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Abstract: : The High Redundancy Actuator project deals with the construction of an actuator
using many redundant actuation elements. Whilst this promises a high degree of fault tolerance,
the high number of components poses a unique challenge from a control perspective, especially
when actuation elements are used in series.
This paper describes how an adaptive control scheme can be used to deal with faults in a High
Redundancy Actuator. This is based on previous results leading to a simplified model of the
HRA with serial elements. In case of the fault, the parameters change, but the otherwise the
deviation from the simplified model is minimal.
This approach has two benefits. For one, it can restore the original system dynamics even after
a fault has occurred. The parameter estimate can also be used for health monitoring purposes,
because it reflects the number of effective faults in the HRA.

Keywords: high redundancy actuator, fault-tolerant control, active fault tolerance, fault
accommodation, adaptive control, parameter estimation, health monitoring, geometric
approach.

1. HIGH REDUNDANCY ACTUATION

High Redundancy Actuation (HRA) is a new approach
to fault tolerant actuation, where an actuator comprises
a large number of actuation elements (see Fig. 1). Faults
in the individual elements can be accommodated without
resulting in a failure of the complete actuator system.

The concept of the High Redundancy Actuation (HRA) is
inspired by the human musculature. A muscle is composed
of many individual muscle cells, each of which provides
only a minute contribution to the force and the travel
of the muscle. The aim of this project is to use the
same principle of co-operation with existing actuation
technology to provide intrinsic fault tolerance.

Fig. 1. Configuration of a High Redundancy Actuator

An important feature of the High Redundancy Actuator is
that the actuator elements are connected both in parallel
and in series. This makes it possible to deal with the two
main fault models: lock-up and loose elements. In case of
a lock-up fault, the available travel is slightly reduced, but
the elements in series can still move. If an element fails
loose, this reduces the maximum force, but the elements
in parallel are still effective.

Responding to faults in the HRA can still be a challenge,
because of the complexity of the system. While parallel
elements can be considered as one mass, serial elements
have to be modelled as several masses, and this leads to
high order system. This paper shows how this complexity
can be avoided by using an adaptive control scheme. In-
stead of detecting the faults explicitly, this scheme can ad-
just the control parameters implicitly, using a significantly
simpler model. This is possible because under certain cir-
cumstances, the HRA can be controlled using a simplified
model, and faults are reflected in parameter changes (not
structural changes). Unlike a robust controller (Steffen
et al., 2008b), the adaptive approach (Astolfi et al., 2008)
can compensate the effect of faults on the closed loop be-
haviour. So the original behaviour can be restored without
the complexity inherent in more detailed implementation
of fault detection and reconfiguration schemes (Davies
et al., 2008a). Despite the simplicity, the parameter es-
timation also can be used for health monitoring of the
HRA.
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Fig. 2. Electromagnetic Actuation Element

Section 2 introduces the simplified model of the HRA.
Sections 3 and 4 describes the design of the geometric
controller and the parameter estimator. The results of
this approach are compared with non-adaptive control
in Section 5, leading to the conclusion and outlook in
Section 6.

2. SIMPLIFIED MODEL OF THE HRA

The HRA considered here uses direct electromagnetic
actuation (voice coil principle). Other technologies are also
possible, but they may lead to a slightly more complex
model.

Single Element

A single actuation element (Fig. 2) behaves like a spring-
damper combination

m1ẍ = k1u1 − d1ẋ− r1x , (1)

where m1 is the moving mass, k1 is the input coefficient,
d1 is the damping factor (accounting for mechanical and
electrical damping), r1 is the elasticity of the spring, u1 is
the input signal, ẍ1 is the speed and x1 the position of the
mass. For the state space model, the system state

x = (ẋ1 x1)
T

is used. The parameters for the model are

m1 = 0.2 kg

d1 = 10
Ns

m

r1 = 1
N

m

k1 = 10
N

V
.

Further details on the modelling of the actuator can be
found in (Davies et al., 2008b).

HRA Model

As soon as elements are used series, each element becomes
its own moving masses, and needs to be modelled individu-
ally. So the detailed model contains further states (Fig. 3),
leading to a high order model of the form

ẍi = f(ẋi−1, xi−1, ẋi, xi, ẋi+1, xi+1) + kiui + k′iui+1 .

However, as shown in (Steffen et al., 2008a), it is possible
to align the dynamics of all masses, so that they move at
strictly related speeds and distances according to

ẋi

αi

=
ẋj

αj

and
xi

αi

=
xj

αj

.

This is achieved by increasing the force create by the
bottom elements, to compensate for the slightly higher
load, because they have to move the top elements in
addition to the load.

In the frequency domain, this leads to the cancelling of
all but two poles with input-decoupling zeros. Then the
connecting masses have no influence on the input-output
behaviour, and only the behaviour of a single mass system
(dominated by the load mass) remains. So Equation (1)
can be applied to the whole system, if the parameters are
adjusted accordingly:

mẍ = ku−
1

n
(dẋ− rx)

where n denotes the number of elements. For the example
application, n = 4 and intermediate masses of m1 =
m2 = m3 = 0.2 kg are used, together with a load mass
of m4 = 1 kg. The effective mass is slightly larger than the
load, but this is compensated by the parameter tuning.
The overall spring constant and damping are just one
quarter of those of an individual element, because each
element contributes only one quarter of the load speed
and distance. This leads to the SISO transfer function

G0(s) =
1

(s + 2.4)(s + 0.104)
(2)

for the nominal system.

Behaviour with Faults

This paper only deals with lock-up faults, because they
have a more significant influence on the dynamics than
other fault modes. While the effect of a loose fault can be
compensated locally by using parallel elements, a lock-up
fault invariably changes the structure of the system, and
therefore of the model. This is because a lock-up of an
element means that the two masses it links move at the
same speed, so they can be modelled as one mass (Fig. 4).
For example, a lock-up of the second element leads to

GF2(s) = 10
s + 134.5

s + 134.1

s + 41.6

s + 41.1

1

(s + 3.3)(s + 0.103)
,

(3)
and a double fault in elements 2 and 3 leads to the transfer
function

GF23(s) = 10
1

(s + 5)(s + 0.102)
. (4)

There are several changes introduced by the faults. The
main difference is the change of the faster pole from 2.4 to
3.3 or 5. This is expected, because with one element immo-
bilised, the HRA is less flexible, leading to higher damping
and stiffness. The other changes are an incompletely pole-
zero cancellation, a slight change of the slower pole, and
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Fig. 4. Lock-up faults

a different amplification for some fault cases. These have
only a minimal effect on the open loop behaviour, and are
negligible in the closed loop behaviour.

All transfer functions were derived by linearisation from
a detailed MATLAB/Simulink model of the system, and
then verified manually. Unfortunately the process is too
lengthy for inclusion in this paper.

Parametric Model

For the design of the adaptive controller, the minor
changes in the transfer function will be disregarded. In-
stead, the adaption focuses on the change in the faster
pole. The following parametrised system model is used:

ẍ = f(x, u, θ) =
1

m
(ku− θ(dẋ + rx)) . (5)

This is an approximation of the models shown above, when
1

θ
represents the number of working elements in series. So

the nominal value is θ = 1

4
, and it increases to 1

3
, 1

2
etc

with each lock-up fault.

3. ADAPTIVE CONTROLLER DESIGN

The design of the adaptive controller design follows the
geometric approach proposed in (Astolfi et al., 2008;
Ortega et al., 2003; Astolfi and Ortega, 2003). It consists
of two main steps: the assignment of target dynamics to
the system, and the choice of an attractive and invariant
manifold for the parameter to estimate. Both steps are
independent, so they can be performed in any order. Here,
the target dynamics are handled first.

Target Dynamics

The control objective is fast convergence without over-
shoot. The target dynamics reflect this by using a double
pole pair at −20:

Gtarget(s) =
1

(

1

20
s + 1

)2
.

In state space, this leads to

ẍ = ft(x) = (40 400)(xref − x) + ẍref

where xref and ẍref are state and acceleration of the
reference trajectory. The target dynamics can be turned
into a controller by solving the system model

f(x, u, θ) = ft(x)

for u:

u =
1

k
(θ(dẋ + rx) + mft(x)) .

This is a state feedback controller, so it requires knowledge
of the speed ẋ in addition to position x. The speed
can be measured or observed, but in the latter case it
is important that the observer does not depend on the
unknown parameter θ. One way to achieve this is to
measure the acceleration ẍ. Then ẋ can be derived from
x and ẍ using either two complementary filters or a state
observer, without resorting to the difficult to implement
integration or differentiation operations.

Reference Trajectory

If matching trajectories are used such that ẍref is the
derivative of ẋref, which is a derivative of xref, the system
will follow these exactly. This is a significant advantage
over conventional controllers, because it means that the
disturbance response and the input response can be de-
signed separately, leaving a lot of freedom in the design
the reference trajectory. The only requirement is that the
second derivative ẍref in bounded, and within the physical
capability of the system.

For the example application, a piecewise defined reference
trajectory will be used for each step, consisting of three
phases:

(1) 25ms of constant acceleration,
(2) 100ms of constant speed, followed by
(3) 25ms of constant deceleration.

With this trajectory, the acceleration remains within rea-
sonable bounds, the final position is reached, and the
system settles after only 150ms (see Fig. 5).

4. ESTIMATOR DESIGN

The second step in the design process is the design of
the parameter estimator. The estimator is an inherently
non-linear system, and therefore it will be performed
exclusively in state space.
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Fig. 5. Reference Trajectory

Parameter Estimate

The key idea of the geometric approach for adaptive
control is that the parameter is not estimated directly.
Instead, a non-linear transformation is applied to the
parameter, and the resulting value is used as a state. With
θe being the estimate, the transformed value is

θ̂ = θe − β(x) .

There are several possible choices for the function β(x).
For this application, a quadratic form

β(x) = xT Qx ,

is used, because it is easy to analyse. The symmetric
matrix Q is the central design parameter for the estima-
tion. Experience shows that a quadratic function works
well for mechanical systems, but other choices are also
possible. The parameter estimate can be easily calculated
by inverting the transformation:

θe = θ̂ + xT Qx . (6)

Estimator Invariance

The goal is of course for the estimate θe to approach the
real parameter θ, and then to stay there. Both conditions
are considered separately, starting with the later one. It is
equivalent to θe = θ being an invariant manifold. Because
the real parameter θ is assumed to be constant, this can
be achieved by finding parameters such that

θ̇e = 0

as long as
θe = θ .

This condition can be satisfied by taking the derivative of
(6) and solving for

˙̂
θ =−β′(x)

(

ft(x)
ẋ

)

=−2xT Q

(

ft(x)
ẋ

)

.

Combining the two differential equations leads to the
extended system

ẍ = f(x, u, θ)

˙̂
θ =−2xT Q

(

ft(x)
ẋ

)

.

Inserting the parameters and functions leads to the com-
plete model
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Fig. 6. θ̂(x) over ẋ for θ = 1

4

ẍ = ẍref +
θ̂ − θ + xT Qx

m
(d r)x + (40 400)(xref − x)

˙̂
θ =−2xT Q

(

ẍref + (40 400)(xref − x)
ẋ

)

.

Estimator Convergence

The second condition is that θe converges to θ, which is
equivalent to the manifold θe = θ being attractive. This
can be studied using the estimator error

z = θe − θ = θ̂ − θ + xT Qx

and its derivative

ż = 2xT Q

(

z
0

)

(d r)x .

= 2xT Q

(

d r
0 0

)

xz

A choice of

Q = −k

(

d r
r 0

)

with k > 0 ensures that the product

xT Q

(

d r
0 0

)

x =−(ẋQ11 + xQ21)(dẋ + rx)

=−k(dẋ + rx)2

is always non-positive. (The right half of Q does not
contribute to the convergence, so Q22 can be set to zero
to simplify the implementation.) This means that z is
stable and converging to zero everywhere except on the
line dẋ = rx, where it is constant.

The factor k is a design parameter that determines the
speed of the convergence. Bigger values of k lead to a
faster convergence. For the example used here, k = 0.1
would be a conservative choice, and k = 1 leads to near
instant convergence.

The resulting function θ̂(x) is a parabola in x and ẋ. Only
the dependency on ẋ, is shown in Fig. 6, assuming x = 0
and θ = 1

4
. In this case, the parabola is symmetric, based

at θ̂ = 1

4
. For other values of x, the base point is different,

but the function always intersects with θ̂ = θ at ẋ = 0.



Intuitive Interpretation

Now that the adaptive control scheme is complete, it is
possible to give it an intuitive interpretation of the non-
linear dynamics. For this purpose, only a single state is
considered, so that the vector field of state and estimate
remains two-dimensional. As the state x changes accord-
ing to the target dynamics and the reference input, the

transformed estimate θ̂ attempts to track θ − xT Qx. The

change required for θ̂ depends on the change of the state
x. This is anticipated according to the model f(x, u, θe),
which again depends on the estimate θe itself.

If the estimate θe is too high, the speed of the system
returning back to the origin is over-estimated. So the
system is slower when returning to the origin than expect,

which is when θ̂ is falling. This means that θ̂ falls for longer

than anticipated, reducing θ̂ towards the correct value.
On the other hand, movement away from the original is

faster than expected, giving θ̂ little opportunity to rise.
This means θe will be reduced with every movement of x,
until it converges towards θ. The opposite is also true: if
θe is too low, the system is faster moving away from the
origin than towards it, and θe will increase.

5. SIMULATION RESULTS

To test the ability of the adaptive controller to deal with
faults, a number of simulations are presented. The refer-
ence is a step sequence that makes the system move back
and forth twice every second. The reference is modified
to be trackable using the changes discussed in Section 3.
After one second (two periods), a lock-up fault in the
second element is simulated, followed by a fault of the
third element a second later.

The system response with only the geometric controller,
i.e. without parameter adaptation, is shown in Fig. 8.
It is easy to see that each fault changes the dynamics
of the system further from the model, and this leads
to a mismatch between the planned and the realised
trajectory. The influence is small in terms of the amplitude
(less than 5% of the travel), but the convergence of
this deviation is slow. The control loop would eventually
reduce the deviation significantly, but the steady state
is not reached within the short periods of 150ms during
which the reference remains constant. So for a positioning
application, this would be an unacceptable result. Tighter
control could reduce the deviation faster, but it cannot be
eliminated completely.

The system response with an adaptive controller is shown
in Fig. 7. A conservative estimator parameter k = 0.1
is used here, leading to slow adaptation. This simulation
again shows a deviation from the reference for the first
movement after a new fault occurs (at t = 1 s and t = 2 s).
After this movement, the controller is adapting, and the
system no longer shows any noticeable deviation from the
nominal behaviour. The graph of the estimate θe confirms
that the behaviour of the system is reflected correctly. The
nominal values of θ = 1

3
after the first fault and θ = 1

2
after

the second are reached reliably.

If this deviation in the first movement is not acceptable,
it is possible to make the estimate converge faster by
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Fig. 7. Simulation With Slow Adaption

choosing k = 1. The results of this are shown in Fig. 9. This
simulation demonstrates a very fast adaptation of the con-
troller, which settles to the new parameter within under
100ms. This means that at the end of the first movement
after a fault occurs, the controller is already adapted to
the new situation, and the trajectory settles nominally. So
this controller effectively restores the original behaviour
completely. The downside is that the parameter estimate
is very sensitive to the measurements and to unmodelled
dynamics. Because only a simplified model was used for the
design of the controller, these unmodelled dynamics are
present in the simulation, and they lead to the moderate
dynamic errors in the estimate after the first fault. This
does not seem to have any impact on the dynamics of the
system, but it shows that a practical application needs to
be instrumented and tested carefully. The same does not
happen after the second fault, because this cancels out
most of the unmodelled dynamics.
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Fig. 8. Simulation Without Adaption
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6. CONCLUSIONS AND FURTHER RESEARCH

The simulations show that the adaptive controller pro-
duces a very constant and precise control of an HRA in
case of faults. The results are significantly superior to
those achievable with a robust controller. So the adaptive
control would be useful in application areas where precise
movements are required, such as pick and place in manu-
facturing or the control of a sensitive position.

The complexity of the adaptive controller is only slightly
higher than a normal PID controller: the three separate
modules for trajectory generation, target dynamics and
parameter estimation consisting of only a few mathemat-
ical operations each. So the adaptive controller could be
easily implemented even in a very simple digital processor.

One of the big promises of this control scheme is that will
scale easily to higher order systems, such as 10× 10 HRA
configurations. The complexity of the adaptive controller
does not increase with the number of elements, because
only the simplified 2 state system model is used for the
design.

Further research will go into several separate directions.
One goal is to add the adaptation of several parameters
at the same time, to accommodate different fault modes
and to respond to constant disturbances (similar to a PI
controller). The other challenge is to test the results on an
experiment test bed currently under construction. Finally,
it is planned to integrate the estimated parameter into a
comprehensive health monitoring system for the HRA.
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