

University of Huddersfield Repository

Abobghala, Abdelmenem, Pislaru, Crinela and Iwnicki, S.

Optimising the energy efficiency of rail vehicles by a novel application of integrated active control method for vehicle traction and steering systems

Original Citation

Abobghala, Abdelmenem, Pislaru, Crinela and Iwnicki, S. (2013) Optimising the energy efficiency of rail vehicles by a novel application of integrated active control method for vehicle traction and steering systems. In: Next Generation Rail 2013, 15 - 16 July 2013, The Crystal, London.

This version is available at http://eprints.hud.ac.uk/id/eprint/19006/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Optimising the energy efficiency of rail vehicles by a novel application of integrated adaptive control method for vehicle traction and active steering systems

Abdelmenem Abobghala, Crinela Pislaru, Simon Iwnicki

Institute of Railway Research

Active wheelsets steering control for railway vehicles travelling around curves

Market requirements

- Facilitate highly efficient movement of passenger and freight.
- Continuous improvement of rolling stock energy and carbon efficiency.
- Reliable, energy efficient, low whole life cost rolling stock.
- Energy efficient drive systems which produce less pollution
- Reduction of tractive energy, peak power demand and the unit costs

Traction control systems in railway vehicles

Novelty: advantages of the proposed method

- Novel controller which enables significant reduction of creep forces within wheel-rail interface and reduction of motor current
- Energy efficient integrated adaptive control method for vehicle traction and active steering systems
- Significant improvements to vehicle dynamic performance
- Easy integration with intelligent condition monitoring systems

Proposed adaptive integrated control for traction and active wheelset systems

Adaptive control method – uses a controller which must adapt the commands depending on variable parameters or uncertainties.

Controller

$$\begin{array}{l} u(t) = u_n(t) + u_a(t), \\ u(t) \in \mathbb{R}^m \text{ is the control input} \\ u_n(t) \in \mathbb{R}^m \text{ is the nominal feedback control} \\ u_n(t) = K_1 x(t) + K_2 c(t) \\ K_1 \in \mathbb{R}^{m \times n} \text{ ; feedback gain, } K_2 \in \mathbb{R}^{m \times m} \text{ ; feedforward gain} \\ u_a(t) \in \mathbb{R}^m \text{ is the adaptive feedback control} \end{array}$$

Adaptive mechanism

$$\begin{array}{l} u_a(t) = -\widehat{W_{\sigma}^T}\sigma\big(x(t)\big) - \widehat{W_{u_n}^T}u_n\big(x(t)\big) \\ \widehat{W_{\sigma}}(t) \in \mathbb{R}^{s \times m} \ \& \ \widehat{W_{u_n}}(t) \in \mathbb{R}^{m \times m} \ are \ the \ estimates \ weight \ matrix \\ \sigma \colon \mathbb{R}^n \to \mathbb{R}^s \ is \ a \ known \ basis \ function \ of \ the \ form \ \sigma(x) \\ & = [\sigma_1(x), \sigma_2(x), \ldots, \sigma_s(x)]^T \\ x(t) \in \mathbb{R}^n \ is \ the \ state \ vector \ available \ for \ feed \ back \end{array}$$

Controller: generates control signals based on command signals , feedback and signals generated by adaptive mechanism. **Adaptive mechanism**: applies the proposed control method in order to optimise the operation of controller.

System identification: performs the processing of signals (such as $v, \theta, \omega, T, ...$) which are directly measured form the rail vehicle.

Reference Tansel Yucelen*,† and Eric Johnson, (2012) A new command governor architecture for transient response shaping, *Int. J. Adapt. Control Signal Process*