Computing and Library Services - delivering an inspiring information environment

A design for a subminiature, low energy scanning electron microscope with atomic resolution

Eastham, D. A., Edmondson, P., Greene, S., Donnelly, S. E., Olsson, E., Svensson, K. and Bleloch, A. (2009) A design for a subminiature, low energy scanning electron microscope with atomic resolution. Journal of Applied Physics, 105 (1). 014702. ISSN 0021-8979

[img] PDF - Published Version
Download (236kB)


We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1–0.2 nm (1–2 Å). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 Å) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1×106 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons.

Item Type: Article
Subjects: Q Science > QC Physics
Schools: School of Computing and Engineering > Electron Microscopy and Materials Analysis
Related URLs:
Depositing User: Graeme Greaves
Date Deposited: 02 Oct 2013 08:25
Last Modified: 05 Nov 2015 18:28


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©