University of Huddersfield Repository

Fleming, Leigh, Blunt, Liam, Robbins, David and Elrawemi, Mohamed

Characterisation techniques to assess functional properties of barrier coatings for flexible PV substrates

Original Citation

This version is available at http://eprints.hud.ac.uk/18171/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Characterisation techniques to assess functional properties of barrier coatings for flexible PV substrates

Leigh Fleming*, Liam Blunt*, David Robbins**, and Mohamed Elrawemi*

*EPSRC Centre for Innovative Manufacture in Advanced Metrology, University of Huddersfield West Yorkshire UK, **Centre for Process Innovation Limited, Sedgefield, County Durham UK

Abstract

This paper details findings from recent work undertaken as part of the EU funded NanoMend project. The aim of the project is to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates.

The presence of surface irregularities on the uncoated film can induce “defects” within the, aluminium oxide, barrier layer, these features are in the order of magnitude of nanometres to a few microns. These “defects” are examined and quantitatively characterised. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. The efficient separation of small features from large features is achieved using data segmentation and feature parameter techniques. The presence of both large and small features is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON (quantitative gas permeation) test. The paper concludes that, based on analysis of water vapour transmission rates (WVTR) and defect size that small numbers of large features have a more significant effect on the deterioration of water vapour transmission rates. It is the WVTR which indicates the potential longevity of the device as it is the effectiveness of this ALD barrier layer to water vapour which ensures the effective function of the core CIGS layers encapsulated in the device.

The ability to measure and effectively characterise the features which are significant defects in the ALD barrier layers provides novel information to enable automatic detection and correction of potential restrictors to device performance in the processes.
1 Background

The latest flexible PV (photo-voltaic) film technologies have efficiencies at or beyond the level of Si based rigid PV modules; this is thanks to significant investment in research activities in order to further develop these technologies. These flexible devices offer significant advantages over rigid Si based technologies as they offer reduced mass, and increased opportunity for building integration (BIPV). Devices currently available are susceptible to environmental degradation which limits their long term use. The devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials incorporating roll-to-roll processes. The thickness of the film is approximately 3μm prior to encapsulation. The environmental degradation occurs when water vapor transmission occurs through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuIn\(_{x}\)Ga\(_{1-x}\)Se\(_2\)) PV cells thus causing electrical shorts, efficiency drops and ultimately failure.

One method of environmental protection for the GIGS cell is to apply a barrier coating of Al\(_2\)O\(_x\) to the encapsulation material. The highly conformal Al\(_2\)O\(_x\) barrier layer is produced by atomic layer deposition (ALD). The surface of the encapsulation substrate polymer film must be of very high quality in order to ensure a robust effective barrier layer can be deposited, in order to achieve this high quality surface finish of the substrate prior to ALD coating, the substrate film is planerized

1.1 Flexible PV Modules

![Figure 1: Schematic of the flexible PV Module](image-url)
Figure 1 shows a schematic of the structure of the flexible PV modules, it is the encapsulation/barrier layer that is the focus of the investigation reported in this paper. The layer is typically formed from a planarised PET sheet with an Al_2O_3 coating which is applied by atomic layer deposition which technique which provides a highly conformal precision layer that provides environmental protection in the form of a barrier to water vapour transmission to the critical internal layers of the modules. The efficiency and conformity of these barrier layers gives great potential to increase the longevity of these devices making them a viable and affordable technology.

1.2 Water Vapour Transmission Rate Assessment

Water vapour transmission is assessed by either quantitative calcium resistivity or through use of a MOCON® (figure 2) which is an instrument used to assess gas permeation rates of ultra high barrier films, this is an accurate method of obtaining quantitative assessment of WVTR (water vapour transmission rates) of the ALD coated barrier layers under assessment.

![Figure 2: WVTR Measurement using MOCON method](image)

The area of measurement over which the WVTR is assessed is limited to 80mm diameter. The main challenge that this presents for the current study is this large area in which defect detection must be completed. In order to investigate the surface at the required resolution to observe and quantify potential defects the area of measurement is restricted to a few mm at most.

2.0 Measurement Methodology

In total four samples all ALD coated with Al_2O_3 were assessed for WVTR, these along with a non coated substrate sample were then assessed to determine the presence and magnitude of features which had the potential to influence the WVTR showing the areas to be defective. The samples were initially examined blind with no knowledge of the WVTR for any of the samples.
Three key measurement techniques were employed to survey the surface at different scales of measurement in order to capture all potential features which may be classed as “defects”. These techniques were Optical microscopy, White Light Scanning Interferometry and Scanning Electron Microscopy (SEM). The focus of this study will report the findings from the optical Interferometry. An initial survey was completed using the optical microscope to determine the concentration of features which may be classified as defects and to assess the appropriate scale of measurement.

![Optical image showing the scale of larger and smaller features observed](image)

2.2 White Light Scanning Optical Interferometry

The scale of defects observed from the broad survey using the optical microscope determined the appropriate measurement protocol for measurements taken completed using white light scanning interferometry. The instrument used was the Ametek Taylor Hobson CCI 3000 (Coherence correlation Interferometer). A 20x magnification lens was used which gave a measurement area of apx 1mm x 1mm. This gave adequate spatial resolution to detect features at both the larger and smaller observed features. At this scale of measurement it is not feasible to survey the entire surface so a structured approach to measurement was adopted in order to provide a statistically significant representation of the surface of each sample.
2.3 Measurement Protocol

A total of 3 studies were performed on each sample.

- 10 x 10 matrix of measurements to give an overall 2% of the tested area
- 100 measurements spaced evenly over the tested area
- A Repeat of the 10 x 10 measurement matrix

The measurements were completed on both the ALD coated samples and also the substrate polymer sheet.

A number of different types of feature were observed and catalogued, parametric analysis has been completed comparing areal surface texture parameters for each sample. Feature parameters were also used to determine the number and type of features for each sample. These parameters were subsequently compared with the WVTR for each sample.

3.0 Results

The WVTR (water vapour transmission rates) for each sample can be seen in table 1. There were two distinct groups of rates, where one sample showed a significantly higher WVTR, the other samples showed no statistical variation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>WVTR (High or Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2701</td>
<td>Low</td>
</tr>
<tr>
<td>2702</td>
<td>Low</td>
</tr>
<tr>
<td>2705</td>
<td>High</td>
</tr>
<tr>
<td>2706</td>
<td>Low</td>
</tr>
</tbody>
</table>

Although there was some variation with the standard areal surface texture parameters (table 3) the general texture of topography was of less interest than presence of isolated features which may result in a defective or compromised ADL coating. A range of typical features were noted and presumed to be potential defects in the substrate, the coating or both (table 2).

3.1 Catalogue of Features

A number of different features were observed in the topography of the samples, these could be classified into the following types of feature dependant upon size and prominence. Figures 4 and 5 show two of these typical features peaks (figure 4) and holes (figure 5).
Table 2 Catalogue of features observed

<table>
<thead>
<tr>
<th>Type of defect</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spikes</td>
<td>> 700 nm in height</td>
</tr>
<tr>
<td>Cracks</td>
<td>-</td>
</tr>
<tr>
<td>Scratches</td>
<td>-</td>
</tr>
<tr>
<td>Ghost defects</td>
<td>30-50 μm lateral dimension</td>
</tr>
<tr>
<td>Pinholes</td>
<td>1 to 3 μm lateral dimension</td>
</tr>
<tr>
<td>Peaks</td>
<td>< 33 nm</td>
</tr>
<tr>
<td>Holes</td>
<td>60 μm lateral dimension</td>
</tr>
</tbody>
</table>

Ghost defects refer to features where it is not clear if they are raised “peaks” or depressed “pits”.

Figure 4 “Peak” type feature
Section 3.2 Areal Surface topography assessment

Table 3 shows the variation in Sa – average roughness for the 3 studies completed. There is little variation in these figures and no correlation with the level of WVTR, what did correlate with WVTR was that the largest range in Sa was found on the sample with the highest WVTR. When interrogating the data from the first study, this large range was found to be from isolated features skewing the results. A method of setting appropriate boundaries in order to employ a wolf prune method to automatically detect hill and dale features was adopted. From this the density of peaks (figure 6), dales (figure 7) and significant features (figure 8) was determined.

Table 3 Sa – Average roughness of the samples from each of the 3 studies

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Exercise 1</th>
<th>Exercise 2</th>
<th>Exercise 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 2701</td>
<td>0.909</td>
<td>0.841</td>
<td>0.875</td>
</tr>
<tr>
<td>Sample 2702</td>
<td>0.853</td>
<td>0.732</td>
<td>0.792</td>
</tr>
<tr>
<td>Sample 2705</td>
<td>0.789</td>
<td>0.776</td>
<td>0.783</td>
</tr>
<tr>
<td>Sample 2706</td>
<td>0.865</td>
<td>0.874</td>
<td>0.665</td>
</tr>
<tr>
<td>Uncoated /S</td>
<td>1.06</td>
<td>0.965</td>
<td>1.01</td>
</tr>
</tbody>
</table>
A peak is defined as a point on the surface which is higher than all other points within a neighborhood of that point (ISO 25178-2:2012 (E)).

![Variations in Spd parameters](image)

Figure 6 Variation in density of peaks

A dale is defined as a region around a pit such that all maximal downward paths end at the pit (ISO 25178-2:2012 (E)).

![Variations in defects density (Sfd) parameters](image)

Figure 7 Variation in density of dales
Although sample 2705 showed the highest WVTR it showed in all 3 measurement studies the lowest density of peaks, pits and significant features when taking all visible features into account.

Following these findings, a visual survey of the samples with the highest and lowest WVTR was completed. The surface was fully visually inspected and only those defects which satisfied the criteria of only large defects (6σ ($S_q=0.8\text{nm}$) height & width $> 15\mu\text{m}$) were measured and recorded.
Sample 7205 (highest WVTR) showed a much higher number of these large, significant features than that of sample 7207 which had the lowest WVTR. (figure 9), this exercise will be repeated to ensure statistical significance in the results with a further batch of samples.

4.0 Conclusion

Optical Interferometry is an effective method for measurement of barrier layers in the development and assessment of flexible PV modules. Changes and irregularities in surface topography can be a useful predictor of performance of the barrier layer to gas permeation and water vapour transmission. The initial work has shown that there are methods for effective discrimination of significant and none significant features.

The findings show that small numbers of large defects may have more of an influence on function that large numbers of smaller defects. Further work is required to establish this hypothesis as statistically significant.

The NanoMend project has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) UNDER Grant Agreement No. 280581

5.0 References