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Abstract. Conventional condition monitoring techniques such as vibration, acoustic, ultrasonic and 

thermal techniques require additional equipment such as sensors, data acquisition and data 

processing systems which are expensive and complicated. In the meantime modern sensorless flux 

vector controlled drives can provide many different data accessible for machine control which has 

not been explored fully for the purpose of condition monitoring. In this paper polynomial models 

are employed to describe nonlinear relationships of variables available from such drives and to 

generate residuals for real time fault detection and performance comparisons. Both transient and 

steady state system behaviours have been investigated for optimal detection performance. Amongst 

27 variables available from the drive, the torque related variables including motor current, Id, Iq 

currents and torque signals show changes due to mechanical misalignments. So only these variables 

are explored for developing and optimising detection schemes. Preliminary results obtained based 

on a motor gearbox system show that the torque feedback signal, in both the steady and transient 

operations, has the highest detection capability whereas the field current signal shows the least 

sensitivity to such faults. 

1. Introduction 

Shaft misalignment in rotating machinery is one of the most common problems in machines. 
Misalignments may cause a lower operating efficiency and in the long-run it can result in 
catastrophic failures due to additional stress and vibration on bearings and shafts; so a badly aligned 
machine can cost a factory 20% to 30% [1]. Several methods have been studied and examined 
aiming at developing more cost effective and early fault detection schemes in rotor systems. In most 
cases, these methods can be based on vibration [1, 2], wireless sensors [3, 4], stator current analysis 
[5], temperature/thermal image [6, 7], motor current signature analysis (MCSA) [8, 9], acoustic 
emission and lubrication oil analysis [8, 10]. Unfortunately, none of these methods can always be 
fully utilized because of high cost, low reliability and unsatisfactory accuracy [5, 10].  

The main objective of this paper is to study the potential of using the data obtainable from a 

commercial VSD for mechanical fault detection in a multi-stage gearbox transmission system 

through a model based detection approach. The behaviour of the control system is analysed by 

considering stator current, torque, field and torque current components and power signals. The 

capability of these signals is examined by analyzing its transient and steady state operations based 

on the developed polynomial models. The work includes identifying the optimal variables that will 

be more effective in detecting mechanical misalignments of different severities. 

2. Test facility and method 

As shown in Fig. 1 and 2, the system explored in this study has two main parts: the mechanical 



 

part and the electrical control part. The mechanical part consists of a 15kW AC induction motor as 
the prime driver, two back-to-back 2 stage helical gearboxes for coupling the DC motor with flexible 
spider rubber couplings. The first gearbox operates as a speed reducer while the second is a speed 
increaser so that the system maintains sufficient speed for loading. The control system consists of a 
programmable logic controller (PLC) for setting up test profiles requested by the operator, an AC 
variable speed drive (VSD) under sensorless flux vector control mode for controlling the speed of the 
system, a DC variable speed drive (VSD) providing a controlled variable load on the AC motor by 
regulating the torque of the DC motor/generator. In addition, two data acquisition systems are 
employed to log the data from both the sensorless flux vector control and PLC.  

 
 

                              

 

 

Figure 1 Test rig construction  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic of test system 

 
As shown in Fig 2, designed test programs are entered into the test rig via a touch screen interface 

to the PLC. Settings include speed, load set-points and time duration for each operating cycle. Up to 
15 cycles can be programed. When the user starts the test, the PLC sends the required values to both 
the AC and DC VSD.  

The AC VSD obtains the required speed from the PLC and precisely runs the AC motor at this 
speed, benefits from the built in PID controller and uses the Model Reference Adaptive System 
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(MRAS), which allows steady operation of the AC motor even at a high starting torque by using a 
motor model which continually simulates the motor operation instead of receiving a speed feedback 
from an encoder or the tachometer.  

The DC drive receives the load set-points from the PLC and subsequently provides the control 
signal to the DC motor so that it produces the required load onto the AC motor. This is achieved by 
regulating the armature and field currents of the DC motor using two phases of the three phase 
supply. As the DC motor currents vary, the load onto the AC motor varies proportionally. This 
provides the ability to study the control system’s behaviour under different speed and load conditions 
as well as the transient process between different conditions. With these facilities, tests can also be 
repeated within exactly the same load and speed condition. 

Moreover, almost all data inside the AC drive are obtained and monitored via P3 port of the drive 
using the DSELite software. All data collected by the data acquisition system are stored in a PC for 
post processing and analysis using a Matlab program.  

3. Development of detection approaches 

A. Data Characteristics. Tests carried out are based on a variable speed and a constant load 

operating profile, as illustrated in Fig.3, to simulate VFD possible operating conditions. During 

each test the speed is set to 20%, 40%, 60%, 80% and 100% of full speed, each of which operates 1 

minute, while the load is fixed during the test. The load is changed every test, taking the values of 

0%, 40%, and 80%. Before any data is collected the system is tuned to produce the minimal level of 

vibration. Under this condition, data is then collected and taken as the baseline for comparison with 

different faults induced subsequently. To evaluate the performance of using control data, three 

different levels of parallel misalignment were induced by moving the DC motor from its optimal 

position by 0.5 mm, 1.00 mm and 1.80 mm and corresponding data was collected under identical 

operating conditions.  

 

Figure 3 Data sets for baseline and 1.0mm misalignment under 80% load 

Fig. 3 presents a representative data set of several common variables under both baseline and a 

faulty case. It can be seen that both speed related and torque related variables show clear changes 

for different speed steps set in the test. However, comparing between the baseline and the faulty 

case shows that load related variables such as torque in Fig 3 (c), motor current Fig 3 (b) and Iq 
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current Fig. 3(e) show slightly higher amplitudes through all operating periods, giving high 

potential for fault detection. On the other hand, the speed shown in Fig. 3(a) and its related variables 

such as power Fig. 3(f) show little changes between baseline and faulty case. In particular the speed 

data is nearly the same. This is due to the fact that the AC VSD is designed to maintain the required 

speed regardless of any load or speed disturbances. From the point of view of fault detection and 

diagnosis, the speed variation due to faults is masked by the control process and may not be suitable 

for mechanical fault detection. 

Further study of the data in Fig. 4 has found that there are clear transient effects during speed 

changes. This may indicate that more control efforts are required in the transient process and hence 

it may have more information for fault detection as the misalignment has more disturbances. By 

separating the transient data from the steady data through setting a threshold to speed change rate, 

Fig. 4 and Fig. 5 show respectively the torque versus speed in the steady process and the transient 

process for all data cases. From these figures it can be observed that the data from transient process 

may be better for fault detection because of its bigger changes, even though the data in steady 

process also shows clear changes between the baseline and the faulty cases. In addition, the data in 

both processes shows a gradual increase trend with an increase in misalignment levels. So they may 

be used for fault classification. 

 

 
Figure 4 Torque data behavior during steady period at 80% load 

 
B. Polynomial model based detection. As shown in Fig. 4 and 5 torque signals are affected by the 
existence of misalignments. Both steady and transient responses of faulty sets have shown 
differences to that of healthy data sets. Similarly, the same variations have been observed in other 
variables. However, it seems difficult to distinguish the fault when it is as small as 0.5mm. 
Moreover, a set of variables that produce optimal detection also need to be identified for real-time 
implementation. Therefore, polynomial models have been developed to describe the relationship 
between these variables and the speed under both the transient and steady state operations. Based on 
the fundamental connection between torque related variables and speed, the order of models is set to 
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4 for describing the nonlinear correlation and then it is trained using the baseline data. Subsequently, 
the model is used to generate residuals for different condition cases. The residual from baseline is 
taken as the detection threshold for differentiating different faulty cases.  
 

 
Figure 5 Torque data behavior during transient period 

 
Fig. 6 shows a typical model based detection process performed on the current data sets between 

the baseline and 1.00mm misalignment under 40% load. For the steady operation, the model 
produces a lower current prediction than the measured ones. It means that more current is required 
under the same load and speed conditions to indicate the system is abnormal. Moreover, this 
abnormality can be clearly observed from the residual data based detection shown in Fig. 6 (e) in 
which the residual data from the faulty case exceeds the threshold developed according to mean 
squired error during modelling process. In addition, the residual data shows higher amplitude in high 
speed operation, showing that it needs more current in higher load conditions due to higher energy 
dissipation of coupling element and bearing friction. For the speed transient operation, the model 
prediction and residual data exhibit similar behaviour with that of the steady process. However, it 
does not show clear differences as expected earlier and is difficult to make a judgement on which is 
better in detecting the fault.  
C. Optimal detection variables. To make a comparison of detection performance based on the two 
types of data and between different variables, a performance index parameter is defined based on the 
residual data as 

  
  ̅̅̅̅    ̅̅ ̅

√  
 
   

 
                                                                                                                                       (1) 

Where   ̅ and   ̅  are the residual mean for baseline and faulty data respectively, and    and    are the 

standard deviation of baseline residual data and faulty residual respectively. Obviously, the larger the 
mean difference and the smaller the variance the better the performance in separating two set of data. 
In addition, because the original data is normalised, the amplitude from equation (1) can be directly 
compared between different variables. 
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Figure 6 Predicted and measured data in steady and transient processes of current signals at 40% 

load with 1.00 mm misalignment 

 

Fig. 7 presents comparison results for all torque related variables. As can be seen from the 

graphs the differences of the performance parameter between healthy and faulty signals are quite 

clear for both steady and transient data sets. Moreover, the differences are also clear between 

different faulty cases except for Id. These show that either of variables can be used for both 

misalignment detection and severity diagnosis.  

Furthermore, the feedback torque signal produces the highest detection capability for both types 

of data. However, when the misalignment is as small as 0.5 mm the stator current gives better 

detection. While Iq has obtained good detection capability for 1.0 mm and 1.8 mm misalignments. 

In all cases, Id has shown the poorest detection ability over the different test situations. This is 

understandable as under the normal operation conditions Id is independent of load variation. Thus it 

is not influenced by load disturbances due to misalignments. Surprisingly, the steady data 

outperforms the transient data. 

4. Conclusion 

The study shows that it is feasible to use signals from a sensorless flux vector control drive for 

mechanical misalignment fault detection. For real time implementation, polynomial models can be 

employed to describe nonlinear relationships of variables available and generate residuals for fault 

detection and performance comparisons. From analytic studies it is understood that shaft 

misalignments mainly cause deviations to torque related variables such as motor current, Id, Iq 

current and torque signals. So only these variables are useful in developing the model based 

detection scheme and identifying the optimal variables. Applying the model based method to 

experimental data sets from a motor-gearbox drive system has found that the developed model and 

detection approach for the variables of interest can discriminate between different misalignment 
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severities, showing that it is feasible to use any of the torque related variables for monitoring 

misalignments. 

 

Figure 7 Detection and diagnosis comparison between variables and data types 

 

Moreover, both transient operation data and steady operation data yield similar detection and 

diagnosis performance. However, the comparison between different variables shows that the 

feedback torque signal has the highest detection capability whereas the field current signal shows 

the least sensitivity to such faults. It means that the torque signal is the best one for detecting the 

misalignment problem. Obviously, substantial studies in using data from AC variable speed drives 

are needed to fuse different variables for detecting and diagnosing more complicated fault cases 

such as motor faults, gearbox deterioration and system looseness and their combinations. 
 

References 

[1] I. Ahmed, M. Ahmed, K. Imran1, M. Shuja. Khan, T. Akram1, M. Jawad1, Spectral analysis of 

misalignment in machines using sideband components of broken rotor bar, Shorted Turns and 

Eccentricity, International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 10 No: 06 

(2010). 

[2] S Nagrani, S. S. Pathan, I. H. Bhoraniya, Misalignment fault diagnosis in rotating machinery 

through the signal processing technique- signature analysis, International Journal of Advanced 

Engineering Research and Studies E-ISSN2249–8974, (2012).   

[3] L. Arebi, F. Gu and A. Ball, A comparative study of misalignment detection using a novel 

Wireless Sensor with conventional Wired Sensors, 25th International Congress on Condition 

Monitoring and Diagnostic Engineering, (2012).  

Id
Iq

I
P

T

1
2

3
4

0

2

4

Seve
rit

y

(a) Performance for steady operation

Variable

D
e
te

c
ti
o

n

Id
Iq

I
P

T

1
2

3
4

0

2

4

Seve
rit

y

 (b) Performance for transient operation

Variable

D
e
te

c
ti
o

n

IdIqIPT
0

0.5

1

1.5

2

2.5
(c) Performance for steady operation

Variable

D
e
te

c
ti
o

n

IdIqIPT
0

1

2

3
 (d) Performance for transient operation

Variable

D
e
te

c
ti
o

n



 

[4] L. Arebi, F. Gu, N. Hu, and A. Ball, Misalignment detection using a wireless sensor mounted 

on a rotating shaft, 24th International Congress on Condition Monitoring and Diagnostics 

Engineering Management. COMADEM, Stavanger, Norway, pp. 1289-1299. ISBN 0954130723, 

(2011). 

[5] M. Blödt, P. Granjon and B. Raison, J. Regnier, Mechanical fault detection in induction motor 

drives through stator current monitoring - theory and application examples fault detection, Wei 

Zhang (Ed.), ISBN: 978-953-307-037-7, InTech, (2010). 

[6] W. K. Wong, P. N. Tan, C. K. Loo and W. S. Lim, Machine condition monitoring using 

omnidirectional thermal imaging system, IEEE International Conference on Signal and Image 

Processing Applications, (2009). 

[7] J. T. Suomela, Condition monitoring of paper machine with thermal imaging, Proceedings of 

SPIE Vol. 4710, (2002). 

[8] L. D. Hall, D. Mba and R.H. Bannister, Acoustic emission signal classification in condition 

monitoring using the Kolmogorov-Smirnov statistic, Journal of Acoustic Emission, Vol. 19, pp 209- 

228, (2001). 

[9] H. C. Pusey, Turbomachinery Condition monitoring and failure prognosis, Sound and 

Vibration Magazine, (2007). 

[10] D. S. Gu and B. K.n Choi, Machinery faults detection using acoustic emission signal, Acoustic 

Waves - From Microdevices to Helioseismology, Prof. Marco G. Beghi (Ed.), ISBN: 978-953-307-

572- 3, InTech, (2011). 


