University of Huddersfield Repository Abobghala, Abdelmenem, Pislaru, Crinela and Iwnicki, S. Optimising the energy efficiency of rail vehicles by a novel application of integrated active control method for vehicle traction and steering systems #### **Original Citation** Abobghala, Abdelmenem, Pislaru, Crinela and Iwnicki, S. (2013) Optimising the energy efficiency of rail vehicles by a novel application of integrated active control method for vehicle traction and steering systems. In: Next Generation Rail 2013, 15 - 16 July 2013, The Crystal, London. This version is available at http://eprints.hud.ac.uk/id/eprint/19006/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: - The authors, title and full bibliographic details is credited in any copy; - A hyperlink and/or URL is included for the original metadata page; and - The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk. http://eprints.hud.ac.uk/ # Optimising the energy efficiency of rail vehicles by a novel application of integrated adaptive control method for vehicle traction and active steering systems Abdelmenem Abobghala, Crinela Pislaru, Simon Iwnicki **Institute of Railway Research** ### Active wheelsets steering control for railway vehicles travelling around curves #### Market requirements - Facilitate highly efficient movement of passenger and freight. - Continuous improvement of rolling stock energy and carbon efficiency. - Reliable, energy efficient, low whole life cost rolling stock. - Energy efficient drive systems which produce less pollution - Reduction of tractive energy, peak power demand and the unit costs #### Traction control systems in railway vehicles #### Novelty: advantages of the proposed method - Novel controller which enables significant reduction of creep forces within wheel-rail interface and reduction of motor current - Energy efficient integrated adaptive control method for vehicle traction and active steering systems - Significant improvements to vehicle dynamic performance - Easy integration with intelligent condition monitoring systems ## Proposed adaptive integrated control for traction and active wheelset systems **Adaptive control** method – uses a controller which must adapt the commands depending on variable parameters or uncertainties. #### Controller $$\begin{array}{l} u(t) = u_n(t) + u_a(t), \\ u(t) \in \mathbb{R}^m \text{ is the control input} \\ u_n(t) \in \mathbb{R}^m \text{ is the nominal feedback control} \\ u_n(t) = K_1 x(t) + K_2 c(t) \\ K_1 \in \mathbb{R}^{m \times n} \text{ ; feedback gain, } K_2 \in \mathbb{R}^{m \times m} \text{ ; feedforward gain} \\ u_a(t) \in \mathbb{R}^m \text{ is the adaptive feedback control} \end{array}$$ #### Adaptive mechanism $$\begin{array}{l} u_a(t) = -\widehat{W_{\sigma}^T}\sigma\big(x(t)\big) - \widehat{W_{u_n}^T}u_n\big(x(t)\big) \\ \widehat{W_{\sigma}}(t) \in \mathbb{R}^{s \times m} \ \& \ \widehat{W_{u_n}}(t) \in \mathbb{R}^{m \times m} \ are \ the \ estimates \ weight \ matrix \\ \sigma \colon \mathbb{R}^n \to \mathbb{R}^s \ is \ a \ known \ basis \ function \ of \ the \ form \ \sigma(x) \\ & = [\sigma_1(x), \sigma_2(x), \ldots, \sigma_s(x)]^T \\ x(t) \in \mathbb{R}^n \ is \ the \ state \ vector \ available \ for \ feed \ back \end{array}$$ **Controller**: generates control signals based on command signals , feedback and signals generated by adaptive mechanism. **Adaptive mechanism**: applies the proposed control method in order to optimise the operation of controller. **System identification:** performs the processing of signals (such as $v, \theta, \omega, T, ...$) which are directly measured form the rail vehicle. **Reference** Tansel Yucelen*,† and Eric Johnson, (2012) A new command governor architecture for transient response shaping, *Int. J. Adapt. Control Signal Process*