Metrology and Characterisation of Micro and Nano-scale Defects for Aluminium Oxide Barrier Film Employed in Flexible Photovoltaic Modules

This version is available at http://eprints.hud.ac.uk/18237/
Today’s roll-to-roll (RTR) technologies are well known in the field of packaging manufacture. They offer high productivity, reasonable coating cost and good reliability. RTR technology can be much more environmentally benign and energy-efficient process as compared to wafer-based or vacuum-based manufacturing.

Flexible PV Module

The state-of-the-art flexible PV film technologies have efficiencies at or beyond the level of Si-based rigid PV modules currently in use, are those based on the material CuInGaSb. However, they are highly susceptible to long term environmental degradation.

Manufacturing Challenge

The most critical problem of CIGS PV modules is the transmission of water vapor into the active layer (CIGS). According to international standard (IEC 61646), a WVTR of \(\sim 10^{-11} \text{g/m}^2 \text{day} \) is sufficient for most packaging applications, but \(\leq 10^{-13} \text{g/m}^2 \text{day} \) is required for encapsulation of long-life flexible PV modules as shown in figure (3).

PV Environmental Protection

Environmental protection of the CIGS cells can be provided by a thin (40nm) barrier coating of AlOx. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin AlOx layer is deposited onto polymer thin films before these films encapsulate the PV cell. However, even these barriers are not 100% effective. Water vapour permeation still caused by micro and nano-scale defects in the barrier coating.

Cataloguing of the Defects

A set of AlOx ALD representative samples were assessed for environmental degradation test “MOCON”. Following that surface metrology techniques were employed to detect defects are postulated to be responsible for causing efficiency drop. Different types of features were noted on each sample; these features are different in terms of their type and size. Typical examples of these features are shown in the following figures.

Methodology

Surface segmentation through Wolf pruning method with threshold conditions at area prune 2.5% of the total area, and area combine of 1% of Sz was found to be optimal prune criteria which could help to predict PV module efficiency degradation and lifespan reduction.

Results and Discussion

Feature parameters have been shown to correlate with solar cells barrier performance and lifespan. Thus, monitoring the barrier film surface texture to maintain process parameters would increases the quality of the solar cell produced.

Conclusion

The results suggest that small numbers of large defects have the dominant effect on the WVTR. This study provides the basis for in process metrology for roll 2 roll production of barrier coatings for flexible PV modules.

Process Optimization Solutions

The Wavelength Scanning Interferometry (WSI) will be mounted as a metrology tool on the linear stage, where the goal is to achieve the z-positioning with an auto focus option within the WSI. A capture of the WSI takes approximately 2 seconds, where a 3D measurement of the surface will be achieved.

References

