University of Huddersfield Repository

Humphreys, Paul and Pilling, Sally

The surface disinfection efficiency of sporicidal products

Original Citation

This version is available at http://eprints.hud.ac.uk/18810/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.
• The removal of *C. difficile* spores from healthcare environments is an important aspect of the control of CDIs.
• Range of products available with proven activity against *C. difficile* spores.
• Little information on how to use these products.
• Wipes/wiping are a common method for the application of products to surfaces.
• Range of products tested against surfaces contaminated with *C. difficile* spores.
• Wipes and Microfibre + liquid products

The Surface Disinfection Efficiency of Sporicidal Products

- 3m section of bench contaminated with *C. difficile* spores
- Bench wiped in a systematic manner
- Reduction in spores calculated per unit area

Impact of Low Level Disinfection

- Log Reduction vs. Area (m²)

Removal of *C. difficile* spores

- 3m Peracetic Acid Wipes
- 750 ppm Peracetic Acid
- 100 ppm Chlorine Dioxide
- Peracetic Acid Wipes

Test Surface with sampling grid

Dr Paul Humphreys, Sally Pilling, Hygiene and Disinfection Centre, University of Huddersfield. p.n.humphreys@hud.ac.uk