University of Huddersfield Repository

Elrawemi, Mohamed, Blunt, Liam and Fleming, Leigh

Metrology and Characterisation of Micro and Nano-scale Defects for Aluminium Oxide Barrier Film Employed in Flexible Photovoltaic Modules

Original Citation

This version is available at http://eprints.hud.ac.uk/18237/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Background

Today’s roll-to-roll (R2R) technologies are well known in the field of packaging manufacture. They offer high productivity, reasonable coating cost and good reliability. R2R technology can be much more environmentally benign and energy-efficient process as compared to wafer-based or vacuum-based manufacturing.

Flexible PV Module

The state-of-the-art flexible PV film technologies have efficiencies at or beyond the level of Si-based rigid PV modules currently in use, are those based on the material aluminium oxide barrier layer is Al_2O_3. Defects in the barrier coating.

Cataloguing of the Defects

A set of Al$_2$O$_3$ ALD representative samples were assessed for environmental degradation test “MOCON”. Following that surface metrology techniques were employed to detect defects are postulated to be responsible for causing efficiency drop. Different types of features were noted on each sample; these features are different in terms of their type and size. Typical examples of these features are shown in the following figures.

Methodology

Surface segmentation through Wolf pruning method with threshold conditions at area prune 2.5% of the total area, and area combine of 1% of S was found to be optimal prune criteria which could help to predict PV module efficiency degradation and lifespans reduction.

Segmentation Process

Surface segmentation through Wolf pruning method with threshold conditions at area prune 2.5% of the total area, and area combine of 1% of S was found to be optimal prune criteria which could help to predict PV module efficiency degradation and lifespans reduction.

Research Impact

- High efficiency solar cells.
- Low cost.
- Low weight solar modules.
- Flexible solar modules.
- Maximise production yield.
- Reduction in scrap.
- Maximise production speed.
- Less energy.
- Low cost.

Future work

- Implementation of on-line metrology for the roll to roll ALD process at the centre for Process innovation (CPI) using the knowledge gained from the present work.
- Implementation of the areal feature analysis to carry in-line metrology and process control.

References