University of Huddersfield Repository

Mertins, Barbara, Psakis, Georgios, Grosse, Wolfgang, Back, Katrin Christiane, Salisowski, Anastasia, Reiss, Philipp, Koert, Ulrich and Essen, Lars-Oliver

Flexibility of the N-Terminal mVDAC1 Segment Controls the Channel’s Gating Behavior

Original Citation

Mertins, Barbara, Psakis, Georgios, Grosse, Wolfgang, Back, Katrin Christiane, Salisowski, Anastasia, Reiss, Philipp, Koert, Ulrich and Essen, Lars-Oliver (2012) Flexibility of the N-Terminal mVDAC1 Segment Controls the Channel’s Gating Behavior. PLoS ONE, 7 (10). e47938. ISSN 1932-6203

This version is available at http://eprints.hud.ac.uk/18220/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
<table>
<thead>
<tr>
<th>Statistical Model</th>
<th>Amplitude</th>
<th>Mean (nS)</th>
<th>STDV (nS)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Single Gaussian complete range</td>
<td>73.70 ± 8.20</td>
<td>2.34 ± 0.06 (S1)</td>
<td>0.57 ± 0.1</td>
<td>0.76</td>
</tr>
<tr>
<td>2. Single Gaussian on S1 population</td>
<td>79.69 ± 3.21</td>
<td>2.53 ± 0.02 (S1)</td>
<td>0.32 ± 0.06</td>
<td>0.97</td>
</tr>
<tr>
<td>3. Single Gaussian on S2 population</td>
<td>79.11 ± 9.23</td>
<td>2.03 ± 0.03 (S2)</td>
<td>0.25 ± 0.05</td>
<td>0.88</td>
</tr>
<tr>
<td>4. Sum of two Gaussians complete range</td>
<td>70.42 ± 9.35 (S1)</td>
<td>2.61 ± 0.04 (S1)</td>
<td>0.27 ± 0.08 (S1)</td>
<td>0.91</td>
</tr>
<tr>
<td>5. Sum of two Gaussians on S2 population</td>
<td>80.49 ± 5.00 (S2A)</td>
<td>2.03 ± 0.01 (S2A)</td>
<td>0.19 ± 0.02 (S2A)</td>
<td>0.98</td>
</tr>
</tbody>
</table>

T-test between S1 means from 1 ($n = 680$) & 2 ($n = 386$): Different ($P = 0.0193$)
T-test between S1 means from 1 ($n = 680$) & 4 ($n = 680$): Different ($P = 0.0002$)
T-test between S1 means from 2 ($n = 386$) & 4 ($n = 680$): Similar ($P = 0.1475$)
T-test between S2 means from 3 ($n = 294$) & 4 ($n = 680$): Similar ($P = 0.1642$)
T-test between S2 means from 3 ($n = 294$) & 5 ($n = 294$): Same ($P = 1.0000$)
T-test between S2 means from 4 ($n = 680$) & 5 ($n = 294$): Similar ($P = 0.1558$)
T-test between S1 mean from 4 ($n = 386$) & S2 from 4 ($n = 294$): Different ($P \leq 10^{-4}$)
T-test between S2A mean from 5 ($n = 224$) & S2B from 5 ($n = 70$): Different ($P \leq 10^{-4}$)