bin / condor s ta tus

$sta tus busy ” ;

my $ g e t i d l e j o b s = ” $condor q | wc � l | t r �d ’ ’ ” ;
#wc i s count and � l i s the number o f l i n e s
my $ g e t i d l e j o b s w i n = ” $condor q win | wc � l | t r �d

’ ’ ” ;
my $ g e t i d l e j o b s l i n = ” $condo r q l i n | wc � l | t r �d

’ ’ ” ;

my $ g e t i d l e w i n 7 = ” $condor s ta tus win7 | wc � l | t r
�d ’ ’ ” ;

my $get id le mach ines = ” $condor s ta tus | wc � l | t r �
d ’ ’ ” ;

my $ge t i d l e w inxp = ” $condor s ta tus winxp | wc � l |
t r �d ’ ’ ” ;

my $ g e t i d l e l i n u x = ” $ c o n d o r s t a t u s l i n u x | wc � l |
t r �d ’ ’ ” ;

my $get busy = ” $condor s ta tus busy | wc � l | t r �d ’
’ ” ;

my $ n o o f i d l e j o b s ;
my $no o f w in jobs ;
my $ n o o f l i n j o b s ;

my $no of id le mach ines ;
my $ n o o f i d l e w i n 7 ;
my $no o f i d l e w in xp ;
my $ n o o f i d l e l i n u x ;
my $no of busy machines ;

61

my $ e m a i l f i l e ;
my $required machines ;
my $tota l windows machines ;

$ n o o f i d l e j o b s = ‘ $ g e t i d l e j o b s ‘ ;
$no o f w in jobs = ‘ $ g e t i d l e j o b s w i n ‘ ;
$ n o o f l i n j o b s = ‘ $ g e t i d l e j o b s l i n ‘ ;
my $ l i n j o b s = $ n o o f l i n j o b s ;

$no of id le mach ines = ‘ $get id le machines ‘ ;
$ n o o f i d l e w i n 7 = ‘ $ge t i d l e w in7 ‘ ;
$no o f i d l e w in xp = ‘ $ge t i d le w inxp ‘ ;
$ n o o f i d l e l i n u x = ‘ $ g e t i d l e l i n u x ‘ ;
$no of busy machines = ‘ $get busy ‘ ;

$tota l windows machines = $ n o o f i d l e w i n 7 +
$no o f i d l e w in xp ;

$required machines = $ n o o f i d l e j o b s �
$no of id le mach ines ;

my $requ i red l inux mach ines = $ n o o f l i n j o b s �
$ n o o f i d l e l i n u x ;

my $required windows machines = $no o f w in jobs �
$tota l windows machines ;

open (EMAIL , ”>” , $ e m a i l f i l e) ;
pr in t EMAIL ”

��\n ” ;
pr in t EMAIL ” Number o f busy machines =

$no of busy machines ” ;
pr in t EMAIL ” Number o f i d l e machines =

$no of id le mach ines ” ;

pr in t EMAIL ” \nNumber o f i d l e Win7 = $ n o o f i d l e w i n 7 ”
;

pr in t EMAIL ” Number o f i d l e WinXP = $no o f i d l e w in xp ”
;

pr in t EMAIL ” Number o f requ i red machines =
$required machines \n ” ;

pr in t EMAIL ” \nNumber o f i d l e jobs = $ n o o f i d l e j o b s ”

62

;
pr in t EMAIL ” \nNumber o f i d l e Windows jobs =

$no o f w in jobs ” ;
pr in t EMAIL ” Number o f i d l e Windows machines =
$tota l windows machines \n ” ;
pr in t EMAIL ” Number o f Windows machines requ i red =
$required windows machines ” ;
pr in t EMAIL ” \n\nNumber o f i d l e Linux jobs =

$ n o o f l i n j o b s ” ;
pr in t EMAIL ” Number o f i d l e Linux machines =

$ n o o f i d l e l i n u x ” ;
pr in t EMAIL ” Number o f Linux machines requ i red =
$requ i red l inux mach ines ” ;
pr in t EMAIL ” \n

��\n ” ;
i f ($required machines >= ’ 0 ’)
{
pr in t EMAIL ” \n

###\
n ” ;

pr in t EMAIL ” #
#\n ” ;

pr in t EMAIL ” # Number o f requ i red machines =
$required machines #\n ” ;

pr in t EMAIL ” # Machines have been woken
#\n ” ;

pr in t EMAIL ” #
#\n ” ;

pr in t EMAIL ”
###\
n ” ;

i f ($required machines <= ’ 0 ’)
{
pr in t EMAIL ” \n#################################\n ” ;
pr in t EMAIL ” # #\n ” ;
pr in t EMAIL ” # Enough machines are on l i ne ! ! ! #\n ” ;
pr in t EMAIL ” # #\n ” ;
pr in t EMAIL ” #################################\n ” ;
}
close (EMAIL) ;

63

Appendix E

HTPC Settings

we w i l l double�a l l o c a t e resources to over lapp ing
s l o t s

NUM CPUS = $ (DETECTED CORES) ⇤2
MEMORY = $ (DETECTED MEMORY) ⇤2

we w i l l double�a l l o c a t e resources to over lapp ing
s l o t s

s ing le�core s l o t s get 1 core each
SLOT TYPE 1 = cpus=1
NUM SLOTS TYPE 1 = $ (DETECTED CORES)

whole�machine s l o t gets as many cores and RAM as the
machine has

SLOT TYPE 2 = cpus=$ (DETECTED CORES) , mem=$ (
DETECTED MEMORY)

NUM SLOTS TYPE 2 = 1

Macro s p e c i f y i n g the s l o t i d o f the whole�machine
s l o t

Example : on an 8�core machine , the whole�machine
s l o t i s 9 .

WHOLE MACHINE SLOT = ($ (DETECTED CORES) +1)

ClassAd a t t r i b u t e t h a t i s True / False depending on
whether t h i s s l o t i s

the whole�machine s l o t
CAN RUN WHOLE MACHINE = Slo t ID == $ (WHOLE MACHINE SLOT

64

)
STARTD EXPRS = $ (STARTD EXPRS) CAN RUN WHOLE MACHINE

adve r t i se s ta te o f each s l o t as S lo tX Sta te i n
ClassAds of a l l o ther s l o t s

STARTD SLOT EXPRS = $ (STARTD SLOT EXPRS) State

Macro f o r re fe renc ing s ta te o f the whole�machine
s l o t .

Rel ies on eval () , which was added i n Condor 7 . 3 . 2 .
WHOLE MACHINE SLOT STATE = eval (s t r c a t (” S lo t ” ,$ (

WHOLE MACHINE SLOT) , ” S ta te ”))

Macro t h a t i s t r ue i f any s ing le�core s l o t s are
claimed

WARNING: THERE MUST BE AN ENTRY FOR ALL SLOTS
IN THE EXPRESSION BELOW. I f you have more s lo t s ,

you must
extend t h i s expression to cover them . I f you have

fewer
s lo t s , ex t ra e n t r i e s are harmless .
SINGLE CORE SLOTS CLAIMED = \

($ (WHOLE MACHINE SLOT STATE) =?= ” Claimed ”) < \
(S lo t1 S ta te =?= ” Claimed ”) + \
(S lo t2 S ta te =?= ” Claimed ”) + \
(S lo t3 S ta te =?= ” Claimed ”) + \
(S lo t4 S ta te =?= ” Claimed ”) + \
(S lo t5 S ta te =?= ” Claimed ”) + \
(S lo t6 S ta te =?= ” Claimed ”) + \
(S lo t7 S ta te =?= ” Claimed ”) + \
(S lo t8 S ta te =?= ” Claimed ”)

Single�core jobs must run on s ing le�core s l o t s
START SINGLE CORE JOB = TARGET. RequiresWholeMachine

=!= True && MY.CAN RUN WHOLE MACHINE == False && $ (
WHOLE MACHINE SLOT STATE) =!= ” Claimed ”

Whole�machine jobs must run on the whole�machine
s l o t

START WHOLE MACHINE JOB = TARGET. RequiresWholeMachine
=?= True && MY.CAN RUN WHOLE MACHINE

65

START = ($ (START)) && (($ (START SINGLE CORE JOB)) | | (
$ (START WHOLE MACHINE JOB)))

Suspend the whole�machine job u n t i l s ing le�core jobs
f i n i s h .

SUSPEND = ($ (SUSPEND)) | | (MY.CAN RUN WHOLE MACHINE &&
($ (SINGLE CORE SLOTS CLAIMED)))

CONTINUE = ($ (SUSPEND)) =!= True

WANT SUSPEND = ($ (WANT SUSPEND)) | | ($ (SUSPEND))

In case group�quotas are being used , t r i m down the
s ize

of the ” p ie ” to avoid double�count ing .
GROUP DYNAMIC MACH CONSTRAINT = CAN RUN WHOLE MACHINE

== False

#
#���

66

Appendix F

Final Script

! / usr / b in / p e r l

use s t r i c t ;

my $condor bin = ’ / opt / condor �7.6 .7 / b in ’ ;

my $queue args = ’�c o n s t r a i n t ” JobStatus ==1”
� f ”%d\\n ” c l u s t e r i d ’ ;

my $queue win = ’�long �c o n s t r a i n t ”
JobStatus ==1” | grep WINNT ’ ;

my $queue l in = ’�long �c o n s t r a i n t ”
JobStatus ==1” | grep LINUX ’ ;

my $condor q = ” $condor bin / condor q
$queue args ” ;

my $condor q win = ” $condor bin / condor q
$queue win ” ;

my $condo r q l i n = ” $condor bin / condor q
$queue l in ” ;

my $status windows7 = ’�c o n s t r a i n t \ ’OpSys==”
WINNT61” && State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $status windowsxp = ’�c o n s t r a i n t \ ’OpSys==”
WINNT51” && State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $ s t a t u s l i n u x = ’�c o n s t r a i n t \ ’OpSys==”LINUX
” && State ==” Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

67

my $s ta tus a rgs = ’�c o n s t r a i n t \ ’ S ta te ==”
Unclaimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $sta tus busy = ’�c o n s t r a i n t \ ’ S ta te ==”
Claimed ”\ ’ � f ”%s\\n ” Name ’ ;

my $condor s ta tus = ” $condor bin / condor s ta tus
$s ta tus a rgs ” ;

my $condor s ta tus win7 = ” $condor bin / condor s ta tus
$status windows7 ” ;

my $condor s ta tus winxp = ” $condor bin / condor s ta tus
$status windowsxp ” ;

my $ c o n d o r s t a t u s l i n u x = ” $condor bin / condor s ta tus
$ s t a t u s l i n u x ” ;

my $condor s ta tus busy = ” $condor bin / condor s ta tus
$sta tus busy ” ;

my $ g e t i d l e j o b s = ” $condor q | wc � l | t r �d ’
’ ” ; #wc i s count and � l i s the number o f l i n e s

my $ g e t i d l e j o b s w i n = ” $condor q win | wc � l | t r
�d ’ ’ ” ;

my $ g e t i d l e j o b s l i n = ” $condo r q l i n | wc � l | t r
�d ’ ’ ” ;

my $ g e t i d l e w i n 7 = ” $condor s ta tus win7 | wc � l
| t r �d ’ ’ ” ;

my $get id le mach ines = ” $condor s ta tus | wc � l | t r
�d ’ ’ ” ;

my $ge t i d l e w inxp = ” $condor s ta tus winxp | wc �
l | t r �d ’ ’ ” ;

my $ g e t i d l e l i n u x = ” $ c o n d o r s t a t u s l i n u x | wc �
l | t r �d ’ ’ ” ;

my $get busy = ” $condor s ta tus busy | wc � l
| t r �d ’ ’ ” ;

my $ n o o f i d l e j o b s ;
my $no o f w in jobs ;
my $ n o o f l i n j o b s ;

my $no of id le mach ines ;
my $ n o o f i d l e w i n 7 ;
my $no o f i d l e w in xp ;

68

my $ n o o f i d l e l i n u x ;
my $no of busy machines ;

my $IP address ;
my $MAC address f i le ;
my $ e m a i l f i l e ;
my $centre ;
my $broadcast address ;
my $test mac = ’ 00:13:D3:0F:06:49 ’ ;
my $ t e s t I P = ’ 10.71.88.108 ’ ;
my $required machines ;
my $tota l windows machines ;

my $wakeup root = ” / usr / b in / ” ;
my $wakeup = ” $wakeup root / wakeonlan ” ;
$ e m a i l f i l e = ” / home / u0771649 / power / s ta tus ” ;

$ n o o f i d l e j o b s = ‘ $ g e t i d l e j o b s ‘ ;
my $ n o o f i d l e j o b s ;
my $no o f w in jobs ;
my $ n o o f l i n j o b s ;

my $no of id le mach ines ;
my $ n o o f i d l e w i n 7 ;
my $no o f i d l e w in xp ;
my $ n o o f i d l e l i n u x ;
my $no of busy machines ;

my $IP address ;
my $MAC address f i le ;
my $ e m a i l f i l e ;
my $centre ;
my $broadcast address ;
my $test mac = ’ 00:13:D3:0F:06:49 ’ ;
my $ t e s t I P = ’ 10.71.88.108 ’ ;
my $required machines ;
my $tota l windows machines ;

my $wakeup root = ” / usr / b in / ” ;
my $wakeup = ” $wakeup root / wakeonlan ” ;
$ e m a i l f i l e = ” / home / u0771649 / power / s ta tus ” ;

69

$ n o o f i d l e j o b s = ‘ $ g e t i d l e j o b s ‘ ;
$no o f w in jobs = ‘ $ g e t i d l e j o b s w i n ‘ ;
$ n o o f l i n j o b s = ‘ $ g e t i d l e j o b s l i n ‘ ;
my $ l i n j o b s = $ n o o f l i n j o b s ;

$no of id le mach ines = ‘ $get id le machines ‘ ;
$ n o o f i d l e w i n 7 = ‘ $ge t i d l e w in7 ‘ ;
$no o f i d l e w in xp = ‘ $ge t i d le w inxp ‘ ;
$ n o o f i d l e l i n u x = ‘ $ g e t i d l e l i n u x ‘ ;
$no of busy machines = ‘ $get busy ‘ ;

$tota l windows machines = $ n o o f i d l e w i n 7 +
$no o f i d l e w in xp ;

$required machines = $ n o o f i d l e j o b s �
$no of id le mach ines ;

my $requ i red l inux mach ines = $ n o o f l i n j o b s �
$ n o o f i d l e l i n u x ;

my $required windows machines = $no o f w in jobs �
$tota l windows machines ;

open (EMAIL , ”>” , $ e m a i l f i l e) ;
pr in t EMAIL ”

��\n ” ;
pr in t EMAIL ” Number o f busy machines =

$no of busy machines ” ;
pr in t EMAIL ” Number o f i d l e machines =

$no of id le mach ines ” ;

pr in t EMAIL ” \nNumber o f i d l e Win7 = $ n o o f i d l e w i n 7 ”
;

pr in t EMAIL ” Number o f i d l e WinXP = $no o f i d l e w in xp ”
;

pr in t EMAIL ” Number o f requ i red machines =
$required machines \n ” ;

pr in t EMAIL ” \nNumber o f i d l e jobs = $ n o o f i d l e j o b s ”
;

pr in t EMAIL ” \nNumber o f i d l e Windows jobs =
$no o f w in jobs ” ;

pr in t EMAIL ” Number o f i d l e Windows machines =

70

$tota l windows machines \n ” ;
pr in t EMAIL ” Number o f Windows machines requ i red =

$required windows machines ” ;
pr in t EMAIL ” \n\nNumber o f i d l e Linux jobs =

$ n o o f l i n j o b s ” ;
pr in t EMAIL ” Number o f i d l e Linux machines =

$ n o o f i d l e l i n u x ” ;
pr in t EMAIL ” Number o f Linux machines requ i red =

$requ i red l inux mach ines ” ;
pr in t EMAIL ” \n

��\n ” ;

#waking and serv i ce changing sec t ion
i f ($required machines >= ’ 0 ’)
{

#
˜ #

Find ing which hosts are on l ine , and i f busy
#

#
˜ #

#which Windows hosts are on l i ne
my @WINDOWS=scalar (‘ condor s ta tus | grep ’WINNT ’ | grep ’

I d l e ’ | cut �c 7�18|uniq | cut �f1 �d ” . ” ‘) ;
#which Linux hosts are on l i ne
my @LINUX=scalar (‘ condor s ta tus | grep ’ LINUX ’ | grep ’

I d l e ’ | cut �c 7�19|uniq | cut �f1 �d ” . ” ‘) ;
#which machines are busy
my @BUSY= scalar (‘ condor s ta tus | grep ’ Claimed \ |Owner ’

| cut �c 7�19|uniq | cut �f1 �d ” . ” ‘) ;

#
˜ #

Macthing which Window / Linux machines are on l i ne wi th
the MAC #

71

and IP i n f o c o l l l e c t e d from the WOLinfo . t x t
#

#
˜ #

open (FILE , ’ WOLinfo . t x t ’) ;

while (<FILE>)
{
S p l i t s the l i n e by White�Space
($host , $ip , $mac) = s p l i t (’ ’) ;

#populates a tab le f o r when windows machines are i d l e
f o r WINDOWS �> POVB

$wfound= grep (/ $host / , @WINDOWS) ;
$ l found= grep (/ $host / , @LINUX) ;
$bfound= grep (/ $host / , @BUSY) ;

on l i ne Windows
i f ($wfound == 1)
{
push (@WINhost , $host) ;
push (@WINip , $ ip) ;
push (@WINmac, $mac) ;
}
e l s i f ($ l found == 1) {
push (@LINhost , $host) ;
push (@LINip , $ ip) ;
push (@LINmac, $mac) ;
}
#busy machines
on l i ne l i n u x
e l s i f ($bfound == 1) {
push (@BUSINhost , $host) ;
push (@BUSip, $ ip) ;
push (@BUSmac, $mac) ;
}
o f f l i n e machines
e l s i f ($ l found == 0 && $wfound == 0 && $bfound == 0)
{
push (@OFFhost , $host) ;

72

push (@OFFip, $ ip) ;
push (@OFFmac, $mac) ;
}

#contents WOLinfo . t x t
push (@hostn , $host) ;
push (@ipadd , $ ip) ;
push (@macadd, $mac) ;
}
close (FILE) ;

#
˜ #

Changes serv ices then i f there are not enough
machines i d l e #

or on l i ne wake up machines
#

#
˜ #

i f ($no o f i d l e w in7 >=4 && $ n o o f l i n j o b s >=4)
{

my $winRANGE = scalar @WINip+1;
my $LinWake = i n t ($ / n o o f l i n j o b s 5) ;

my $WINvar ;
for ($WINvar = 0 ; $WINvar < $LinWake ; $WINvar

++) {

my $RANDOM = i n t (rand ($winRANGE)) ;
net rpc se rv i ce stop � I $WINip [

$RANDOM] �U Admins t ra tor%$password
condor ;

net rpc se rv i ce s t a r t � I $WINip [
$RANDOM] �U Admin i s t r a to r%
$password povb ;

}
}
e l s i f ($ n o o f i d l e l i n u x >=20 && $no of w in jobs >=20)
{

73

my $linRANGE = scalar @LINip+1;
my $WINWake = i n t ($no o f w in jobs / 5) ;

my $LINvar ;
for ($LINvar = 0 ; $LINvar < $WINWake ; $LINvar

++) {
my $RANDOM = i n t (rand ($linRANGE)) ;

net rpc se rv i ce stop � I $LINip [
$RANDOM] �U Admins t ra tor%$password

povb ;
net rpc se rv i ce s t a r t � I $LINip [

$RANDOM] �U Admin i s t r a to r%
$password condor ;

}
}
else
{

my $offRANGE = scalar @OFFip+1;
my $OFFWake = i n t (abs ($required machines / 5)) ;

my $OFFvar ;
for ($OFFvar = 0 ; $OFFvar < $OFFWake; $OFFvar

++) {
my $RANDOM = i n t (rand ($offRANGE)) ;

system (” wakeonlan $OFFmac [$RANDOM] � i
$OFFip [$RANDOM] ”) ;

}
}
p r i n t EMAIL ”\n

###\
n ” ;

p r i n t EMAIL ”#
#\n

” ;
p r i n t EMAIL ”# Number o f requ i red machines =

$required machines #\n ” ;
p r i n t EMAIL ”# Machines have been woken

#\n ” ;
p r i n t EMAIL ”#

74

#\n
” ;

p r i n t EMAIL
”###\
n ” ;

}
i f ($required machines <= ’ 4 ’)
{
pr in t EMAIL ” \n#################################\n ” ;
pr in t EMAIL ” # #\n ” ;
pr in t EMAIL ” # Enough machines are on l i ne ! ! ! #\n ” ;
pr in t EMAIL ” # #\n ” ;
pr in t EMAIL ” #################################\n ” ;
}
close (EMAIL) ;

75

