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Abstract 

Volume visualization, which is a relatively new branch in scientific visualization, not 

only displays surface features of a model, but enables an intuitive presentation of the 

internal information of the object. Its comprehensive visualization algorithms 

developed in the last decade have brought in challenges such as complex data 

processing, real-time operations, and application-specific system performances. These 

challenges were elaborated in the manner of research objectives in the thesis. 

By devising a novel volume deformation pipeline, this thesis managed to explore 

volume-model-related operations applied for complicated applications through 

illustrating the feasibility of the designed system that was verified by experimental 

results. The contribution of the programme was demonstrated via testifying the 

effectivities of the four system design characteristics. Firstly, the clustering-based 

segmentation methods were adopted by the volumetric data processing module within 

the proposed volume deformation system for managing the complicated structures 

often existing in large volume data sets. Secondly, a novel mesh construction method 

was formulated in terms of optimizing the control lattices for the following 

deformation process. Thirdly, the volume deformation approach devised in the 

research has taken advantages of the parameterization process of the entire 

shape-change process. Finally, the GPU-based parallel process architecture was 

utilized to accelerate the calculation of Gaussian sampling in the lattice construction 

process; the progressive locations of the removed points in the simplification scheme; 

and the integration of kinetic energy for determining the deformation behaviours.  
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Chapter 1 Introduction 

In contrast to the “pure” mathematical studies carried out by a small group of elite 

mathematicians in the 19th century, the so-called applied mathematics had been 

enjoying great success and public attention since the turn of the 20th century 

(Gluchoff, 2005). One of the main contributions to this phenomenon is the increased 

integration of the theoretical and abstract mathematical concepts with other scientific 

disciplines, such as physics, engineering, economics and even biology (Matsuura, 

Oharu et al., 2003; Dumas, Druez et al., 2009; Hernandez, Mateos et al., 2009; Britz, 

Strutwolf et al., 2011). The breakthroughs in those vastly diversified areas were 

supported by new mathematical tools and theories developed in the first half of the 

20th century: statistics, topology and modern integral theory. 

The invention and wider spread of modern computer technologies since the second 

half of the 20th century have further accelerated this trend. For example, stemming 

from computer graphics, volume rendering has been growing into an important 

research field in the last two decades (Engel, 2004). Most of the developments of 

volume visualization and application techniques in the 1980s and 90s had focused on 

exploring the theoretical and mathematic foundations of the visualization process. 

Since the mid-1990s, three leading research groups have proposed a series of 

improvements for PC-grade and efficient volume visualization techniques: the 

portable visualization clients by the Visualization and Interactive Systems group in 

the University of Stuttgart (Engel, Oellien et al., 2000); advanced volumetric 

modelling methods by the Visual and Interactive Computing group in the University 

of Swansea (Chen and Tucker, 2000), and versatile volume shading designs by the 
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Scientific Computing and Imaging Institute in the University of Utah (Kniss, Premoze 

et al., 2003). 

Compared with conventional 3D modelling and visualization techniques, volume 

models allow direct or indirect access to their internal structures, instead of only 

showing their surface features. In Figure 1.1, all four snapshots are showing an engine 

box. Besides the vivid surfaces, wireframe-based model A does not show any internal 

information. In contrast, model B is a volume model, which can be processed into 

model C and D respectively to exhibit the interiors via two popular representation 

modes.  

 

Figure 1.1  An engine box represented via different modes. Model A is a surface model. Model B 

presents a volume model; model C shows the internal structure through modifying the optical 

characters; which model D represents the interiors via the clipping operation. 

This visualization technique aims to gain the understanding of multi-dimensional 

information and to display it as images. Similar to other modelling techniques, it also 

suffers from a series of challenging problems, such as occlusion within models, 

random data structures, noisy data, and artefacts generated from display mechanisms. 

The main objectives of recent researches were to develop solutions for exploring the 

“visibility” of various volumetric structures (Aykanat, Cambazoglu et al., 2007; 

Sakamoto, Kawamura et al., 2010). This thesis deepened the understandings by 

devising a novel solution of which users can freely customize the behaviours of 
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volume visualization process via interactive manipulation. In this thesis, Chapter 1 

starts explaining the volume data source and carry on a brief introduction of two kinds 

of general volume data acquisition methods. After accomplishing the recapitulative 

content, the research objectives and the main contributions from the programme will 

be highlighted at the end of this chapter accompanied by the thesis outline.  

1.1  Volume Data Acquisition 

In the 1960s, an American theoretical physicist, Allan M. Cormack, published a 

mathematical model for calculating different rates of absorption of ionized radiation 

(i.e. X-ray) when crossing through different body tissues (Cormack, 1979). Based on 

this model, a British engineer, G. N. Hounsfield, invented the world’s first 

Computerized Tomography (CT) scanner, an imaging device that allows 2D or 3D 

sectional or volumetric models to be reconstructed in order to represent internal 

information from the probed subject (Hounsfield, 1979). Due to their significant 

achievements, Cormack and Hounsfield won the Nobel Prize in 1979. Figure 1.2 

shows the snapshots of a sliced human brain. 

 

Figure 1.2  A CT scan of a human brain 

The model proposed by Cormack was based on the Radon transformation in Integral 
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Geometry developed by Johan Radon in 1917 and translated into English in 1986 

(Radon, 1986). The Radon transform is widely applicable to tomography, the creation 

of an image from the scattering data associated with cross-sectional scans of an 

object. If a function ݂ሺݔ, ሻݕ  represents an unknown density, then the Radon 

transform represents the scattering data obtained as the output of a tomographic 

scanner. Hence the inverse of the Radon transform can be used to reconstruct the 

original density from the scattering data, and thus it forms the mathematical 

underpinning for tomographic reconstruction, also known as image reconstruction. 

The Cormack model resolves the inverse Radon Transformation issue through 

convolution and inverse projection. Therefore, once the ݂ሺݔ,  ሻ is determined, it isݕ

possible to reconstruct the sectional images of the measured tissue. Techniques like 

Magnetic Resonance Imaging (MRI) may use a less invasive measuring mechanism, 

but its foundation theory is similar to that for scanned image registering and 

reconstruction. 

Current CT and MRI scanning processes were normally time-consuming and 

uncomfortable for patients, due to the rigid body postures which need to be 

maintained throughout the dedicated solutions (Olabarriaga and Smeulders, 2001; 

Fluck, Vetter et al., 2011). The latest advancements in digital processing have seen 

fast scanning technologies being developed and utilized with varying degrees of 

success (Zhou, Matsumoto et al., 2010; Cho, Cho et al., 2012). However, the scanned 

images often suffer from unsatisfactory qualities (e.g. noise-level) due to their 

inherent acquisition mechanisms that can cause great difficulties for image and 3D 

reconstruction (Qian, Joshi et al., 2011). One of the motives for this research is to 

investigate data filtering (pre-processing) techniques, prior to attempts being made to 
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improve the performance of the following volume visualization and deformation 

approaches. 

1.2  Volume Visualization and Deformation 

After sampling the volume data in a regular sequence, the inherent information can be 

converted into a series of parameters. The following visualization work can be 

implemented directly (known as Direct Volume Rendering, or DVR), or 

accomplished indirectly by relying on an iso-surface and then “copying” the 

polygonal displaying strategy using surface modelling techniques (called Indirect 

Volume Rendering, or IDVR). In order to explore the various features inside the 

volume data, a special Lookup Table (LUT) is utilized for the purpose of data 

classifying, and to “individualize” them with associated values. These values are to be 

accumulated together on the image plane so that the inherent information can be 

represented via an understandable image. 

As a process for manipulating volume models, volume deformation can be 

categorized as both non-physics-based and physics-based (Correa, Silver et al., 2010). 

The former techniques were well-known because of the ability to “freely” deform 

volumetric objects. In associated deformation applications, there was little or no 

regard to the consideration of physical realism (Forsberg, Mooser et al., 2008; 

Sugihara, Wyvill et al., 2010). In contrast, physics-based techniques are strictly 

governed by the result of utilizing physical equations to calculate the external and 

internal forces (Nealen, Müller et al., 2006; Bordemann, 2008). As the line between 

these non-physics-based and physics-based deformation approaches is becoming 

blurred in surface modelling techniques, more and more researchers are trying to use 

non-physics-based techniques to produce the physical effects in volume-based 
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applications (Correa, Silver et al., 2010). However, most of them relied heavily on 

man-made constraining operations and one-sided assumption-based works, which had 

undoubtedly caused many artefacts and imprecise outputs during the “real-life” 

simulations. 

This thesis referred to physics-based volume deformation as a technique whereby 

deformation was driven explicitly by applying forces on the control lattices enclosing 

the volume model. In addition, both inertia and internal forces were considered. This 

deformation method aims to describe the deformation behaviours and exhibit the 

internal transformation precisely.  

As an important criterion for evaluating deformation techniques, the performance of 

interactive operations always influences the development of volume deformation 

(Yuan, Zhang et al., 2010). The requirement for “on-the-fly” mechanisms exists at 

every stage of the deformation pipeline, such as the sampling, transforming and final 

displaying stages. In particular, the physics-based methods rely on complicated 

calculations in order to provide precise deformation results, and consequently 

physics-based manipulations of the volume model will lead to an inconceivably 

time-consuming data processing. As a result, the physics-based volume deformation 

requires hardware-based acceleration techniques to maintain a higher interactive rate 

during the simulation. 

1.3  Research Objectives 

It is a common scenario that when deploying volume-based operations, the involved 

complex data sets are often of 10 times scale, as compared to the surface-model-only 

implementations, which leads to a heavy workload of sampling and rendering 
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operations for the host computer. The major development of the computing platform 

took place at the turn of the new Millennium empowered by the rapid consumer grade 

computer (see Appendix B) evolution (some reckoned as a revolution) (Mark, Steven 

et al., 2003). As a result of this, complex scientific simulation and visualization tasks 

have started moving from expensive workstations to Personal Computers (PCs). The 

current consumer grade computers can support many complicated graphical and 

non-graphical modelling at a near interactive rate through larger memory storage, 

broader data bus and faster data access. Volume visualization and its applications are 

among the first to benefit.  

Accompanied by the increasing computing power supplied by the innovative 

hardware platforms, volume models and their derived manipulations are quickly 

coming out of the shadow of the surface models and becoming one of the main 

representation forms for special applications (Strengert, 2005; Tatarchuk, Shopf et al., 

2008). Although there were still many challenges in volume visualization and 

application techniques, i.e., in the real-time interaction arena, many research designs 

have been focusing on improving the efficiency of the volume-based applications, 

enhancing the rendering quality, or developing the interactions with the volume 

models.  

In addition to directly rendering, volume models can support other processing 

methods so that more intrinsic information can be acquired, e.g. clipping methods. 

This project created a novel volume deformation mechanism which enabled precise 

representations of the deformation behaviours, rapid interactive operations and 

versatile applications. The aim and objective of this project can be summarized as 

follows: 
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 To investigate the state-of-the-art of volume visualization and deformation 

techniques. The evaluation criteria were summarized based on the literature 

review and used to discuss the pros and cons of the implemented system. The 

system performances were categorized into three terms: “Flexibility”, 

“Efficiency”, and “Accuracy”, of which the evaluations were respectively 

estimated through processing different volume data, counting the real-time 

performance and tackling customization operations (Correa, Silver et al., 2010; 

Patete, Iacono et al., 2012). 

 To improve the system performance. Besides the help offered by GPU-based 

acceleration designs, the solution also comprised the dedicated data processing 

strategy designed for solving the problem of large volume data size (Cates, 

Lefohn et al., 2004). By studying the classic Digital Image Processing (DIP) 

methods, this project finished a high-dimensional DIP solution for carrying out 

volumetric data classification and information extraction (Fang, 2001).  

 To accomplish the physics-based deformation mechanism for manipulating 

volumetric features. First of all, a mathematic model was constructed for 

partitioning the resulting deformation behaviour into a set of changed characters 

within the volumetric space (Bachmann, Bouissou et al., 2009). Secondly, the 

assignment of these characters was based on an order which records the nested 

structures inside the volume model. And the control lattices met the demands: 

nonexistence of self-intersecting polygons, this “model-fitting” lattice conforming 

to models’ surface features, and the adaptive meshwork structure (Sauvage, 

Hahmann, et al., 2008). In addition, the data exchange between CPU and GPU 

were investigated for further efficiency gain (Lefohn, Kniss, et al., 2003). 
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1.4  Contributions to Knowledge 

Besides the literature review, the main research efforts discussed in this dissertation 

were respectively reflected by four functional modules (as shown in Figure 1.3). As a 

result, the contributions to knowledge from this project can be summarized as:  

 

Figure 1.3  A diagram of the design system pipeline 

 Volume data segmentation abstracted interesting information from the continuous 

volume data; meanwhile, filtered out the inherent noise and the trivial segments, 

and consequently avoided useless data computation and processing tasks. Instead 

of processing the resulting images, or relying on per-frame-based operations, the 

strategy of volume data segmentation created a one-off 3D data pre-processing 

before progressing visualization and deformation operations. It was published in 

the 17th ICAC conference paper. By rendering these segment data, the result 

directly exhibited the internal structure which can offer help in choosing the 

interesting data segment(s).  

 In order to customize the extent of transformations, the spatial determination 

process relied on two key designs. One was a lattice-based “interface” between 

applied forces and underlying volume models. The outcome of the lattice 

construction process can influence the results of deformation operations. One was 

a tree-like framework for ascertaining whether the voxels belong to the deformed 

domain. Both them were explained in the same paper.  
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 The spatial displacement response within volume models was derived from 

similar surface-modelling-based deformation examples, which styled the external 

force calculation. And the deformation process was “translated” into a set of 

parameter computations through determining a special data structure to 

standardize the transformation operations. As a result of this, the parameter 

calculation and data accessing tasks can be accelerated by the GPU-based parallel 

computation design, so that the interactive rate of future operations can be 

optimized. The benefit from GPU-accelerated achievements was firstly 

mentioned in my paper published in 16th ICAC conference.  

 Similar to the conventional displacement mapping techniques for mesh-based 

object deformation, the voxel displacement map was designed to record voxels’ 

offset distances. This project utilized the view-aligned proxy geometry for 

volume data storage, therefore, the voxel displacement map was correspondingly 

3D-based. This 3D texture mapping avoided the complicated interpolation 

processes involving the combinations of 2D and 3D textures, and consequently 

improved the system efficiency. This part is based on the work document 

published in 15th ICAC conference. 

 By harnessing the parallel processing capabilities of GPU, the hardware 

acceleration design in this research managed data through synchronizing each 

sub-tasking. Therefore, the visualization and deformation operations were 

partitioned into a set of subtasks synchronized in a parallel structure for 

improving the system efficiency. This design was explained in the 17th ICAC 

conference paper.  
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1.5  Thesis Outlines 

A comprehensive literature survey regarding contemporary volume visualization 

methods is recorded in Chapter 2. Chapter 3 provides an in-depth discussion on the 

strategies of manipulating volume models, as well as the state-of-the-art in volume 

deformations. The actual research methodology, design approach, implementation 

strategy and evaluations are respectively covered into four chapters. Chapter 4 

employs image segmentation methods and improved them for classifying volume 

data. The classification enables the display of internal structures of complicated 

volume data and the extraction of interesting data segment(s), which in turn, 

simplifies the workload of the following data processing activities. The content in 

Chapter 5 explains the lattices construction’s design principles and working 

mechanisms for enclosing the manipulated volume data. As a vital part of this 

physics-based volume deformation system, the constructed lattices met various 

pre-defined requirements, such as the “model-fitting” lattice, flexible modification 

and rapid construction. Chapter 6 covers the implementation of the deformed volume 

models. A mathematical model has been established to subdivide the deformation 

behaviour into the displacements of voxels through a “deformation parameterization” 

operation. Chapter 7 reveals the details of the Compute Unified Device Architecture 

(CUDA)-based implementations of the system prototype. This programming model 

was used to separate the lattice construction and deformation parameterization 

processes into sub-computation tasks, and to synchronize them into a parallel 

computing architecture for the acceleration purpose. Chapter 8 uses the common 

evaluation criteria to access this deformation system in terms of its intermediate 

results, real-time performances, rendering quality. Chapter 9 concludes the research 

with achievements and future work. 
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Chapter 2 Review on Volume Visualization Approaches 

In early 1980s, volume visualization started attracting discussions in scientific 

communities, due to its potential and powerful capabilities in revealing the internal 

structures of objects (Drebin, Carpenter et al., 1988). However, limited by the 

computational methods and platforms at the time, volume visualization and 

deformation techniques faced tough challenges in various types of practical 

applications (as shown in Figure 2.1), especially in real-time operations. In the last 

decade, various research and pilot projects had focused on improving the quality of 

the final rendered results; meanwhile, maintained adequate performances in real-time 

operations (Kruger and Westermann, 2003; Strengert, Magallon et al., 2005; 

Tatarchuk, Shopf et al., 2008; Fluck, Vetter et al., 2011). 

 

Figure 2.1  Various applications of volumetric information. Image A is for studying oil reservoirs 

in underground rocks (courtesy to Paul et al.). Image B illustrates a volumetric lighting method 

for gaming scenes (courtesy to Nvidia Corporation). Image C exhibits a torso model for the 

medical applications.  
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From this review of volume visualization terms, a comprehensive introduction of 

various visualization approaches can be accomplished with potential challenges in 

different applications. Based on this review, the research problems can be concluded 

and chosen as the objectives for developing visualization properties. 

Volume visualization techniques represent the object via displaying its spatial 

characters in the form of images. Between the data acquisition and visualization 

stages, there exists a modelling process which fills a 3D space (as shown in Figure 2.2 

(A)) with a set of 3D geometrical elements in order of the original data’s inherent 

sequences. Each data can be assigned to a cubic element which is regarded as a 

volumetric pixel, and therefore named as “Voxel”. All voxels (as shown in Figure 2.2 

(B)) can be accessed in the form of partitions inside of the volumetric space (as shown 

in Figure 2.2 (C)). Each voxel can provide two types of parameters: one is 3D 

coordinates defined via its spatial location, and the other is a scalar value derived from 

the raw volume data. Depending on different voxel processing approaches, volume 

visualization can be categorized into direct (DVR) and indirect (IDVR) strategies.  

 

Figure 2.2  Illustrations of volume model formations 

IDVR methods use vertices to replace voxels for indirectly representing the volume 

data. Marching-Cubes (MC) algorithm is a prevalent IDVR, which consists of 

following operations: extracting vertices from the volume data, grouping them 
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according to their scalar values, and implementing the Delaunay triangulation for each 

group of vertices (Lorensen and Cline, 1987) . This algorithm and output images will 

be covered in Chapter 5. 

On the contrary, DVR solutions carry out a series of direct operations on voxels. 

These visualization algorithms require a pre-defined optical model for managing the 

conditions of volumetric light emission, light scattering, light absorption and ambient 

occlusion among voxels. These physical quantities are all based the voxels’ optical 

properties which are notionally determined by their scalar values, and will be 

numerically represented by a series of RGBA quadruplets after the sampling process. 

This process of converting scalars into colours is yielded by the so called 

“Classification” phase.  

The next step is sampling these values by casting a set of (parallel) rays through the 

volumetric space. Depending on the different directions of these rays, DVR methods 

can be divided into backward-mapping and forward-mapping ones (shown in Figure 

2.3) (Engel, Hadwiger et al., 2004). In forward-mapping approaches, the voxels 

forward project themselves onto the image plane, to compose the final image via a 

sort of pixel distribution. Backward methods regard the viewing rays as sampling 

tools, which penetrate through the pixels in the image plane and detect the voxels’ 

parameters for the image synthesis process. Because the system introduced in this 

thesis mainly relied on backward-mapping DVR in the visualization phase, the review 

of volume visualization techniques only focused on the forward-mapping methods. 

Consequently, without any additional explanation, the directions of DVR techniques 

discussed in the following context are all backward-oriented. As an important part of 

the image synthesis process, calculating the light propagation via the integrating light 



Chapter 2 Review on Volume Visualization Approaches 

15 
 

interaction effect for each point within a volumetric space is based on the choice of 

optical models. 

 

Figure 2.3  Diagrams of forward-mapping and backward-mapping methods 

2.1  DVR Optical Model 

An optical model serves as a paradigm that composes lighting-emitting points of 

uniform physical quantity. Based on different conditions of light propagation inside a 

volumetric space, the optical models can be classified as: 

 Absorption only. This type of optical model determines the volumetric space to 

be a kind of black hole. In this region, all lights are completely absorbed, and 

consequently unable to support emitting or scattering conditions (as shown in 

Figure 2.4 (A)).  

 Emission only. In comparison to the absorption only model, which prevents light 

emission and scattering, the emission-only optical model just focuses on the light 

emission condition, without any consideration of absorption or scattering (as 

shown in Figure 2.4 (B)). 
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 Absorption plus emission. As a syntheses of the above two optical models, this 

model simultaneously enables light emission and absorption. Because most 

DVR-based applications always overleapt the discussion of scattering and 

indirect illumination, the absorption plus emission optical model is the most 

popular choice for volumetric light propagation (as shown in Figure 2.4 (C)). 

 Scattering and shading. Using this optical model, the light scattering can be 

treated among the particles at voxel level. The scattering condition comprises 

projecting lights onto the surface of each voxel from a light source without any 

impeded objects, and being generated by the occlusion states among the voxels 

(as shown in Figure 2.4 (D)). 

 Multiple scattering. As an extension of simulating light scattering in a volumetric 

space, the multiple-scattering optical model allows performances of the 

complicated mechanism of an incident light scattered by multiple voxels. 

 

Figure 2.4  Shading results determined by different optical models 

2.2  Ray-casting Theory and Practice 

The ray-casting displays mechanism was summarized as sampling 3D information 

(voxels) and rendering in 2D formats (pixels), which belonged to the image-order 

rendering method (Ray, Pfister et al., 1999). Besides, the texture mapping approach, 
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which decomposes a volumetric space into the given type of slices (2D or 3D), was 

classified as an object-order rendering method (covered in section 2.1.3) (Weng, Lin 

et al., 2002). 

As the most direct solution for evaluating the volume rendering integral along the rays 

from image space to object space, ray-casting was defined as the most basic DVR 

algorithm and a kind of backward-mapping approach (Levoy, 1988; Choi, Shin et al., 

2000). After sampling the voxels’ optical properties via casting (parallel) rays in the 

viewing direction through pixels into the volumetric space, ray-casting accumulates 

the resulting properties for each ray in the form of evaluating the volume rendering 

integral and rendering the results in the manner of pixels in the final display.  

2.2.1  Volume Rendering Integral Model 

In every volume rendering method, the volume rendering integral was always 

evaluated in a certain direction. Generally, the viewing ray was chosen for evaluating 

the integral, even if it was unclearly defined. Because the sampling mode was not 

continuous in practice, the related optical properties were not continuous either. In 

order to approximate the evaluation of the volume rendering integral, the calculation 

was digitally replaced by a Riemann sum, which performs the accumulation of the 

properties along the viewing ray in terms of colour values (Levoy, 1988).  

Each viewing ray will, of course, penetrate through a number of voxels in certain 

statuses including through a voxel’s centre, through a voxel and on one of six tangent 

planes of it. The simplest condition is traversing through a voxel’s centre so that its 

scalar value can be directly used as the sampled result of the viewing ray at this voxel. 

For the other two statuses, the sampled results all need to be calculated via the 

tri-linear interpolation in ray-casting-based applications (or 2D interpolation for 
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texture-based processing). 

After the sampling process, the scalar value of voxel ܵሺ పܸሬሬԦሺ݀݅ݏሻሻ can be gained for 

the following calculations. The పܸሬሬԦሺ݀݅ݏሻ indicated a voxel which is sampled by the 

 along this ray to a virtual viewpoint (as shown ݏ݅ ݀ viewing ray పܸሬሬԦ at a distance ݄ݐ_݅ 

in Figure 2.5). This vector-based parameter comprised the information for indexing 

the scalar values stored in a kind of texture memory. When the most popular optical 

model (absorption plus emission) is employed, the indexed scalar value is represented 

via a colour value ܥ௘௠௜௦௦௜௢௡ሺܵሺ పܸሬሬԦሺ݀݅ݏሻሻሻ called emissive colour, and the absorption 

coefficient ݇  is defined for describing the condition of light absorption via 

௔௕௦௢௥௕ሺܵሺܥ        పܸሬሬԦሺ݀݅ݏሻሻ. It can be written as (Engel, Hadwiger et al., 2004):  

௔௕௦௢௥௕ሺܵሺܥ పܸሬሬԦሺ݀݅ݏሻሻ ൌ ݇ · ܵሺ పܸሬሬԦሺ݀݅ݏሻሻ               (2.1) 

Based on these two kinds of colour values, the volume rendering integral can carry 

out the resulting composition of colour values sampled along the rays. For example, in 

order to calculate the result of the viewing ray passing through a distance ݀ (shown 

in Figure 2.5), the absorbed and emissive colours at different locations can be worked 

out respectively.  

 

Figure 2.5  A diagram of a viewing ray for volume rendering integral 

First of all, it is assumed that there are ݊ voxels detected on this ray and no intervals 

between any two neighbouring voxels. Based on the equation 2.1, for the constant 



Chapter 2 Review on Volume Visualization Approaches 

19 
 

absorption coefficient ݇, the light absorption on this ray can be written as: 

௔௕௦௢௥௕ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ ൌ ݇ · ܵ ቀ݆ · ௗ

௡
ቁ         ݆ א ሾ0, ݊ሿ            (2.2) 

On the condition that ݇ is dynamic, and depending on its position, the equation 2.2 

will be changed into: 

௔௕௦௢௥௕ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ ൌ ݇ ቀ݆ · ௗ

௡
ቁ · ܵ ቀ݆ · ௗ

௡
ቁ         ݆ א ሾ0, ݊ሿ       (2.3) 

In the same way, the corresponding light emission can be represented via 

௘௠௜௦௦௜௢௡ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ (݆ א ሾ0, ݊ሿ). After finding the related ܥ௔௕௦௢௥௕  and ܥ௘௠௜௦௦௜௢௡ , 

the final result of this voxel on the image plane is ܥ௣௔௥௧௜௧௜௢௡, which can be written as: 

௣௔௥௜௧௜௢௡ܥ ൌ ௘௠௜௦௦௜௢௡ܥ  െ ௔௕௦௢௥௕ܥ  ൌൌ ܵ ቀ݆ · ௗ
௡
ቁ · ሺ1 െ ݇ ቀ݆ · ௗ

௡
ቁሻ    (2.4) 

2.2.2  Tri-linear Interpolation 

Tri-linear interpolation was usually utilized to implement a multivariate interpolation 

for generating the sampling result in a voxel whose centre cannot be penetrated 

through by a viewing ray (Engel, Kraus et al., 2001). The tri-linear interpolation 

locates the resulting point with its scalar value through weighting eight neighbours’ 

coordinates and their scalar values (Rajon and Bolch, 2003). For example, as shown 

in Figure 2.6, the Viewing ray needs to gain the scalar value of the point ௜ܵ௡௧௘௥௣. 

After knowing about the scalar values of ௜ܵ௡௧௘௥௣’s eight neighbours (ܵ଴଴଴ െ ଵܵଵଵ), the 

first cycle of tri-linear interpolation locates the new generated points (ܵ଴଴ െ ଵܵଵ). 

Based on these points, the send cycle of the interpolation locates the point ௜ܵ௡௧௘௥௣, 

and returns its scalar value as the final output. Because of the capability of calculating 
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the interpolated values, the tri-linear interpolation is applied to “filter” ambiguous 

representations, and avoid visual artefacts caused by limited inputs with intervals 

between data, or inaccurate results because of discontinuous samplings.  

 

Figure 2.6  A diagram of tri-linear interpolation 

2.2.3  Alpha Blending Operation 

After obtaining ܥ௣௔௥௜௧௜௢௡ in equation 2.4 and finishing the associated explanations of 

interpolation processes, an integral part of volume rendering is to carry on the 

composition operations in the alpha blending process, which accumulates colour 

values in the back-to-front or front-to-back order. The example shown in Figure 2.5 is 

a front-to-back approach, i.e., its composition starts at the voxel closest to the image 

plane and ends with a given voxel. 

The composition process accumulates the sampling values in an opacity-weighted 

calculation, which is obtained by pre-multiplying the original value ܥ௣௔௥௜௧௜௢௡ by its 

associated opacity property: alpha value. In this front-to-back method, ܥ௖௢௠௣௢௦ , 

which represents each step of the composition, starts at ܥ௖௢௠௣௢௦ ൌ 0  and 

accumulates the result of multiplying the ݆_݄ݐ voxel’s value ܥ௣௔௥௧௜௧௢௡ሺ݆ሻ by the 

corresponding alpha value ܣ௝ (Wittenbrink, Malzbender et al., 1998):  
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,௖௢௠௣௢௦ሺ݆ܥ ݆ ൅ 1ሻ ൌ ௣௔௥௜௧௜௢௡ሺ݆ሻܥ ൅ ൫1 െ ௣௔௥௜௧௜௢௡ሺ݆ܥ௝൯ܣ ൅ 1ሻ        ݆ א ሾ0, ݊ሿ (2.5) 

This alpha value is related to the voxel’s location and the theory can be written as 

(Blinn, 1994): 

௝ܣ ൌ ௝ିଵܣ ൅ ൫1 െ ݆        ௢௥௜௚௜௡௔௟௝ܣ௝ିଵ൯ܣ א ሾ0, ݊ሿ,        (2.6) 

which means that the alpha value ܣ௝ is determined by its previous one ܣ௝ିଵ and the 

alpha value ܣ௢௥௜௚௜௡௔௟௝ of the sampled value at this point is ܥ௣௔௥௜௧௜௢௡ሺ݆ሻ. Then the 

calculated ܣ௝ is loaded in the equation 2.5 for the composition calculation. 

By iterating the calculation in equation 2.5, the volume rendering integral 

 ray is calculated via the Riemann-sum-based composition  ݄ݐ_݅ ௜௡௧௘௚௥௔௟ሺ݅ሻ on theܥ

(Engel, Hadwiger et al., 2004): 

௜௡௧௘௚௥௔௟ܥ ൌ ∑൫ܥ௖௢௠௣௢௦൯ ൌ  ∑൫1 െ  ௣௔௥௜௧௜௢௡ሺ݆ሻ             (2.7)ܥ௝൯ܣ

Playing the role of controlling the supremum in the Riemann-sum-based volume 

rendering integral, alpha blending can determine the terminal of composing colour 

values in the front-to-back method. The composition can define an optimal indicator 

(known as early-ray-termination), which determines the progress of alpha blending. 

As shown in Figure 2.7, when the cumulated alpha value ܣ௝ (yielded in equation 2.6) 

is equal to 1.0, the result of the Riemann-sum-based composition will stop at the 

current position. 
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Figure 2.7  Diagrams of colour accumulation (left image) and approximated volume rendering 

integral (lined shadow area in right image) 

௜௡௧௘௚௥௔௟ܥ  is the final result of the ݅_݄ݐ  ray after passing through the volume 

rendering integral, and represented by a few pixels which are stored in the frame 

buffer in the form of 2D texture. The resulting images are shown in Figure 2.8. 

 

Figure 2.8  The results of ray-casting 

However, as a number of image-order algorithms suffered from low efficiency caused 

by redundant computations, every ray-casting-based application struggled against the 

same challenges that the occasioned heavy sampling work on every ray and the 

iterative computations of opacity composition (Ray, Pfister et al., 1999). To overcome 

these drawbacks, the researchers mainly focused on developing an orientated 

rendering mode (e.g. digital boundary determinations to highlight or conceal given 
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regions) (Leu and Chen, 1999), increasing the efficiency of sampling mechanisms 

(e.g. early ray determinations to manage the progress of sampling every ray) 

(Hadwiger, Sigg et al., 2005), and improving display capability with the aid of applied 

hardware (e.g. high-quality performance of multiple volumes to enable realistic 

displays within complicated environments) (Tatarchuk, Shopf et al., 2008). In 

addition, there were a series of hybrid-based solutions that combines the image-order 

and object-order algorithms together to overcome their inherent disadvantages whilst, 

furthermore, maintaining their respective advantages for improving the performance 

of these solutions (Westermann and Sevenich, 2001).  

2.2.4  Classification Process 

Classification process relies on Transfer Function (TF) for assigning optical properties 

(colour, opacity, etc.) to the voxels by indexing their scalar value in a colour-based 

lookup-table (Engel, Hadwiger et al., 2004). Different combinations of the 

classification and the interpolation-based filtering processes will make the results of 

visualizing the same model totally different. The alternate order between classification 

and filtering processes respectively forms pre- and post- classification methods, and 

produces two kinds of results (as shown in Figure 2.9 (B and C)). Image D is an 

output of the pre-integrated classification design. Besides the visual artefacts in their 

results, all visualized features can be fully represented based on the complicated 

design of Nyquist frequencies in the TF design which always limited the real-time 

performance of visualization applications (Arens and Domik, 2010). 
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Figure 2.9  Diagrams of pre-, post- and pre-integrated classifications 

For overcoming these limitations, an advanced solution was proposed to use the 

numerical integration to replace the complex Nyquist frequencies in the TF design 

(Engel, Kraus et al., 2001). Its idea is to “linearize” the sampled volume data into a 

whole segment which comprises a stat point and ends with the last sampled data. The 

information of this segment needs to be integrated before the classification, so-called 

pre-integrated classification. In this solution, the length of the segment will be 

increased as the sampling work proceeds. The integration will keep a non-stop update 

on the colour and opacity of this segment. This integration requires two simple TFs 

for colouring the segment and voxels respectively.  

As shown in Figure 2.9, the integration operation consists of two steps. The 

integration is for calculating the opacity of a segment. The other one is for integrating 

the sampled voxels’ colour values. The integrated opacity of this segment ߙ௜௡௧௘௥ can 

be written as (Engel, Kraus et al., 2001): 
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௜௡௧௘௥ߙ ൌ 1 െ exp ሺെ׬ ߬ሺܵሺሬܸԦሺܦሻሻሻ
௡
ଵ  ሻ           (2.8)ܦ݀

where ܵሺሬܸԦሺܦሻሻ  represents a voxel’s scalar values, ߬ሺݏሻ  is a simple TF for 

transforming voxels’ scalar values ݏ, and ݊ is the number of voxels covered in this 

segment (the distances between voxels are assumed to be zero). The other integration 

is for the colour value of the segment ܥ௜௡௧௘ can be written as: 

௜௡௧௘௥ܥ ൌ ׬ ሺܶ ൬ܵ ቀሬܸԦሺܦሻቁ൰ כ exp ሺെ׬ ߬ ൬ܵ ቀሬܸԦሺܦ′ሻቁ൰
௡
ଵ ሻሻ′ܦ݀

௡
ଵ  ሻ  (2.9)ܦ݀

with the other TF ܶሺݏሻ for colouring the segment. Besides avoiding the complex 

Nyquiest frequencies in pre- and post- classification approaches, the pre-integrated 

classification can generate high quality visual results (as shown in Figure 2.9(D)). 

TF had also attracted a great deal of attention on its multidimensional-based 

applications. In volume-based applications, as the simplest method, 1D TF directly 

maps the voxels’ scalar values to associated colours and opacities. But, it cannot 

differentiate between volumetric subspaces whose voxels share the same scalar value 

but belong to different regions, e.g. the skull and teeth segments in a CT-scanned 

human head data. In order to solve the problem of inadequate representations in 1D 

TF, more parameters were utilized as the other dimensions in the TF (Arens and 

Domik, 2010). Besides the scalar value, a 2D TF can use the gradient magnitude as 

the second dimension for determining the differences between these domains (Levoy, 

1988; Konig and Groller, 2001). The magnitude of gradient is used to represent the 

sampling statues. For example, there won’t be any change when sampling within a 

volumetric subspace, and the sudden change of gradient will happen when the current 

location of sampling is outside of the subspace (Kniss, Kindlmann et al., 2002).  
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Another 2D TF uses the curvature of volumetric subspaces as the second dimension. 

Generally, the shape of each volumetric sub-space contains a unique combination of 

the most and least curvatures (Hladuvka, Konig et al., 2000). Therefore, this 2D TF 

can differentiate complex volumetric information. Due to its capability of shape 

discrimination, this curvature-based TF usually serves as a shape-based analysis in the 

surgical simulations (de Vaal, Neville et al., 2011). 

Besides the above TF design, 2D TF techniques also use the other available properties 

as the second dimension, such as distance-based method is based on the radiation 

radius of a pre-decided point (Tappenbeck, Preim et al., 2006), size-based TF uses the 

scale space for detecting the sizes of object domains (Correa and Ma, 2008), 

texture-based method relies on the texture analysis which detects the change of 

texture properties for mapping given specific opacities and colours to voxels (Caban 

and Rheingans, 2008). With voxel’s scalar value, each of these available properties is 

used to form a multivariate control which enables the 2D TF methods to reveal more 

features than 1D methods (Kniss, Kindlmann et al., 2001; Kotava, Knoll et al., 2012). 

Due to the increasing number of dimensions, multidimensional TF applications need 

to simplify the huge workload of manual assignments. Different from the complex 

trial and error tests in the multidimensional TF techniques, the automatic and 

semi-automatic methods all depend on the pre-defined criteria for driving the mapping 

operations (Pfister, Lorensen et al., 2001). Automatic TF designs are good at 

maintaining the interactive rate to real-time applications (Petersch, Hadwiger et al., 

2005). Semi-automatic methods emphasise the importance of the user’s intuitions and 

the flexibility of keeping a few manual modifications according to given conditions 

(Pinto and Freitas, 2008). The criteria can be categorized as two types: image-driven 
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and data-driven. Image-driven TF techniques usually focused on the quality of visual 

results and estimates the optimal design via a series of parameterized criteria (Pinto 

and Freitas, 2006; Park and Bajaj, 2007). Data-driven methods generally concentrate 

the capability of precise data displays, e.g. identifying the boundaries between 

volumetric sub-spaces (Kaul, 2010). 

2.3  Texture-mapping Approaches 

 

Figure 2.10  The results of object-aligned slices 

Initially, texture-mapping plays a “skinning” role in surface modelling techniques. It 

serves to map visual features onto the surfaces of vertex-based frameworks, in order 

to represent the appearance of surface models. Mostly, these features are stored and 

processed in the form of 2D texture, so this displaying technique is named 

texture-mapping. In voxel-based environments, the volume data set is represented via 

a set of 2D textures, and anticipates the composition in the form of texture-based 

units. Unlike the ray-casting method (which belongs to the image-order method), 

texture-based volume visualization is an object-order method, and its displaying 
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quality is mainly dominated by the texture arrangement design (Engel, Hadwiger et 

al., 2004). In primitive texture-based volume rendering applications, three stacks of 

slices (textures), so-called object-aligned slices, respectively performed the view of a 

volume model in X-, Y- or Z-axial directions (as shown in Figure 2.10). 

In associated applications, these slices were all pre-constructed, with the intention of 

determining one stack once for given conditions, such as the spatial attitudes of the 

volume object with a fixed viewpoint, along with orbit orientations of the viewpoint 

and complicated combinations of these two conditions. After finishing the slice-based 

representation phase, the following composition phase plays a “mapping” role, 

displaying the final results after implementing the integral calculations and the 

blending process slice by slice. Shear-warp model is a typical example of the 

object-aligned slices. Its mechanism of the composition process and operations will be 

explained in the section on shear-warp model below. 

Because every slice is a potential candidate in 2D texture-based applications, 

producing the final display results generally requires the execution of the sampling, 

filtering (interpolation) and blending process three times for a proper representation. 

Besides the trebled workload, another manifestation of its disadvantages is the 

complicated pre-definition of the conditions for the slice exchange. Although this 

texture-based method manages to suffice for regular volume rendering applications, 

the above listed inconveniences restrict its performance in high-quality display 

applications.  

For non-hardware accelerated techniques, texture-mapping-based volume rendering 

methods have always lost in most competitions with image-order methods (Weiskopf, 

Hopf, et al., 2001). By the 1980s, progressive graphics hardware techniques made a 
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great leap in terms of texture-based data manipulation, and consequently 

texture-mapping-based techniques attracted intensive attention. Benefiting from these 

advancements, texture-based applications obtained an increasing competitiveness in 

visualization, in comparison to other visualization methods. Meanwhile, an advanced 

texture-mapping method, so-called view-aligned slices, which constructs a one-off 

texture-based representation for replacing 2D textures, was proposed to save the 

predefinitions of the conditions with its developed texture representations (shown in 

Figure 2.11).  

 

Figure 2.11  Results of view-aligned slices. From Image A to Image C, the sampling rate is 

gradually increased. 

However, the display qualities of both 2D and 3D texture-based volume rendering are 

all limited by the frequency of the slicing volume data sets. For example, both 

column-II in Figure 2.10 and image B in Figure 2.11 show visibly discrete regions in 

the final results because of the incorrect initialization of the slices’ properties. By 

increasing the number of slices, the resulting display can minify these interruptions so 

that a smooth look is produced for the naked eye (column III in Figure 2.10 and image 

C in Figure 2.11). Besides these usages, texture-based representation also plays an 

important part in implementing the shearing-warp model. 
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2.4  The Shear-warp Model 

The shear-warp model makes the voxels project themselves, and consequently 

replaces casting rays into the volumes. The main objective of this forward-mapping 

approach is to simplify the complicated interpolations and compositions caused by 

transforming 3D properties into 2D results in an arbitrary kind of transformation 

(Levoy, 1994). Its basic idea is to shear and warp the volume model in the form of a 

fixed stack of slices, so that a 3D composition of the voxels’ properties can be 

approximated via a 2D solution. Its potential customers are the applications which 

require a lower sampling accuracy and display quality than those of high-quality 

approaches. Depending on the different types of viewing mode, the shear-warp model 

is respectively optimized for parallel projection and for perspective projection. 

2.4.1  Parallel Projection Algorithm 

 

Figure 2.12  A diagram of the shear warp model with the parallel projection mode 

As shown in Figure 2.12, the parallel viewing rays penetrate the image plane 

perpendicularly. After slicing the volume data, the shearing operation manipulates 
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these slices perpendicular to the viewing rays. Essentially, the sheared slices can 

parallel the image plane. In Figure 2.12, an intersection angle is forcedly drawn 

between slices and the image plane, in order to highlight the condition that the 

directions of the projecting intermediate image and the final image are not coplanar.  

Because the shearing operation was along the Z-axial direction in this figure, the 

z-coordinate can be kept constant. In other words, the original locations of voxels on 

each slice all obtain the displacements in the (x, y)-plane. Therefore, the shearing 

operation can be expressed by: 

ௌைܯ ൌ ைܯ ൈܯௌ ൌ   ൥ 
ଵݔ ଵݕ ଵݖ
ڭ ڭ ڭ
௡ݔ ௡ݕ ௡ݖ

൩ ൈ ௌܯ)   ௌܯ ൌ ൥ 
1 0 0
0 1 0
ݔ∆ ݕ∆ 1

൩  )     (2.10) 

where ܯை means the original coordinate matrix, ܯௌை represents the sheared result 

and ܯௌ is a defined shearing matrix. The ∆ݔ and ∆ݕ respectively mean the X- and 

Y-axial displacement of voxels on the ݊_݄ݐ voxel slice. Then, the sampling process 

will follow the calculated ܯௌை and the sampled results are composited along the 

Z-axis. Unlike the 3D composition of voxels’ optical properties in the ray-casting 

method, the shear-warp model carries out the composition by taking each slice as a 

unit. Therefore, the results of viewing rays intersecting the slices can be approximated 

via a series of scan-lines, which consist of voxels with the same z-coordinate. In the 

same way, the tri-linear interpolation in ray-casting methods can be replaced by the 

bi-linear one. Therefore, the interpolated properties of voxels can be also treated as 

scan-line-based (as shown in Figure 2.13), and calculated for compositions. 
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Figure 2.13  A diagram of interpolating scan-lines 

The composition of sample results is then projected as an intermediate image. 

However, this image is also sheared (shown in Figure 2.12). Before being mapped 

onto the image plane, the warping operation is required to restore the sheared image. 

In order to implement a reverse calculation on the intermediate image, the warped 

result ܯௐௌை can be written as (Levoy, 1994): 

ௐௌைܯ ൌ ௌைܯ ൈܯ௪    (ܯ௪ ൌ ൥ 
1 0 0
0 1 0

െ∆ݔ െ∆ݕ 1
൩  )         (2.11) 

Through this warping operation, the stored image can be mapped onto the image 

plane.  

2.4.2  Perspective Projection Algorithm 

 

Figure 2.14  A diagram of shear warp algorithm with the perspective projection mode 
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In order to shear the volume object for the perspective projection condition, the slices 

need a combination of shearing and scaling operations to implement a similar 

projection transformation to that which exists in the viewing frustum in Figure 2.14.  

This shearing operation is converted into (Levoy, 1994): 

ௌைܯ ൌ ைܯ ൈܯௌ ൌ   ൦ 

ଵݔ ଵݕ ଵݖ 0
ڭ ڭ ڭ ڭ
௡ݔ ௡ݕ ௡ݖ 0
0 0 0 1

൪ ൈ ௌܯௌ   ሺܯ ൌ ൦ 

1 0 0 0
0 1 0 0
ݔ∆ ݕ∆ 1 ݑ
0 0 0 1

൪ሻ   (2.12) 

In the viewing frustum, 1 ൗݑ  means the distance between the camera and the origin of 

the viewing space. In this shear-warp model, ݑ is designed to control scaling slices 

after shearing terms, and the scale is 1 ሺ1 ൅ ሻൗݑ . In the same way, the warping 

operation is (Levoy, 1994): 

ௐௌைܯ ൌ ௌைܯ ൈܯ௪    (ܯ௪ ൌ

ۏ
ێ
ێ
ۍ
 

1 0 0 0
0 1 0 0

െ∆ݔ െ∆ݕ 1 െ ଵ

ଵା௨
0 0 0 1 ے

ۑ
ۑ
ې
  )      (2.13) 

Therefore, the result of the shear-warp model with perspective projection can be 

obtained. Because perspective and parallel projections all rely on the same 

composition, interpolation and sampling mechanism, both the final images of these 

two algorithms are the same. 

As a complement to high-quality rendering methods, shear-warp model authentically 

simplified the interpolation and composition tasks required in the volumetric 

texture-mapping techniques through using one stack of slices for various conditions. 

Research of shear-warp model mainly focused on the improvement of TF to improve 

the efficiency of transformation properties, exploring the trade-off between online 
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shading management and performance penalties, and experimenting with the 

feasibility of the coexistence with other object-order methods (Wu, Bhatia et al., 

2003).  

2.5  The Maximum Intensity Projection 

Unlike the compositing of optical properties in the ray-casting and shear-warp 

approaches, Maximum Intensity Projection (MIP), which is a backward-mapping 

DVR approach, keeps the maximum property value encountered along a viewing ray 

as the ray’s final footprint projected on the image plane (Wallis, Miller et al., 1989). 

Its most popular applications were in the field of medical imaging, with its capability 

for computationally fast imaging, such as cancer screening equipment, CT scanners 

and diagnoses in nuclear medicine. As shown in Figure 2.15, the MIP’s composition 

work can be considered as a texture-based method. However, its differences from the 

other texture-based techniques are the textures parallel the viewing ray.  

 

Figure 2.15  A diagram of MIP 

By carrying out the maximum operator along one side of each slice, the final result of 

MIP can be considered as a set of projections of slices which are perpendicular to the 
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image plane. The projection of each slice can be written as (Wallis, Miller et al., 

1989): 

,ݔሺݔܽܯ  ,௡ݕ ௠ሻݖ ൌ ,௡ݕெூ௉ሺܫ ௠ሻݖ ൌ ,ሺܱ଴ݔܽ݉ ଵܱ, ܱଶ, … ܱ௡ିଵሻ       (2.14) 

where ݔܽܯሺݔ, ,௡ݕ ௠ሻݖ  denotes the property value encountered along the ݊_݄ݐ 

viewing ray through the ݉_݄ݐ slice; ܫெூ௉ሺݕ௡,  ௠ሻ symbolizes the location of theݖ

associated footprint on the image plane, and ௫ܱ (ݔ א ሾ0, ݊ሻ) is the optical value of 

the voxel at coordinate (ݔ, ,௡ݕ  .௠). Figure 2.16 shows the result of MIP techniqueݖ

 

Figure 2.16  Results of MIP 

The mechanism of MIP determines that each pixel value in the result is obtained by 

locating a maximum optical value. This result cannot support an adequate depiction of 

the spatial content of overlapping regions, because of the lack of “depth information”. 

As one general solution for creating MIP-based animations (e.g. rotation), an illusion 

is pre-constructed by determining the location of a set of viewpoints, and using the 

slice-based transformations in shear-warp model to obtain the associated image of 
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MIP with every viewpoint’s location (Cai and Sakas, 1998; Fang, Wang et al., 2002). 

In addition, shortening the sampling region is a direction of assigning the MIP with 

the ability of representing occlusions. Technically, the idea of the solution is to 

pre-define a threshold value to stop the iteration of maximum operator at the first time 

the intermediate result reaches this “threshold” (Sato, Shiraga et al., 1998; Han, 

Keyser et al., 2009). This solution is as named Local Maximum Intensity Projection 

(LMIP), and its improved results are shown in Figure 2.17. 

 

Figure 2.17  Illustrations of MIP-based and LMIP-based imaging methods (courtesy to Sato et al.) 

2.6  Volume Shading Techniques 

Playing an important part in rendering operations, volume shading methods can 

increase the authenticity of simulations by performing sophisticated displays with 

realistic lighting effects inside volumetric spaces (Hadwiger, Sigg et al., 2005; Rieder, 

Palmer et al., 2011) (shown in Figure 2.18). In order to perform the light interactions 

within a volumetric space, the most direct solution is to use dedicated optical models 

to determine light emission and absorption properties for each voxel, so that the 

resulting appearances can be uniformly translucent or opaque. In addition, a set of 
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vertices extracted from the voxels which share the same scalar value, form a surface 

to display the illumination effects in surface-modelling-based strategies (Hadwiger, 

P.Ljung et al., 2009).  

 

Figure 2.18  Various shading effects. Column A exhibits transparent results. Column B contains 

opaque contents. Column C comprises surface-based results. Column D represents the 

sphere-mapping effects column C. 

2.6.1  Monte-Carlo Techniques for Iso-surface 

The Monte-Carlo techniques for the iso-surface extracted from the volume data, can 

be divided into three steps: first hit approach, deferred shading approach and deferred 

ambient occlusion approach (Hadwiger, P.Ljung et al., 2009) 

 First hit approach 

Similar to the iso-surface extraction mechanism, the first hit approach iterates a 

sampling cycle successively to construct a specific surface and pre-specifies a scalar 

value as the threshold value for the sampling process simultaneously. Then, this 
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specific surface, so-called first iso-surface is constructed by gathering the voxels 

which are the first ones to obtain the given scalar value. Based on computing the 

normal vectors to determine the reflection characters on the first iso-surface in the 

form of a floating-point RGBA quadruplet, the outcome of first hit approach can be 

represented by a frequency histogram method in Figure 2.19 (A). The result of 

enabling gradient vectors in the outcome of first hit approach is illustrated in image B. 

 

Figure 2.19  Results of first hit approach for the human head data set 

 Deferred shading approach 

After obtaining the results from the first hit approach, the shading of the first 

iso-surface can be computed by loading the normalized gradient and evaluating local 

illumination appearances (e.g. Phong shading with a point light) (Bennebroek, Ernst 

et al., 1997). This section just focuses on computing the reflectance behaviours, and 

the content of scattering terms will be explained in the following section. The 

reflection property of each element on this iso-surface is constant and precisely 

addressed by a shift invariant Bidirectional Reflectance Distribution Function (BRDF) 

(Nicodemus, 1965). The result of deferred shading approach is shown in Figure 2.20.      
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Figure 2.20  A diagram of deferred shading approach 

 Deferred ambient occlusion approach 

Working on the same first iso-surface, the deferred ambient occlusion approach plays 

the shading calculation on the local environment surrounding the surface, based on the 

intersection condition between this surface and a series of random rays. These rays all 

start from the surface and follow the reflection mechanism in a shift variant BRDF. 

Unlike the invariant one in the deferred shading approach, the anisotropic specular 

terms cannot be directly obtained through indexing a pre-filtered reflection map 

(Zhang, Zhu et al., 2011). The local environment needs to be split into a set of 

hemisphere domains around the start points of the rays on the first iso-surface to form 

a sort of local orientation for orienting the specular terms. These domains come from 

using Monte-Carlo integration to calculate the incident radiance over each vertex on 

the iso-surface (Hadwiger, P.Ljung et al., 2009). Figure 2.21 shows the result of the 

ambient occlusion approach.  

 

Figure 2.21  A diagram of deferred ambient occlusion approach 
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2.6.2  Volume Scattering 

After finishing the explanation of Monte-Carlo techniques for rendering iso-surface, 

the rest contents will focus on volume scattering. Scattering is a physical process 

which makes the light deviate from its original path. In surface-modelling-based 

applications, the light interactions usually happened in an assumed vacuum and only 

takes place on the surface of models. For simulating direct or indirect illuminations, 

evaluation of the conditions of incident rays and specular rays will respectively rely 

on the single or multiple-scattering design (Stankevich, Shkuratov et al., 2003). 

Volume scattering usually took place in the form of the light deflections on the 

exterior and interior of volumetric objects. Similar to the deferred ambient occlusion 

approach, volume scattering also needs to define hemisphere domains as the incident 

radiances for tracing anisotropic scatterings inside the volume model according to the 

Monte-Carlo method (Nishita, Dobashi et al., 1996; Roy and Ahmed, 2011). The 

determination of these domains will influence the display quality of the final results. 

By taking advantage of multiple-scattering, the associated applications can 

differentiate the displays of homogeneous regions in the final result. For example, the 

eyehole region in the right image can reveal more features than the left one in Figure 

2.22.  

 

Figure 2.22  A result of volume scattering 
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As shown in Figure 2.23, there is a result of volume shading (for a human head data 

set) which was produced by combining the above mentioned shading approaches 

together and carrying out a composition of hybrid shading processes. Besides the 

realistic effects, this composition also brought challenges in terms of maintaining a 

applicable performance in real-time applications (Hadwiger, P.Ljung et al., 2009).  

 

Figure 2.23  A diagram of a shading composition design 

2.7  Research Objectives 

Based on the above introduction of volume visualization techniques, the common 

research problems of large data size, artefacts, low efficiency and poor image 

qualities, were set as the research objectives of developing visualization properties: 

 Large data handling. The limitations and derived problems caused by processing 

large data sets can affect the whole system, throughout the displaying, 
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computation and manipulating processes. Because researchers still insist on 

increasing data sizes to obtain more information or carry out higher level 

performances, the related solutions cannot fully overcome these derived 

problems. The most challenging task is to find the balance between performance 

and efficiency in volume-based applications. 

 Reducing visualization artefacts. As a useful data filtering tool, data interpolation 

and (re-) sampling processes were usually utilized at a high frequency for 

maintaining the continuity of data sets in data processing stages in primitive 

solutions. However, these solutions also suffered from the limitations caused by 

the largely increased proportion of estimated data to initial data. The authenticity 

of estimated contents was difficult to prove, and indiscriminate estimation 

operations might cause redundant features. 

 Improving interactive rate. The low interactive rate was usually caused by 

handling a huge workload of computations, such as processing large amounts of 

data, implementing accurate representations and performing complicated 

illumination distributions. Although much effort has been spent on data 

compression approaches, hardware acceleration techniques and algorithm 

simplifications, volume-based applications still struggled against the problem 

interactive rate in order to gain enough “room” to improve the system efficiency. 

 Improving image qualities. In order to achieve the desired interactive rate, a few 

acceleration designs implemented rapid data processing by simplifying 

intermediate or final outputs. Artefacts and fuzzy features usually derived from 

decreased image qualities. According to actual demands of various applications, 

most of solutions proposed a proper balance to manage the trade-off between 

image resolutions and data processing times.  
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Chapter 3 Volume Model Manipulation Strategies 

In addition to developing visualization terms, constructing a novel data manipulation 

mechanism is another important research goal in this dissertation. By reviewing the 

state-of-the-art in the field of volume model manipulation, the pros and cons of each 

method will be analysed and evaluated. Afterwards, the problems and derived 

limitations insides deforming volume models will be concluded and treated as the 

corresponding research objectives of data manipulation. 

3.1  Volume Clipping 

As one of the simplest manipulation methods, the volume clipping technique can 

provide effective assistances in understanding volumetric contents, by enabling 

ichnography-like results according to the positions of “cutting points” (Weiskopf, 

Engel et al., 2003). In most of volume-based applications, it was considered as a 

complement to the TF, e.g. the cutting plan in medical imaging (Maruya, Nishimaki et 

al., 2010).  

Most volume clipping methods are geometry-based methods, which determine the 

visibility of each voxel according to its position in the volume model. Depending on 

different ways of presenting clipping information, volume clipping techniques can be 

classified as clipping via tagged volumes, and depth-based clipping (Engel, Hadwiger 

et al., 2004).  

The fist method is based on pre-defining a clipping region (as shown in Figure 3.1). 

This method supports arbitrary clip geometries. However, it requires a series of 

accessorial operations for optimizing clipped results, e.g. using the tri-linear 
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interpolation or nearest-neighbour sampling for “smoothing” the clipping region for 

improving the display quality (Weiskopf, Engel et al., 2003). These operations 

generally cost extra processing time on interpolation computations. 

 

Figure 3.1  A diagram of the clipping method via tagged volumes 

The second method relies on the stencil test (Westermann and Ertl, 1998). 

Technically, the depth-based clipping methods focus on partitioning the model into 

several fragments by using a stencil test to determine the distance of each portion 

from the image plane (shown in Figure 3.2). After labelling these fragments as visible 

and invisible, the volume data is respectively mapped to these partitions. As a result, 

these segments and included data sets can be correctly located, manipulated and 

visualized. The depth-based clipping method enables a flexible clipping geometry 

through taking advantage of its capability of managing the resolution of results at 

voxel level. 
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Figure 3.2  A diagram of the depth-based volume clipping method 

3.2  Volume Deformation 

Similar to the deformation approaches in surface-modelling-based applications (as 

shown in Figure 3.3), volume deformation techniques perform the shape changes on 

the volumetric objects so that the movements of the internal structures can react to the 

surface changes. For manipulating the volumetric structures, the deformation 

techniques need to build up a dedicated framework for connecting voxels and 

consequently synchronize the displacements of interior and exterior voxels properly 

according to specific applications. In this thesis, based on different types of the 

deformation behaviours, the volume deformation techniques were categorized into 

two types: non-physics-based and physics-based deformations. 

 

Figure 3.3  Illustrations of surface deformation models 

3.2.1  Non-physics-based Deformation 

Non-physics-based deformation means that the mechanism of generating deformation 

is not explicit, i.e. lacks the ability of performing physical characters in the deformed 

results. When applying these deformation techniques to manipulate the volume 

models, the most popular solution is to treat the volumetric information as a 

nesting-doll-like arrangement of surfaces or a stack of cross sections, and make a set 
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of linear deformation copies on these elements roughly. Basically, these deformation 

methods can be regarded as repeating a mesh deformation method in several times. 

This strategy can uniform the manipulations of all voxel so that the process of 

creating the connections between voxels can be overleapt. As a result, their associated 

applications can be implemented conveniently and output the deformed results 

rapidly. Due to these advantages, many researchers carried out different 

non-physics-based volume deformation approaches: ray-deflection volume 

deformation (Kurzion and Yagel, 1997), spatial TF method (Chen, Silver et al., 2003), 

and warping-based volumetric representation (Correa, Silver et al., 2010). 

 Ray-deflection volume deformation 

By employing the properties of voxels and specific visualization methods, this 

deformation manipulates the volume model in the manner of rendering. By changing 

the regular trajectories of sampling rays during the sampling phase, this deformation 

method can changed the resulting property values encountered on every ray. The 

deformation can present regional changes via four types of deflector (Kurzion and 

Yagel, 1997). The first one is a discontinuous deflector, which suffices for exhibiting 

interval-based clipping effects (in Figure 3.4 (A)). Image B shows the result of 

combining rotate and scale deflectors. Both deflectors are based on matrix 

multiplication or inversion to generate the deformed features on the corners of the 

enlarged mouth. Translate deflectors are used to assign certain displacements to 

voxels via a series of matrix algebra operations (as shown in image C).  
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Figure 3.4  Illustrations of the ray-deflector volume deformation method (courtesy to Yail et al.) 

 Spatial transfer function 

The spatial TF serves as a “noise map”, which is constrained to anticipate into the 

regular conversion phase of translating scalar values into optical properties. This 

deformation method can perform the clipping result by defining a given parameter, 

which is used to indicate a (symmetrical) partition of “references” for the translating 

process (as shown in Figure 3.5 (A)). By accomplishing a many-to-many data 

mapping process, the spatial TF relies on a sweeping method for carrying out the 

stretching effects in image B (Chen, Silver et al., 2003). However, the spatial TF 

cannot independently achieve resizing operations via a self-change of several 

parameters. Therefore, this method demands guidance from the control lattice 

construed for presenting shape changes, e.g. the results of a squeezing action in image 

C.  

 

Figure 3.5  Results of the spatial TF method (courtesy to Chen et al.) 

 Warping-based volumetric representation 
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These deformation methods transform the volume object by treating it as a 

homogeneous solid, which can perform uniform behaviours with respect to the given 

degrees of smoothness and partitioned organization. Technically, this deformation 

process is also based on the matrix manipulations, and all behaviours are determined 

by a warping-based matrix. However, because the lack of determining control lattices 

in the continuous volume data, the texture-based lattices were used to enclose the 

entire volume data including useless parts. As show in Figure 3.6, the idea of this 

deformation method didn’t consider the connections between voxels (or groups of 

voxels). In this deformation, the “clone” operations were implemented through 

manipulating the texture-based lattices, and transforming their stored voxels (Correa, 

Silver et al., 2010). The shortcoming of this deformation process is the lack of 

differences between transforming soft tissues and shinbones to perform elastic 

behaviours shown in column A. The associated solution was realising a so-called 

sub-dividable deformation based on a series of constrained processes: offline data 

segmentation and accessorial restoring operations (as shown in column C and D) 

(Lewis, Cordner et al., 2000; Correa, Silver et al., 2010).  
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Figure 3.6  Illustrations of the warping-based volumetric representation method (courtesy to Carlos 

et al.) 

3.2.2  Physics-based Deformation 

 

Figure 3.7  A diagram of a physics-based deformation method for medical simulations (courtesy to 

Kobayashi et al.) 

As an interdisciplinary field, physics-based deformation techniques can involve 

Newtonian dynamics; continuum mechanics; numerical computation; differential 

geometry; vector calculus; approximation theory, and computer graphics. Because of 

their capability of presenting physical characters, such as gradient changes and 

realistic deformed features (as shown in Figure 3.7), these deformation methods were 

usually adapted for implementing Computational Fluid Dynamics (CFD) simulation 

(e.g. fluid-structure interactions) (Bathe and Zhang, 2009), representing irregular 

behaviours in soft tissues (e.g. operation training) (Kobayashi, Onishi et al., 2010), 

and transforming rigid bodies (e.g. bridge columns’ responses to shaking events) 

(Baydaa, Ling et al., 2011).  

For achieving Free-Form-Deformation (FFD), most of physics-based deformation 

applications required various control lattices for enveloping the models partially or 
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completely. These lattices were defined to orient the deforming forces and represent 

them on the underlying surfaces of objects to perform arbitrary and nonlinear 

deformation results. Physics-based volume deformation applications also relied on 

this principle and required the volumetric displacement mapping design for 

manipulating voxels. After the mapping process between control lattices and 

underlying voxels, the embedded volume needs to be converted into various 

deformable solids for determining the irregular grades of synchronizations of voxels’ 

movements. These deformable solids are all constructed via choosing proper 

mathematical models as their stencils, and consequently enable a series of 

standardized connections between voxels. Based on these connections, the 

mathematical model can manage the spatial distribution of voxels within the 

volumetric space, so that the displacement for every voxel in the deformation area can 

be worked out. The review of physics-based deformation techniques was classified 

based on prevalent mathematical models, such as Mass-spring system (Provot, 1995), 

Finite Element Method (FEM) (Keeve, Girod et al., 1996), and Chain-Mail algorithm 

(Gibson, 1997).  

 Chain-Mail algorithm 

Chain-Mail algorithm is mainly used to simulate the spring and damping actions 

among large partitions by separating the object model into several blocks and 

computing their elastic changes during the deformation (Gibson, 1997). In 

volume-based applications, each block comprises a certain number of voxels (chain 

elements), which are surrounded by interspaces (chain regions) (as shown in Figure 

3.8 (A)). The intersectional domains, which are assumed to exist between every two 

closest groups of voxels (chain elements), serve as the “air spring” regions and have 

three components along X-, Y- and Z- axial directions respectively (Li and Brodlie, 
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2003). According to predefined limitations of compressing and stretching the air 

spring region, the maximally compressed and maximally stretched conditions can be 

implemented respectively (as shown in Figure 3.8 (B and D)).  

 

Figure 3.8  A diagram of Chain-Mail algorithm 

During this deformation, applying a force on one chain element will cause a series of 

chain reactions in the form of a combination of magnified and minified “air spring” 

regions for simulating the results of the stretching (or compressing) operation. The 

closer the distance between the chain element and the centre of deformation area is, 

the clearer the changes of surrounding air spring regions are. Figure 3.9 shows 

different gradient distributions of deformable contents on a soft tissue in a virtual 

endoscopy application (Drager, 2005). 

 

Figure 3.9  Results of Chain-Mail-based deformation (courtesy to Drager, C.) 

 Finite Element Method 

In order to perform perfectly continuous volume deformation, FEM utilizes the Partial 
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Differential Equation (PDE) to calculate the elastic behaviours’ properties (Keeve, 

Girod et al., 1996). In volume-based applications, the FEM treated the volume as a 

continuously connected content with a random control lattice, and utilized simple 

equations to approximate the effect of running PDE on this lattice (Nienhuys and 

Stappen, 2000) (shown in Figure 3.10). This design usually focuses on the precise 

representation of the details of shape changes in training environments (e.g. surgical 

operation simulation (Nakao and Minato, 2010)), medical imaging (e.g. image-guided 

neurosurgery (Vigneron, Boman et al., 2008)), and engineering simulations (e.g. 

simulations of seismic pile-supported bridge structure (Baydaa, Ling et al., 2011)). 

 

Figure 3.10  Diagrams of FEM-based approximate representation 

For example, in order to perform the deformed features on the irregular grids 

intersected by the cut path (as shown in Figure 3.11 (a)), the FEM-based volume 

deformation subdivided the initial control lattices which surrounds the region of 

interesting segment (cut path), and approximated an intermediate representation in the 

form of divided grids (cut surface) (as shown in image b) (Nakao and Minato, 2010). 

Afterwards, the resulting elastic behaviours along the cut path can be approximated by 

the displacements of divided grids (as shown in image c and d). After filtering the 

subdivided lattice and mapping the vertices’ properties to associated voxels, the 

preserved result and elastic performances of the cut region are respectively revealed in 

Figure 3.11 (A and B) 
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Figure 3.11  Illustrations of FEM-based volume deformation (courtesy to Nakao et al.) 

 Mass-spring system 

With the helps from the developing hardware accelerations (Tejada and Ertl, 2005; 

Courtecuisse, Jung et al., 2010) and optimization designs (Azar, Metaxas et al., 2002; 

Natsupakpong and Cavusoglu, 2010), the volume deformation techniques based on 

Mass-spring system had been improved representing deformations precisely and 

efficiently. Instead of approximating continuous deformation works and dynamic 

subdivision tasks in FEM-based volume deformations, the preparations for the 

construction of Mass-spring system involve partitioning the volumetric object into a 

set of voxel-based masses, and embedding a series of standardized spring-linking 

mechanisms (Natsupakpong and Cavusoglu, 2010) (shown in Figure 3.12).   

 

Figure 3.12  A diagram of Mass-spring system 

Based on these spring-linking mechanisms, the deformed contents can be evaluated 
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by the movements of fixed masses (without subdivisions) (as shown in Figure 3.13 (A 

and B)). For example, in a breast survey application, the solution was proposed to 

convert the whole volume model into quite a few vertices. The devised Mass-spring 

system was built up based on these vertices, and consequently relied on a huge 

computation work and complicated transformations between vertices and voxels to 

produce the deformation and visualization results precisely (as shown in Figure 3.13 

(C and D)) (Patete, Iacono et al., 2012).  

 

Figure 3.13  Illustrations of a volume deformation based on Mass-spring system (courtesy to Patete 

et al.) 

3.3  Constructive Volume Geometry 

For representing the complicated scenes consisting of multiple volume models, many 

researches utilized the surface modelling-based strategies as the solution. For 

example, a voxel-based version of so-called Constructive Solid Geometry (CSG), 

Constructive Volume Geometry (CVG) was devised to carries out voxel-based 

Boolean operations to represent the combination of multiple volume models (shown 

in Figure 3.14) (Chen and Tucker, 2000).  
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Figure 3.14  Diagrams of CVG-based Boolean operations (courtesy to Chen et al.) 

This novel modelling method offers an algebraic framework for facilitating the 

combination operations on volumetric objects. CVG implemented a series of 

volumetric CSG models based on the union, intersection and difference operations 

which were built upon voxel-based manipulations with their scalar fields. For 

implementing various operations, there exist differently standardized classes which 

respectively indicate a set of computing methods for amending voxels’ properties. As 

a result, both the opacity and colour properties of each voxel inside the crossed area 

were recomputed for performing the correct occlusions and the resulting colour 

overlays. 

 

Figure 3.15  Results of CVG-based Boolean operations (courtesy to Chen et al.) 

Based on this volumetric Boolean operation design, CVG-based operations could 

handle the complicated manipulations of multiple volumetric objects (as shown in 
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Figure 3.15). Constructing tree-like structures, managing memory requirements and 

designing hardware-based accelerations had been chosen as further solutions to the 

problems derived from the low processing efficiency caused by huge size of multiple 

volume data (Chen, Clayton et al., 2003).  

3.4  Volume Animations 

Like integrating polygon-based deformation methods with time lines to achieve 

animation efforts, some volume animation techniques also use time parameters to 

direct the execution sequence of volume deformation processes. In the past decade, 

research in volumetric animation has mainly focused on medical or hydro-mechanical 

applications (Binotto, Comba et al., 2003; Carmona and Froehlich, 2011). Figure 3.16 

shows three snapshots of CT baby data. 

 

Figure 3.16  Illustrations of a dynamic CT baby data 

Besides dedicated volume animation applications, the volume model was regarded as 

a special “agent” which delineates the polydirectional light interactions within 

volumetric spaces; e.g. the volumetric particle system consisting of a set of 

vertex-based elements (as shown in Figure 3.17). This particle system has shown its 

significant potential for performing visual effects in games and other entertainment 

industries. It was widely used to simulate smoke, explosions and fires (Green, 2005). 
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With the assistance of advanced hardware-based acceleration techniques, the 

volumetric particle system can enable high-quality particle simulation and maintain 

interactive displays with an increasing number of particles. 

 

Figure 3.17  Illustrations of a volumetric particle system (courtesy to Green)  

Since the 1990s, volume animation techniques have been used to load scalar CFD 

data, and improving photo-realistic images and animations with limited illumination 

effects for CFD simulations (as shown Figure 3.18 (A and B)) (Jaganathan, Tafreshi 

et al., 2008). Through benefiting from hardware-assisted acceleration supports, the 

volume animation techniques have been implemented and integrated with advanced 

illumination calculations to improve the authenticity and applicability of CFD 

simulations (as shown in Figure 3.18 (C and D)) (Corrigan, Camelli et al., 2011).  

 

Figure 3.18  Illustrations of CFD simulations based on volume animation techniques (courtesy to 

Jaganathan et al. and Corrigan et al.) 
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3.5  Analysis on Current Challenges 

By enabling non-physics-based deformation methods to accomplish complex 

deformation effects, many researchers have been trying to blur the line between 

non-physics-based and physics-based volume deformation methods, meanwhile, 

emphasizing the feasibility of using hardware-based acceleration techniques for 

maintaining the performance of improved non-physics-based methods. However, the 

performance of physics-based methods can also benefit from the hardware-based 

accelerations.  

The human visual system can react to each frame individually when the frame rate is 

10 to 12 frames per second (Reader and Meyer, 2000). And 14 to 24 frames per 

second (fps) can offer an impression of animation. If the frame rate is over 46 fps, the 

human visual system cannot react to this displaying speed (Elsaesser and Barker, 

1990). In other words, when displaying the same object, the human visual system 

cannot detect any differences between 47 fps and 77 fps. Therefore, the naked-eye 

observations cannot perceive the differences between both hardware-accelerated 

non-physics-based and physics-based deformation methods whose displaying speeds 

are all over 46 fps. 

Besides the decreasing difference between the real-time performances of 

non-physics-based and physics-based caused by the developing hardware techniques, 

the physics-based deformation has been becoming more popular than 

non-physics-based one because it has the advantage of performing the physical 

behaviours precisely (Choi, Lee et al., 2004; Bachmann, Bouissou et al., 2009; 

Kobayashi, Onishi et al., 2010). 
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In this thesis, the criteria for evaluating the designed deformation system won’t 

contain the definite demands in realistic applications, such as calculating the precision 

attributes in millimetres and predetermining the error rate of simulation works (Patete, 

Iacono et al., 2012). As shown in Figure 3.19, the comparison table just uses four 

general criteria for the performance analysis of the above mentioned physics-based 

volume deformation techniques: Chain-Mail algorithm (represented by CMA), FEM 

method and Mass-spring system (represented by MSS). 

 

Figure 3.19  The comparison table of Chain-Mail algorithm, FEM and Mass-spring system’s 

performances 

As the greatest advantage of FEM-based volume deformation approaches, their 

applications are good at dividing the resulting deformed behaviours into tiny 

characters enough (even subdividing voxels), meanwhile only manipulate the 

interesting segment in volume data. Therefore, they are much popular in simulating 

rigid objects efficiently (Baydaa, Ling et al., 2011). Unless defining each voxel as a 

mass (or a chain element) in the MSS (or CMA) approaches and isolating the 

interesting data segment from the others, the resulting deformed behaviours cannot 

achieve the same precision as the FEM’s results. The constrained construction of 

chain regions and limited movements of chain nodes makes CMA approaches only 

support the “coarse” motion of volumetric objects (Gibson and Mirtich, 1997). As a 
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result, CMA gets the lowest scores of “accurate simulation” and “flexible 

manipulation”.  

However, the FEM-based deformation always suffered from the complicated 

subdivision mechanism which brings more complex computation works than the other 

two approaches. As a result, the low processing speeds make the real-time operations 

extremely difficult, and quite a few divided nodes badly restrict the flexibility of 

manipulations. Therefore, in both “rapid implementation” and “interactive operation” 

terms, FEM all gets the lowest scores. Because the simple node partition, CMA-based 

deformation applications can be rapidly implemented. And the CMA can only enable 

three statuses of the “air spring” region change. Therefore, CMA-based applications 

can support higher interactive rate of real-time operations than the other two 

approaches. 

As a powerful and comprehensive deformation tool, MSS-based deformation methods 

have been extensively used for dynamic simulations, e.g. animation systems (Gibson 

and Mirtich, 1997). MSS is well-known for its plenty of connections which can form 

flexible frameworks and support multiform node partitions. As a result, MSS can 

perform more flexible results than FEM and CMA. Based on this evaluation, the 

devised volume deformation pipeline explained in the flowing chapters was 

constructed based on choosing the mass-spring system as the deformable solid, and 

comprised a series of solutions of improving the system performance of this design. 

3.6  Design Criteria 

Based on the comprehensive review on the volume visualization techniques and 

manipulation strategies, the following design criteria for this research have been 
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adapted: 

 First of all, the data processing stage should provide a visible analysis of any 

volume data set. The feasibility of the visible analysis should be demonstrated via 

the comparisons between automatically generated images and the results of 

offline manual modifications. Besides, the data processing stage also needs to 

provide the isolated data segments for simplifying the further processing works, 

e.g. enclosing the interesting data segment for reducing the lattice construction 

work and increasing the efficiency of the deformation system.  

 The designed volume deformation method should manipulate volume objects to 

present deformed behaviours in a flexible and parameterized manner. By passing 

through an improved physics-based volume deformation approach, the resulting 

deformed volume models should reveal the gradient changes on their surfaces. As 

another outcome of this approach, the associated clipping planes should visually 

prove the existence of deformed interior contents and the stated coherences 

between exterior and interior changes. The feasibility of this deformation method 

should be experimented by loading different volume data sets. 

 The devised volume deformation method in this project should support interactive 

manipulations of volume models during the real-time simulation. The gains from 

carrying out GPU-based implementations should be tabled in the form of given 

data arrays (comprising data sizes, associated parameters and frame rates). The 

image-based benefits of the parallel processing structure should be gathered 

together. 

The following chapters all concentrated on improving the devised volume 

deformation system to meet the above criteria through overcoming corresponding 
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problems. As the output of the explained function module in chapter4, the extracted 

volume data structure and isolated data segments can enable the capability of 

automatic volume data analysis and flexible feature extraction. Based on these 

intermediate results, chapter 5 introduced a famous mesh extraction technique with 

associated refinement solutions to overcome the problems of control lattice 

construction in traditional volume deformation methods. These two chapters’ 

achievements can help the system meet the first criterion. The second criterion of 

free-form volume deformation was achieved by the hybrid displacement mapping 

design (in chapter 6) which synchronizes the transformation for different elements. 

The deformation fixing function serves as the key complement of physics-based 

deformation process which can perform the deformation with physical properties. The 

third criterion requires the acceleration for achieving real-time performance. As a 

result, based on the GPU-accelerated designs in Chapter 7, the experimental results 

listed in Chapter 8 can quantify the speedup which claims the advantage of 

hardware-based acceleration, and exhibit final results of the devised volume 

deformation system to verify the feasibility of interactive operation of deformation 

behaviours. 
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Chapter 4 Volumetric Data Processing 

The volumetric data processing work introduced in this chapter aims to analyse the 

volume data and filter out its inherent noise by gaining the volume data structure and 

indicating the useless segments. As a pre-processing function module, this processing 

design relied on using volume segmentation methods to assist with the 

decision-making stage involved in manipulating volume models. In order to 

customize deformation behaviours, knowing about the framework of a volume model 

can instruct the partition and manipulation of volumetric contents. In addition, the 

“blank” voxels which serve as meaningless information and surround the interesting 

data segment(s), can be filtered out in this module and excluded from the subsequent 

operations to prevent processing time from being wasted on them. 

Depending on the type of data processing, volume segmentation methods can be 

categorized into 2D (texture-based) and 3D (voxel-based) solutions. Basically, they 

all try to assign each voxel to a certain data segment labelled with a given mask 

(known as the segmentation mask). There were two types of segmentation mask. One 

was used to label each segment inside volume data in the form of an “ID” number. 

According to this ID number, the visualization process can accurately display the 

segment(s) with the associated optical properties in a specific TF module. The other 

segmentation mask was defined to make a clear spatial “nested relationship” from the 

volume data. The mask(s) determined whether voxels lie inside of the object 
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segment(s) in the manner of a binary representation. By utilizing these two masks, the 

volumetric data processing module can display an understandable result for analysing 

volume data (as shown in Figure 4.1(B)), and isolate the contents of interest 

selectively (as shown in Figure 4.1 (C)). 

 

Figure 4.1  Display of a CT-scanned human head data. (Image A results from the basic DVR 

method. Image B simultaneously renders all parts of the head model. Image C uses the mask as a 

binary representation to delineate the “bony” and “boneless” parts) 

The following content will cover the generation principles of these two segmentation 

masks with the associated usages of them. 

4.1  Applying Clustering Methods for Classifying Volume Data 

At the beginning of this devised volumetric data processing function module, the first 

step was to group “similar” voxels together and used the grouped result as the first 

kind of segmentation mask to guide the ensuing operations. Due to the fact that 

clustering algorithms are good at sorting pixels according to the predefined spectra, 

classifying voxels in volume segmentation process was implemented by extending all 

classical 2D clustering methods into 3D scenes. The original idea of clustering 



Chapter 4 Volumetric Data Processing 

65 
 

algorithms is to group pixels by treating their coordinates and colour values as a 

feature space. The most popular feature space is of a 6D nature ሺݔ, ,ݕ ,ݎ ݃, ܾ,  ሻ, inߙ

which ሺݔ, ,ݎሻ denotes the planar coordinates and ሺݕ ݃, ܾ,  ሻ represents the pixel’sߙ

optical properties. In order to partition a volume data set in this process, the feature 

space became a 7D one, defined as ሺݔ, ,ݕ ,ݖ ,ݎ ݃, ܾ,   .ሻߙ

In the field of clustering algorithms, there are three most prominent algorithms: 

connective-based algorithm (e.g. Hierarchical clustering), distribution-based 

algorithm (e.g. Expectation-maximization algorithm), and centroid-based algorithm 

(e.g. K-means clustering) (Rui and Wunsch, 2005). This section respectively 

implemented these typical clustering methods for classifying the same data set, and 

discussed the pros and cons based on their performance in volume segmentation 

process. 

4.1.1  Hierarchical Clustering-based Volume Segmentation (HVS) 

As the most frequently used method for connectivity-based clustering applications, 

the hierarchical clustering method can be summarized as a binary tree during data 

clustering processes. Its leaves represent the data point and its internal nodes are the 

nested clusters of different sizes. Depending on the choice of data processing 

sequence, hierarchical clustering can be categorized into two types. One is called 

agglomerative hierarchical clustering, which observes the leaves firstly, and moves up 

to the nested clusters. Divisive hierarchical clustering method is the other type, which 

works in the opposite direction.  
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This research chose the agglomerative approach, which is more popular than the 

divisive one because of the traceability, as the basis of the HVS design (Cimiano, 

Hotho, et al., 2001). The clustering algorithm started from the voxel level. For a 

random voxel  ௩ܲ௢௫௘௟_௜ belonging to a volume data set ( ௩ܲ௢௫௘௟_௜  and ݅ א ܰ), there was 

a nearest voxel ௩ܲ௢௫௘௟_௡௘௔௥  which was paired with ௩ܲ௢௫௘௟_௜  . The mechanism of 

pairing can be written as (Szekely and Rizzo, 2005): 

ฮ ௩ܲ௢௫௘௟_ప  ௩ܲ௢௫௘௟_௡௘௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൌ min൛ฮ ௩ܲ௢௫௘௟_ప  ௩ܲ௢௫௘௟_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮൟ ሺ݆׊, ݆ א ܰ ܽ݊݀ ݆ ് ݅ሻ   (4.1) 

The next step was merging ௩ܲ௢௫௘௟_௜  and its ௩ܲ௢௫௘௟_௡௘௔௥ into a new “voxel”, i.e. 

obtaining the new voxel’s properties in the form of calculated ௩ܲ௢௫௘௟_ప  ௩ܲ௢௫௘௟_௡௘௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ. As 

a result, this generated “voxel” represented the nested cluster for both   ௩ܲ௢௫௘௟_௜  and 

௩ܲ௢௫௘௟_௡௘௔௥, and joined in the next pairing operation with the other clusters. Because 

there was no fixed limit on the number of the first merged clusters, several voxels 

might miss the first pairing stage and be paired with generated clusters. By iterating 

the pairing and merging steps, HVS continuously generated cluster-based results, and 

the final result approximated to two or three clusters. As a derived result of the 

hierarchical clustering method, a kind of binary tree was produced to record the 

nested relationship of clusters (as shown in Figure 4.2 (A)). This clustering sequence 

led to a series of intermediate outputs (as shown in image b to f)), which represented 

the clustering results from Level 0 to 4. These images represented the progress of 

clustering volume data. Its mechanism can be written as shown in Table 4.1. 
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Figure 4.2  The results of HVS.  

 

Table 4.1  Mechanism of HVS 

4.1.2  Expectation-Maximization Algorithm-based Volume Segmentation 

(EMVS) 

Among all distribution-based clustering algorithms, the expectation-maximization 

Defining the object voxel ௩ܲ௢௫௘௟_௢௕௝, and neighbouring voxels ൛ ௩ܲ௢௫௘௟_௜ൟ ሺ݅׊, ݅ א

ܰ ܽ݊݀ ݅ ്   ሻ݆ܾ݋

Defining the number clustering cycle ܰ, and 1D array ܫሾ݆ሿ  ሺ݆ א ሾ0, ܰሿሻ 

Defining the minimum distance for recording ݐݏ݅ܦ௠௜௡  

If ܰ ൐ 1 //the starting point of HVS is not the whole volume model 

ሾܰሿܫ    ൌ   recording the clustering sequences// ݆ܾ݋_݈݁ݔ݋ݒ

Calculate ݐݏ݅ܦ௠௜௡  in equation 4.1 //seeking the closest ௩ܲ௢௫௘௟_௡௘௜  

௩ܲ௢௫௘௟_௢௕௝ ൌ ௩ܲ௢௫௘௟_௢௕ఫ  ௩ܲ௢௫௘௟_௡௘ప ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ //pairing and merging the object voxel 

with this neighbour 

      ܰ ൌ ܰ െ 1 

Return ܫሾܰሿ //Output the sequence of clustering 

Else   Ending the clustering loop 
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(EM) algorithm is the most prominent one; it treats the object data as a statistical 

model and searches the given parameters (called maximum likelihood parameters) to 

estimate the resulting clusters. This statistical model is initialized as empty in the 

beginning of each clustering loop and used to contain the sampled data constantly. 

The resulting representation is a series of discrete distribution of corresponding 

points. After finishing a cluster, besides the emptied statistical model, the reset data 

can be divided into un-sampled data (available for one of the others clusters) and 

latent variable (undetectable parts in sampling process). As the information loss in 

EM clustering algorithm, the latent variables won’t belong to any cluster. In addition 

to the latent variables, the rest data will anticipate in the calculation of maximum 

likelihood parameters. 

Similar to the strategy of analysing 2D data sets in EM algorithm, EMVS also 

regarded the volume data as a statistical model. The number of distributions (or 

clusters) was predefined as ܰ. The volume data was mathematically described by a 

set of voxel coordinates ܸ݋ܿ_݋ሺݔ, ,ݕ ሻݖ  with their scalar values ܸܿݏ_݋  which 

formed a probability distribution function together: 

,௜݋ܿ_݋ሺܸ݌  ௜|߲ሻܿݏ_݋ܸ ൌ ,௜ܿݏ_݋ܸ|௜݋ܿ_݋ሺܸ݌ ߲ሻ݌ሺܸܿݏ_݋௜|߲ሻ      (4.2) 

where ܸ݋ܿ_݋௜  and ܸܿݏ_݋௜  respectively represent partial coordinates and a scalar 

value of a random voxel belonging to the ݅_݄ݐ distribution, and ߲ is initialized to a 

nonzero parameter.  

In order to extract the maximum likelihood parameters from the distributions, EMVS 
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relied on two alternating steps: expectation step and maximization step. The first step 

calculated an expected value ܯ௜  of the log likelihood function of the ݅_݄ݐ 

distribution with respect to ߲. The corresponding log likelihood function can be 

written as (Dempster, Laird et al., 1977): 

௜ܯ ൌ log ,௜݋ܿ_݋ሺܸ݌ ௜|߲ሻܿݏ_݋ܸ ൌ ,௜ܿݏ_݋ܸ|௜݋ܿ_݋ሺܸ݌∑ ߲ሻ݌ሺܸܿݏ_݋௜|߲ሻ  (4.3) 

After calculating the results of the log likelihood function (ܯଵ,ܯଶ  ே) for allܯ…

distributions, the second step was to select the maximum one as a new ߲, which was 

loaded in equation 4.3 for generating new expected values. This iteration of these two 

steps in the designed EMVS can be represented in Table 4.2.  

 

Table 4.2  Mechanism of EMVS 

After testing this EMVS on a volume data set (human head data), the resulting 

clustered information can be shown in Figure 4.3. Image A is the original data. Image 

Defining the number of clusters ܰ, voxel coordinates ܸ݋ܿ_݋, voxel’s scalar 
values ܸܿݏ_݋, a random parameter ߙ ് 0, and a set of parameters ܯଵ ൌ ଶܯ ൌ
ேܯڮ ൌ 0 

For i =1 to ܰ 

Calculate ܯ௜ in equation 4.3 

Return {ܯଵ,ܯଶ  {ேܯ…

If ሺߙ െ݉ܽݔሼܯଵ,ܯଶ ேሽሻܯ… ് 0  

ߙ   ൌ ଶܯ,ଵܯሼݔܽ݉  ேሽܯ…

Recalculate ܯ௜ with new ߙ  

Else  

Return (ܸ݋ܿ_݋௜,  ௜) //output the clustered resultܿݏ_݋ܸ
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B, C and D are the clustered results when the number of distributions equal 3, 4 and 5 

respectively. 

 

Figure 4.3  The results of EMVS. 

4.1.3  K-means Clustering-based Volume Segmentation (KMVS) 

In order to segment a volumetric data set into to a set of clusters, KMVS delineated 

purposely shaped clusters by locating their centroids based on the famous K-mean 

clustering algorithm (Kanungo, Mout, et al., 2002; MacKay, 2003). Similar to the 

demands in the EM algorithms, there was a predefined cluster number, which is 

usually represented by a ܭ . KMVS assigned all voxels to ܭ  clusters through 

implementing a frequentative calculation of two important distances: distance for 

assignment and distance for update.  

 Distance for assignment 

In the beginning, KMVS acquired the predefined cluster number ܭ, so that there was 

several randomly initialized centroids, ௖ܲ௘௡௧_௝ ሺ݆ א  ሻ. After obtaining the distancesܭ

ฮ ௩ܲ௢௫௘௟_ప  ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ from each voxel ௩ܲ௢௫௘௟_௜  to all centroids ௖ܲ௘௡௧_௝, the next step 
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was keeping the minimum distance ฮ ௩ܲ௢௫௘௟_ప  ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ for guiding the assignments of 

voxels to the related cluster of which the centroid is ௖ܲ௘௡௧_௝ . Based on the Kanungo’s 

idea of judging the minimum pixel-based values, the similar operation was created to 

judge the shortest distance between the object voxel and each cluster’s centroid. It can 

be written as: 

ฮ ௩ܲ௢௫௘௟_ప  ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൌ min ሼฮ ௩ܲ௢௫௘௟  ௖ܲ௘௡௧_ଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ,ڮ ฮ ௩ܲ௢௫௘௟  ௖ܲ௘௡௧_௄ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮሽ        (4.4) 

 Distance for update 

After this, the next process was to create a “breakpoint” to check whether the current 

clustered result was the final result or still unstable output. The breakpoint was based 

on the distance which connected the centroid ௖ܲ௘௡௧_௝ and the mean point ௠ܲ௘௔௡_௝ of 

the cluster, assuming the number of voxels belonging to the cluster was ܯ. After the 

initial assignment stage, the mean point can be calculated as in equation 4.5. 

௠ܲ௘௔௡_௝ ൌ
ଵ

ெ
∑ ௩ܲ௢௫௘௟_௜
ெ
ଵ                       (4.5) 

The calculated ฮ ௖ܲ௘௡௧_ఫ  ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ  was regarded as the distance for update. In 

2D-based KM clustering applications, there usually exists a kind of mechanism which 

switches off the cycle as soon as the distance for update equals to a predefined value. 

The cycle of updating centroids in KMVS was controlled by the judgement of 

whether the ฮ ௖ܲ௘௡௧_ఫ  ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ equals zero. The mechanism of KMVS can be written 

as follows: 
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Table 4.3  Mechanism of KMVS 

By increasing the K value from 3 to 5, the clustered result will contain more features 

by detecting new clusters, be respectively shown in Figure 4.4 (B, C and D).  

 

Figure 4.4  The results of KMVS.  

Defining the voxel ௩ܲ௢௫௘௟_௜, the centroid of a cluster ௖ܲ௘௡௧_௝, the mean poin 

௠ܲ௘௔௡_௝, the number of clusters ܭ 

Initializing the distance between voxel and centroid ݐݏ݅ܦ௩௢௫௘௟_௖௘௡௧  

Defining a fixed distance ݐݏ݅ܦ଴  

If ฮ ௖ܲ௘௡௧_ఫ  ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൐  ଴  //defining the breakpointݐݏ݅ܦ

  ௖ܲ௘௡௧_௝  ൌ ௠ܲ௘௔௡_௝ //regarding the mean point as the new centroid 

If ฮ ௩ܲ௢௫௘௟_ప  ௖ܲ௘௡௧_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ് 0 //sampling at the centroid 

Locate ௖ܲ௘௡௧_௝  in equation 4.4 //calculating the distance for 
assignment 

Assign ௩ܲ௢௫௘௟_௜ with the located ௖ܲ௘௡௧_௝  

Calculate ௠ܲ௘௔௡_௝ in equation 4.5 after assignments 

Update ௠ܲ௘௔௡_௝ in the breakpoint 

Else 

Return ௖ܲ௘௡௧_௝ // output the latest centroids 
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4.1.4  Evaluations of Segmentation Approaches  

As volumetric applications of clustering algorithms, HVS, EMVS and KMVS 

successfully divided the volume data into segments, and the resulting snapshots were 

respectively shown in Figures 4.2, 4.3 and 4.4, also demonstrated the feasibility of 

developing 2D algorithms for analysing 3D datasets. In order to choose the optimal 

volumetric clustering method, the criteria for comparing the performance of the above 

three segmentation designs were based on the traditional evaluation strategies (Rui 

and Wunsch, 2005), and summarized as below: 

 Efficiency 

When classifying the same data set, all processing times were recorded in Table 4.4, 

according to different cluster numbers. As a pre-processing function, any processing 

time cost by the volume segmentation design can be acceptable. No matter how the ܭ 

may be changed, HVS will cost more processing time than the others.  

Cluster 

Number (ܭ) 

Processing Time (s) 

HVS EMVS KMVS 

3 179 152 144 

4 316 271 264 

5 571 447 438 

Table 4.4  Comparison between processing times 
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 Applicability 

Based on the Wunsch’s survey, the applicability of clustering method is estimated via 

timing the classification of different data sets with the same clustering property. 

Analysing the below tabled processing time can draw a corresponding conclusion that 

HVS is the slowest clustering function, i.e. HVS owns the lowest applicability among 

these three segmentation designs.  

Volume Data (KB) 

Processing Time (s) and ܭ ൌ 5 

HVS EMVS KMVS 

Human Head Data (27.1k) 571 447 438 

Engine Data (7.0k) 217 129 114 

Teddy Bear Data (0.9k) 53 31 27 

Table 4.5  Comparison among performances of processing different data 

 Functionality 

Based on the Kanungo’s research work, the evidence of functionality is based on the 

resulting clusters for different applications. In order to generate the visible analysis of 

volume data, the result should offer a straightforward image, not an indistinct one.    

As shown in Table 4.6, increasing ܭ  can improve the fuzzy results of HVS. 

However, this operation will bring a geometric rate of growth of calculation works. 

Although the nested relationships derived from the HVS process can be used for 

information retrieval applications, its clustered results are not suitable for displaying a 
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visible framework of the volume data, and the time-consuming processing will restrict 

the system performance. As a result, HVS was discarded in this volume data 

processing stage.  

Cluster 

Number (ܭ) 

Clustering-based Volume Segmentation 

HVS EMVS KMVS 

3 

   

4 

   

5 

   

Table 4.6  Comparison among three kinds of clustered results. 

In this volumetric data processing function module, the clustering-based segmentation 

designs are all expected to not only extract the volume data structure, but protect the 

processed results against artefacts and information loss. 

Even though both EMVS and KMVS can obtain similar performances (such as 

clustered results and processing time), there are several differences between these two 

methods. Table 4.7 shows the results of using EMVS and KMVE to analyse different 

data sets with the same cluster number. 
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Clustering 

Method 

ܭ ൌ 5 

Human Head Data

 

Engine Data

 

Teddy Bear Data

 

EMVS 
  

 
  

KMVS 
  

 
  

Table 4.7  Comparison between the results of EMVS and KMVS 

When segmenting the human head data, as shown in the highlighted regions, the 

result of EMVS contained a segment which was obtained by subdividing the 

background information (not contained in KMVS). More precisely, one of the clusters 

in EMVS was used to gather useless segment without any information regarding the 

head model. It can be observed that EMVS was more sensitive to noise than KMVS. 

When segmenting the engine data, the EMVS result contained a large amount of 
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fuzzy information in each cluster which will influence the display qualities of 

visualizing results.  

In addition, similar problems can be found in the processing of the teddy bear data. In 

the associated results, a few pieces of meaningful information inside the nose area 

were missed by EMVS. By comparing the highlighted features in the results for 

clustering the engine data, it can be found that KMVS is more suitable for generating 

the segmentation mask because its outputs can be directly rendered for labelling the 

clustered volume data segments. 

After completing the above comparisons, KMVS was chosen as the volumetric 

clustering method in volume data processing stage. However, a series of problems 

derived from this choice. Firstly, KMVS relied on manual inputs of the cluster 

number ܭ. This manual input operation led to unavoidable breaks during real-time 

applications. Secondly, incorrect inputs brought insufficient segmentation. More 

precisely, the clustered results contained segment(s) due to the incorrectly defined 

cluster numbers. Besides these two problems, there existed an issue of the greyscale 

representation of the results of KMVS, which was similar to the greyscale definition 

of images in 2D space, and only used shades of grey to render clustered results in the 

multidimensional space. The greyscale volume led to insufficient representation of 

complicated information with the increase of the cluster number. 
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4.2  Segmentation Improvement and Cluster Representation 

4.2.1  Mean-Shift Clustering-based Volume Segmentation (MSVS) 

In order to overcome the above mentioned problems of using KMVS, an automatic 

volumetric clustering method was proposed, which served as a self-driven extraction 

of cluster numbers for classifying the volume data, based on the idea of Mean-Shift 

(MS) clustering algorithm (Comaniciu and Meer, 2002). As a non-parametric 

technique, MS algorithm was used to analyse complicated data sets and draw the 

clusters automatically. “Non-parametric” means that the initialization of the MS 

clustering method is “one-off”, i.e. there is no need to define the cluster number 

before every clustering cycle.  

In order to create MSVS, the first step was defining a kernel density estimator, which 

served as the boundaries of every iteration cycle whilst traversing through the volume 

data set (voxel୧, i א ሾ0, nሻ). Similar to partial initialization designs in KMVS, there 

existed a multi-dimensional space, R଺ consisting of coordinates and inherent scalar 

value. Therefore, the kernel density estimator fመሺVoxelሻ was multivariate and relied 

on a radially symmetric kernel KሺVoxelሻ (defined as a spherical domain in MSVS).  

Based on studying the mechanism in classic 2D approach developed by Comaniciu, 

MSVS was built up through imitating the every process in MS algorithm and 

designing the 3D approach to access and calculate voxels’ properties for 

volume-based applications. Therefore, the volumetric computation model can be 

written as:  
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   መ݂ሺܸ݈݁ݔ݋ሻ ൌ ଵ

௡ோల
  ∑ ሺ௏௢௫௘௟ି௩௢௫௘௟೔ܭ

ோ
ሻ௡

௜ୀଵ                   (4.6) 

where ܴ is the radius of the kernel. The kernel ܭሺܸ݈݁ݔ݋ሻ can be written as: 

ሻ݈݁ݔ݋ሺܸܭ ൌ ଵ

√ଶగల
݇ሺԡܸ݈݁ݔ݋ԡଶሻ ൌ ଵ

√ଶగల
݁ሺି

భ
మ
ԡ௏௢௫௘௟ԡమሻ            (4.7) 

where 
ଵ

√ଶగల
 is the normalized constant of ܭሺܸ݈݁ݔ݋ሻ. Employing the kernel 

 :ሻ, the equation 4.6 can be written as݈݁ݔ݋ሺܸܭ

   መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ൌ
଺

√ଶగల௡ோల
  ∑ ݇ሺቛ௏௢௫௘௟ି௩௢௫௘௟೔

ோ
ቛ
ଶ
ሻ௡

௜ୀଵ                 (4.8) 

The gradient of the kernel density estimator can be written as:  

ߘ   መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ൌ
ଵଶ

√ଶగల௡ோఴ
  ∑ ሺܸ݈݁ݔ݋ െ ௜ሻ݇Ԣሺቛ݈݁ݔ݋ݒ

௏௢௫௘௟ି௩௢௫௘௟೔
ோ

ቛ
ଶ
ሻ௡

௜ୀଵ      (4.9) 

which yields:  

׏ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ 

ൌ ଵଶ

√ଶగల௡ோఴ
  ൤∑ െ݇Ԣሺቛ௏௢௫௘௟ି௩௢௫௘௟೔

ோ
ቛ
ଶ
ሻ௡

௜ୀଵ ൨ ൥
∑ ି௩௢௫௘௟೔௞ᇱሺቛ

ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔
ೃ

ቛ
మ
ሻ೙

೔సభ

∑ ି௞ᇱሺቛ
ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔

ೃ
ቛ
మ
ሻ೙

೔సభ

െ   ൩݈݁ݔ݋ܸ

(4.10) 

The function ൥
∑ ି௩௢௫௘௟೔௞ᇱሺቛ

ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔
ೃ

ቛ
మ
ሻ೙

೔సభ

∑ ି௞ᇱሺቛ
ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔

ೃ
ቛ
మ
ሻ೙

೔సభ

െ  ܯ ൩ determined the shift vector݈݁ݔ݋ܸ

of kernel density function, i.e. represented the change of mean values of voxels inside 

the kernel. The mechanism of moving the kernel density estimator MSVS can be 

written as: 
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Table 4.8  Mechanism of MSVS 

With the movement of the kernel density estimator, the mean value of voxels inside 

the kernel was calculated as the centroid of a cluster after every shift stage. The 

results of MSVS are shown below: 

 

Figure 4.5  The results of MSVS.  

Defining the voxel ݈݁ݔ݋ݒ௜, the radius of kernel ܴ, the location of the kernel 

density estimator ܮ௄, the gradient of the kernel density estimator ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ 

Calculate ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ with respect to ܮ௄ in equation 4.10 

If ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ് 0 

  Gain the shift vector ܯ in equation 4.10 //calculating the displacement of 
kernel density estimator 

௄ܮ   ൌ ௄ܮ ൅ܯ //moving kernel density estimator 

  Return ܮ௄ to the calculation of ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ 

Else //finishing the convergence work for every cluster 

  End  
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Image A is the original data set. Image B, C and D are the results when the radius of 

kernel R equals 28, 14 and 7 respectively. As shown in the labelled regions in Figure 

4.5 (E, F and G), minimizing the radius of spherical kernel density estimators in 

MSVS led to the subdivision processes. These subdivision processes brought in a sort 

of measurement error which was known as over-segmentation, and occurred by 

dividing one cell into two (or more) segments.  

As mentioned at the end of section 4.1, KMVS also suffered from a kind of 

measurement error – under-segmentation – which meant one segment covers two (or 

more) cells. For example, in Figure 4.4 (B, C and D), the clustered result will show 

more clusters with the increase of the cluster number.  

In many segmentation applications, over-segmentation was regarded as a much 

simpler problem than under-segmentation because it can be easily solved through 

“merging” operations in future processes (e.g. the displaying stage). However, in 

order to fix the under-segmentation, the algorithm needed a series of modifications 

and calculations for subdividing the current result. In addition, over-segmentation was 

good at generating the abundantly clustered information, so that incomplete volume 

data analysis in KMVS can be fixed in MSVS. Therefore, in this volumetric data 

processing module, MSVS served as a previewer which can automatically execute a 

rough analysis in the manner of producing an excess cluster number, and this number 

was directly used as the input of ܭ in KMVS. This strategy is using the KMVS’s 

low sensibility for noise to merge the over-segmented parts. Meanwhile, this design 
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also prevented the segmentation process from the dependence of manual operations 

(e.g. merging the over-segmented parts manually).  

4.2.2  Design of Automatic Transfer Function (ATF) 

As mentioned in section 2.1.2, the survey of TF design in DVR-based applications 

claimed that multidimensional TF designs can improve the ability to isolate regions of 

interest, or to represent differences between features. Therefore, the volumetric data 

process module chose the multidimensional TF for rendering the clustering results. 

Besides this, the survey also emphasized the overwhelming task of configuring the 

multidimensional TF, and the demands for automatic or semiautomatic design. In 

order to facilitate the visualization of large volume data, this module employed the 

ATF design to automatically configure the flexible rendering mechanism. This ATF 

design was a kind of data-driven technique which treated the final outputs of KMVS 

as the parameters prepared for constructing a multidimensional TF.  

First of all, the initial relationship between the scalar value and the opacity value in 

the TF can be shown in Figure 4.6 (A). In the results of clustering-based 

segmentation, the final cluster number ܭ  was used to divide this continuous 

information into ܭ partitions randomly, and form a histogram (as shown in Figure 

4.6 (B)). Afterwards, the next step was configuring the proportion of each partition in 

this diagram.  

Besides the cluster number, the scalar value of a cluster centroid was used to 

determine the height of the corresponding rectangle. For example, both regions of the 
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skull and teeth obtain the same intensity value, which is recorded as the scalar value 

in the data acquisition period. Therefore, their clusters share the same scalar value. 

Without considering their coordinates, these two clusters can be assigned with the 

same rectangle, and rendered in the same way. In order to avoid this inefficient 

rendering, the coordinates of centroids were utilized to distinguish clusters which 

share the same scalar value. In addition, the amount of voxels in each cluster was 

converted into the width of rectangle.  

After finishing the above mentioned data-driven configurations, the resulting 

histogram can be shown in Figure 4.6 (C). By accomplishing these data-driven 

configurations, this ATF design can render original volume data as one of important 

results of the volumetric data processing module (shown in Figure 4.6 (D)).           

 

Figure 4.6  Diagrams of ATF design and the result of analysing a CT-scanned human head data  

4.3  Designs of Boundary Extraction 

After finishing the automatic visualization process which extracted the segmentation 
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mask to label internal structure of the volume data, the boundary extraction design, 

which served as a complement to the data segmentation process in this module, was 

constructed to detect the boundaries of interesting segment(s).  

4.3.1  Active Contour Algorithm 

Active Contour (otherwise known as Snake) is a method that delineates the outline of 

features in image space. According to the different types of the outline mode, this 

algorithm can be categorized into edge-based (Xu and Prince, 1998) and region-based 

(Du and Bui, 2008) methods. In order to enclose the features, all these methods rely 

on a deformable spline which is characterized and transformed by these two 

constraints: interiors and exteriors. The interior constraints are determined by the 

material properties of the spline, such as the mass distribution parameter and the 

viscosity of the neighbouring medium. The exterior ones represent a sort of state that 

the spline is constrainedly transformed according to the calculation of external factors. 

For example, after exerting a force on the spline, the resulting constraints (interior and 

exterior) will determine the change of sampled region based on an energy function. 

This function is calculated by following the equation for Energy Minimization (Kass, 

Witkin et al., 1988): 

ሺܸሻܧ ൌ ׬ ሺܧ௜௡௧௘௥௡௔௟ሺܸሻ
ଵ
଴ ൅ ௘௫௧௘௥௡௔௟ሺܸሻሻܧ ܸ݀              (4.11) 

where ܧ௜௡௧௘௥௡௔௟ is the internal energy of the transformed spline and ܧ௘௫௧௘௥௡௔௟ serves 

as external energy acting on the spline.  

For example, in order to detect the cavity segment from the human celiac slice, the 
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active contour function firstly initialises the spline and continuously compares the 

resulting energies. The relation between this spline and its surrounding pixels is 

parameterised as the exterior constraint. In equation 4.11, the corresponding external 

energy ܧ௘௫௧௘௥௡௔௟ is replaced by the gradient of pixel scalar value for simplifying the 

calculation work. Similarly, the ܧ௜௡௧௘௥௡௔௟  represents the internal constraint and 

equals the number of pixels inside the spline divided by ten thousand. This 

configuration way is to increase the proportion of exterior constraint.  

 

Figure 4.7   Energy ࡱሾ࢞,   .ሿ in active contour algorithm versus the number of iteration࢟

As a result, before iterating this function, the current energy value is the largest one 

(as shown in Figure 4.7) because the pixels covered by the current spline own 

different scalar value. In other words, the data segment inside the initial spline (as 

shown in Figure 4.8 (a)) is mixture. By modifying the spline (as shown in Figure 4.8 

(b-d)), the number of contained pixels and the composition of pixel value will be 

changed and the energy function can output new results. The active contour-based 

function also need to follow the proposed energy minimization strategy in traditional 

2D boundary detection applications, consequently the minimum result of equation 

4.11 will be kept during the iteration of modifying the spline and the energy will 

approach to zero as shown in Figure 4.7. Correspondingly, in the Figure 4.8 (e), the 
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final detected result is a homogenous part.  

 

Figure 4.8   Illustrations of active contour algorithm 

4.3.2  Region-based Active Surface Method 

For processing the volume data, the boundary extraction design was implemented 

based on the region-based strategy of active contour method which had attracted 

increasing attention in analysing medical information (Du and Bui, 2008; Mille, 2009; 

Mohan, Sundaramoorthi et al., 2010). When using this active surface algorithm to 

process volume data, the linear spline will be changed into a customised cubic one (as 

shown in Figure 4.9).  

 

Figure 4.9   Illustrations of a domain of interest initialized in active surface algorithm. Image (a) 
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and (b) respectively represent the views of the cubic spline in axial and sagittal cross sections 

As a result, its mathematical model was based on the change of a parameterized 

surface ॺ: ܵ א Թ଺ which outlined voxels in this boundary extraction function. By 

using the smoothness to represent the exterior constraint, the calculation of minimal 

energy inside this region-based method was represented by the equation: 

ሾॺሿܧ ൌ ௦௠௢௢௧௛ܧ߮ ൅ ሺ1 െ ߮ሻܧ௥௘௚௜௢௡                   (4.12) 

where ߮ is a pre-input parameter that weights the significance of the smoothness 

terms. Kass et al. proposed the mathematical description of a smoothness term by a 

first-order derivative of the object region. Based on this idea, the active surface 

function in this volume deformation system defines the smooth energy to describe the 

content underlying the spline in X, Y and Z-axial directions: 

௦௠௢௢௧௛ሾॺሿܧ ൌ ׮ ቛడௌ
డ௑
ቛ
ଶ
൅ ቛడௌ

డ௒
ቛ
ଶ
൅ ቛడௌ

డ௓
ቛ
ଶ

ॺ ݀ܺ ܻ݀ ܼ݀              (4.13) 

Surface ॺ can separate the volume data into the interiors and exteriors. μ୧୬ and 

μ୭୳୲  respectively represent the sum of corresponding voxels’ scalar values, and 

anticipate the evaluation of the changed region energy in the manner of dynamic 

parameter. By using the Chan-Vese model, the energy of the 3D domain can be 

calculated by:  

௥௘௚௜௢௡ሾॺሿܧ ൌ ׮௜௡ߛ ௜௡ॺߤ ݀ܺ ܻ݀ ܼ݀ െ ׮௢௨௧ߛ ௢௨௧ॺߤ ݀ܺ ܻ݀ ܼ݀      (4.14) 

where γ୧୬  and  γ୭୳୲  are pre-defined constants for managing the proportions of 

interiors and exteriors respectively. The mechanism of this region-based active 
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surface transformation can be written in Table 4.9; its results are shown in Figure 4.10 

in slices.  

 

Table 4.9  Mechanism of active surface algorithm. 

When using the active surface function to process the volume data sets, the resulting 

boundary information is a layer of detected voxels. In Figure 4.10, image A1-A5 are 

the 5 random cross sections of detecting the throat data segment via the initialized 

spline (image A0). Similarly, the detected skull data and the associated spline are 

respectively shown in B1- B5 and B0. They will be converted into vertices in Chapter 

5. 

Initialize a surface ॺ with constants ߛ௜௡, ߛ௢௨௧, ߮ 

If (ܧሾॺሿ െ ሾॺሿ௙௢௥௠௘௥ܧ ൏ 0) 

Calculate ܧ௦௠௢௢௧௛ሾॺሿ in equation 4.13 

Calculate ܧ௥௘௚௜௢௡ሾॺሿ in equation 4.14 

   Update ߤ௜௡ and ߤ௢௨௧ 

 Calculate the energy values in equation 4.12 

Else 

Break 

Return ॺ 
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Figure 4.10  Results of active surface algorithm in volume segmentation 

4.4  Summary  

 As illustrated in Figure 4.2, 4.3, 4.4 and 4.5, the feasibility of applying 

clustering algorithms to volume segmentation has been demonstrated by 

testing HVS, EMVS, KMVS, and MSVS clustering on different volume data 

sets. In Table 4.4, 4.5, 4.6, and 4.7, the evaluation of clustering method-based 

volume segmentation claimed the advantages of KMVS and the requirement 

of solutions to the segmentation errors.  

 As illustrated in section 4.2, the integration of MSVS and KMVS was 

implemented to overcome the segmentation errors. And the clustered regions 

can be identified and highlighted by the ATF design. Based on this design, 

various operations and further analysis can be implemented. 

 The region-based boundary extraction function has also been accomplished, 

and the extracted results demonstrated the feasibility of isolating interesting 

segment(s) from volume data. 

The work on extracting volume control lattice introduced in the next chapter builds 
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upon the output from the volumetric data processing operations. 
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Chapter 5 Lattice Construction and Refinement 

In order to find a solution to improve the performance of the lattice construction 

process, the work document in this chapter focuses on developing a novel mechanism 

for defining control lattices and associated optimization designs prepared for the 

volume model manipulation stage. Most of the traditional methods, which involve 

manually defining the lattices and spending extra computation time on processing 

meaningless data, would be replaced by an automatic approach for improving the 

efficiency of this process.  

 

Figure 5.1  Results of constructed lattices based on the segmented information 

Based on the isolated information provided by the segmentation operation described 

in Chapter 4, the constructed lattices can be much “closer” to the interesting 

segment(s) than those in manual definition methods. In other words, the usage of 

designed volumetric data processing function module can not only filter out 

meaningless parts (as shown in Figure 5.1(A and C)), but can also guide the accurate 

construction of lattices (as shown in images B and D). This novel lattice construction 

process relied on an iso-surface extraction technique – MC algorithm – to achieve the 
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construction of “model-fitting” lattices.   

5.1  Marching Cubes Algorithm 

As a well-known technique, Marching Cubes algorithm serves an important indirect 

volume visualization approach which can represent the volume data via polygonal 

features, e.g. the resulting iso-surfaces can enable the volume model to support 

rendering methods in the field of surface modelling. However, using the iso-surface as 

the control lattice in volume deformation is an innovation design. The potential 

problem and limitation of using iso-surfaces as the control lattices for implementing a 

physic-based volume deformation had been mentioned in chapter 3, section 3.5. This 

algorithm is usually divided into two parts: extraction of vertices corresponding to a 

user-defined value, and calculation of the ‘normals’ at each of the vertices to 

accomplish triangulation tasks (Lorensen and Cline, 1987). 

5.1.1  Sampling and Vertex Extraction Process 

By following a sort of divide-and-conquer-based sampling strategy, the MC-based 

lattice construction defined a cubic sampling window and makes it travel through the 

whole volume data. The statuses of intersections between the sampling window and 

sampled voxels determined the number of extracted vertices. Because each voxel’s 

scalar value can be converted into the values of its eight corners (as shown in Figure 

5.2 (A)), the criterion for evaluating the results of various intersections was based on 

the comparison between each corner value and the user-defined one.  
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Figure 5.2  Diagram of sampling process in MC algorithm 

Since the resulting iso-surface consists of extracted vertices, it can be imagined that 

this extracted surface intersects with associated voxels at sampling positions (1) and 

(4) (as shown in Figure 5.2 (B)). These voxels must comprise at least one corner 

which has the user-defined value. The other voxels, which are not sampled, lie on 

either position (2) or (3). 

5.1.2  Triangulation Process 

After ensuring that the corners fulfil the criterion, the following step is to triangulize 

this sampling result. Because there are eight corners in each voxel and two states, and 

the corner(s) is (or are) outside and inside surfaces, the triangulation process will 

comprise 2଼ ൌ 256 types of intersections. There was a look-up table which was used 

as a way of indexing the associated triangulation of facets according to various 

surface-edge insertions (as shown in Figure 5.3 (A)) (Lorensen and Cline, 1987). 

These 256 types of intersection have been represented via different combinations of 

15 basic configurations (as shown in Figure 5.3 (B)).  
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Figure 5.3  Diagram of the look-up table for surface-edge intersection 

As the final process in the MC algorithm, the calculations of the unit ‘normal’ for 

each vertex guided the combinations of these triangular facets to form the resulting 

surfaces (as shown in Figure 5.4). 

 

Figure 5.4  Results of extracted iso-surfaces. Images (A to C) are the results of extracting surfaces 

with different user-defined values. Images (D to F) gradually show the details of a 

wire-frame-based iso-surface. 

5.1.3  Automatic Construction and Model-fitting Lattices 

First of all, the clustering-based volume segmentation approach can freely locate each 

cluster and rapidly output the properties of each cluster’s controid. This analysed 

information was directly used as the inputs in this MC-based surface extraction 
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process to replace the manually defined value, and the criterion for evaluating the 

statuses of intersections between the extracted surface and sampled voxels. As a 

result, this usage of clustered information can improve the efficiency of the lattice 

construction module. 

Due to MC’s sampling mechanism, the extracted vertices were all inside the sampled 

voxels. In other words, the volume of spaces between the extracted iso-surface and 

the underlying volumetric object was smaller than a voxel, which was usually 

measured at the micron level, i.e., these gaps were too small to calculate. As a result, 

this extracted surface can be the “model-fitting” lattice, which is the closest lattice 

than any manual defined one. In addition, as the outcome of Active Surface-based 

boundary extraction design inside the volumetric data processing module, the isolated 

features can be detected, to enable the efficient manipulations on the interesting 

segment(s). Meanwhile, the corresponding relationships between extracted vertices 

and sampled voxels were exported into a sort of indexing explained in Chapter 6, 

section 6.2.  

5.2  Lattice Refinement 

For constructing control lattices, the key of using MC algorithm is extracting vertices 

from the exterior voxels in the object region. However, as the control lattice in the 

following deformation operations, the extracted iso-surface will increase the 

computation workload in deformation process because the MC algorithm’s high 
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frequency sampling mechanism can make the control lattice contain a complicated 

framework and a large number of vertices. In order to maintain the system’s real-time 

performance, the lattice refinement design follows the classical simplification 

strategies which originally modify the surface models for saving the storage, 

encoding/decoding for enhancing display effects or reconstructing for specific control. 

Their simplification methods will be tested and evaluated according to the criterion of 

efficiency in chapter 3, section 3.6. For example, as shown in Figure 5.4 (A), the total 

number of extracted vertices was 830K. Because, in order to keep a complete 

vertex-representation of the volume data, the sampling rates for the implementation of 

the MC algorithm was maintained at a high frequency so that at least one vertex can 

be extracted from the associated voxels. This complex representation can prepare 

abundant connections between the control lattice and the underlying volumetric object 

for the volume deformation operations. 

 

Figure 5.5  Results of extracted iso-surfaces. From left to right, the associated number of extracted 

vertices are 1.9k, 58K, 41k, and 950K respectively 

However, because these vertices serve as the control points during the deformation 

process, the huge amount of control points would increase the computation workload 
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and reduce the interactive rate of real-time manipulations. Therefore, polygonal 

simplification methods were investigated to simplify the automatically constructed 

lattices (as shown in Figure 5.5).  

As an intermediate result, only the framework of extracted iso-surfaces is considered 

in the following deformation process. In other words, the solution of refinement can 

ignore the surface features. Therefore, the additional evaluation criteria of 

simplification approaches will be modified when processing the extracted iso-surface 

in this project. As an application of mesh simplification, the refinement design will be 

determined based on the result of experimenting with classic approaches. According 

to the acknowledged review of mesh simplification methods, the extracted lattice is 

respectively processed by testing four prevalent methods: varying sampling rates, 

adaptive subdivision scheme, vertex decimation and merging approach (Luebke, 

2001). 

5.2.1  Varying Sampling Rates 

As the most direct and simplest simplification solution, varying the sampling rate can 

decrease the size of sampled data proportionally. However, there were several 

disadvantages in terms of carrying out the simplified results correctly, and 

manipulating the simplification freely. As shown in Figure 5.6, images B and D 

respectively show the simplified results of the extracted iso-surfaces in images A and 

C. By decreasing the sampling rate, the simplified results contained a number of 

losses in the features (the unacceptable gaps in images B and D) which certainly cause 
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the incorrect representations in deformation stage and reduce the accuracy of 

associated simulations. Besides, this proportional vertex management suffered from 

the familiar problems in traditional simplification approaches: limited simplified 

lattices because a few sampling frequencies available for the extraction process 

(Luebke, 2001). 

 

Figure 5.6  Results of decreasing sampling rate 

5.2.2  Adaptive Subdivision Scheme 

The Loop Subdivision scheme originally focused on converting arbitrary polygonal 

surfaces into smooth triangle-based ones by calculating new vertices. Its scheme 

includes adding edge-vertices and refining the changed mesh, and mainly relies on the 

second process, following triangular spline, in triangle-based simplifications 

(Faramarz, Colin et al., 2007). The lattice refinement process tested its inverse scheme 

for decreasing the number of rhombus within the surface from simplification level 1 

to level 3 (as shown in Figure 5.7) 
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Figure 5.7  Illustrations of adaptive subdivision method 

This simplification scheme was mainly used for compaction of complicated 

geometries or reverse engineering applications. In this project, a reverse “refinement” 

of constructed lattices was implemented by orienting the “former” vertex according to 

the current vertex and its neighbour, i.e. reversing the loop subdivision process. Then, 

the oriented former vertices were filtered by a subtraction process, which is an affine 

operation of adding points in a regular loop subdivision scheme. In the regular 

refinement process in loop subdivision and inverse schemes, the surface needs to be 

restored, so that the valence of each vertex can be changed into 6. However, in order 

to maintain the relationships between vertices and voxels, the surface restoring 

operations were disabled in the refinement process. 

5.2.3  Vertex Decimation Approach 

The vertex decimation approach iteratively located several “omissible” points, 

removed them and re-triangulated the result until the simplified mesh meets a 

user-defined criterion (as shown in Figure 5.8). As a classical simplification solution 

tested in this project, this method consisted of two steps: decimating vertices and 

preventing the local topology of the mesh from being affected by the changes caused 
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by the vertex movements (Schroeder, Zarge et al., 1992). 

 

Figure 5.8  Illustrations of vertex decimation method 

Before simplifying a mesh, the decimation algorithm firstly represented the local 

geometry and topology via a given mark. This mark may be: a simple vertex 

surrounded by a fixed number of neighbouring vertices; a complex vertex connected 

with a constant facet and a set of neighbours; a boundary vertex located on a 

determined fixed side within a rigid framework; an interior edge line shared by given 

triangles, or a corner whose structure must be protected through the simplification 

stage. In this vertex decimation approach, this mark served as an indicator of the 

simplification process, which will switch this process off if the associated local 

geometry and topology are changed. 

5.2.4  Vertex Merging Method 

The vertex merging method operated the simplification process by iterating the cycle 

of merging two or more vertices into a single vertex (Oh & Park, 1995). As a control 

point inside the lattice adopted in the deformation process, every extracted vertex was 

addressed by a voxel for accomplishing a sort of mapping operation in Chapter 6. If 

several vertices are decimated, the deformation will run as usual with this incomplete 
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lattice. However, the merging-based simplification method led to quite a few new 

generated vertices which destroy the indexable relationship between extracted vertices 

and associated voxels. Therefore, the vertex merging method was not used as the 

solution for simplifying constructed lattices. 

 

Figure 5.9  Illustrations of vertex merging method 

 

5.2.5  Tests and Evaluations 

In Table 5.1, the comparisons between the results of simplification using the adaptive 

subdivision scheme and vertex decimation method illustrated that the decimation 

method is more adept at capturing the exact geometry of the surface model, especially 

in the preservation of sharp features, than the adaptive scheme (as shown in the 

highlighted rectangles). As a result, simplified lattices generated by the vertex 

decimation method can provide more available and recognizable features. In addition, 

these simplified results also demonstrate the capability of these two methods for 

simplifying the same mesh model. 
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Vertex Decimation 

Approach 

Adaptive Subdivision 

Scheme 

200-150 

  

150-90 

  

80-60 

  

Table 5.1  Comparisons between results of decimation and subdivision solutions 

Table 5.2 compared the flexibilities of these two simplification solutions by testing 

them to process the same complicated mesh model and listing the numbers of vertices 

according to different simplification levels. Due to the constraint that the given 

geometry and topology cannot be changed, the limit for the number of vertices in 

decimation-based simplification solution was about 300, and it cannot provide further 

simplification as the subdivision-based method can. This disadvantage can restrict the 

flexibility of the lattices refinement process. 

Method 

Num of Vert 
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Vertex Decimation Adaptive Subdivision 

700-600 

  

600-500 

  

500-300 

  

300-150 Null 

 

150-100 Null 

 

Table 5.2  Comparison between results of decimation and subdivision solutions 

As a result of this comparison, the subdivision-based method was chosen to simplify 

Solution

Num of Vert 
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the extracted iso-surfaces. The simplified lattices are shown in Figure 5.10 (A to G) 

with their wire-frame-based structures (a to g). According to different simplification 

levels, Figure 5.11 shows the corresponding representations of deformed lattices 

which will be discussed in the following chapter.  

 

Figure 5.10  Illustrations of vertex adaptive subdivision solution 

 

Figure 5.11  Illustrations of deformed control lattices 
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5.3  Summary 

 The idea of using MC algorithm to construct the so-called “model-fitting” 

control lattice is based on its sampling capability which makes the extracted 

iso-surface perform the closest cover for the underlying object. This idea can 

solve the low accuracy problem inside the manually defining lattice 

operations.  

 Derived from the active surface function design in Chapter 4, the detected 

information can be directly converted into the dedicated control lattice to 

envelop the interesting data segment(s). This data segmentation design can 

efficiently simplify the volume data size, and consequently reduce the 

workload of associated computation and data access operations. Besides, the 

lattice refinement function cannot only control the complexity of control 

lattices, but maintain the relationship which determines the correspondences 

between the control vertices and exterior voxels in the deformation process.” 

Both of these simplifications can save the processing time spent on 

processing the useless data and inefficient (or offline) operations, e.g. 

constrained deformation (Correa, Silver et al., 2010). 

 There are existing hardware-driven tessellation examples, which can be 

adopted for square-based simplifications, e.g. the GPU-based Catmull-Clark 

subdivision. In this research, the basic element inside the extracted lattices 

was the triangle, so that the adaptive subdivision scheme was implemented in 
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the form of hardware-driven processes for enabling the management of 

triangles via an “on-the-fly” style (explained in Chapter 7, section 7.3.3).  

 By following this process, the extracted surface was successfully unified and 

simplified, and enabled logical and mathematical relationships between the 

initial and final vertices for mapping operations in following deformation 

process.  
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Chapter 6 Volume Deformation 

In the terms of point-set topology, a solid object indicates a perfect closure of interiors 

by its surface. Technically, deforming a solid object - a volume model - should 

transform its internal structures along with the surface changes. In some simulations, 

the focus is only on the “shape” changes of the simulated objects to provide the 

desired visual effects.  

In true volume deformation applications, the internal structure of a volume model 

needs to be defined explicitly through characteristics, e.g. the varied distribution 

gradients of voxels, to simulate the deformation behaviours often induced by 

physics-based forces. Therefore, the deformation process deployed in this research 

aimed to generate a new distribution map for voxels “under strains”, so that the final 

visualization could show realistic material behaviours.  

 

Figure 6.1  Pipeline of deformation module  

The pipeline of the deformation process is shown in Figure 6.1. The following three 

sections will detail the principles for constructing the deformable solids, the address 

assignments for the participant voxels and the operation of “displacement mapping”. 
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The participant was used to distinguish the voxels from the others lying outside the 

deformation radiation. An indexing function was designed to determine the 

participant voxels in a deformation cycle, based on the well-known traversal 

mechanism in an octree data structure.  

6.1  Constructing Deformable Solids 

Based on the resulting iso-surfaces extracted in the lattice construction process, the 

interesting segment in volume data can be completely enclosed. Therefore, 

Deformation of Geometric Models Editor (DOGME), which uses an enclosed lattice 

to represent the deformation and then passes the deformation characters to the 

underlying models, can be directly used as the manipulation strategy in this 

deformation design. However, in most DOGME-based deformation applications, the 

manual construction of control lattices can exacerbate the problem of time-consuming 

process, and consequently restrict the performance of real-time operations. Besides 

inefficient operations, the constrained assumption that the lattices are perfectly close 

to the underlying objects, will lead to the artefacts in the resulting deformation 

behaviours. 

As explained in the Chapter 5, the sampling mechanism and the extraction mode in 

MC-based lattice construction process successfully made the extracted iso-surface 

serve as a “model-fitting” lattice which instinctively matches the surface features of 

the volumetric object. As a result, an improved DOGME (I-DOGME) was devised to 
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be integrated with the designed lattice construction for enveloping the only interesting 

data segment in the continuous volume data, and consequently prevented the extra 

computation time from being cost on the useless parts. In this I-DOGME method, the 

deformation operations were firstly implemented on the control lattice through a 

section concentrating on the lattice deformation. This deformation was constructed by 

embedding a mass-spring framework to represent the resistance force. 

6.1.1  Lattice Deformation 

By freely moving the control vertices to given positions, or optionally interpolating 

new vertices for restoring the surface structures, as shown in Figure 6.2 (A), the 

lattice can be manipulated to present the desired results without any meaning. Figure 

6.2 (B) shows the 3D results of the corresponding 2D lattice deformations.  

 

 

Figure 6.2  Random shape changes on the extracted lattice (in 2D and 3D) 

In order to meet the requirements of complicated simulations (physics-based 
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deformation), the lattice was converted into deformable solids using specific 

mathematical models. In this volume deformation method, the constructed lattices 

were all triangle-based meshes and the extracted polygons were all coplanar. 

Therefore, the mathematical model which requires special lattices were not suitable 

for this applied lattices, such as the FEM model demands tetrahedral frameworks, and 

the Chain-Mail approach requires intersected components. In addition, applying those 

models will lead to the separation of volume models into a number of partitions, 

which often consumes substantial computational time to establish regional 

relationships between groups of voxels, and essential matrix calculations in the 

displacement mapping stage. The deformation model in this programme adopted the 

mass-spring model for manipulating the deformable lattices. 

6.1.2  Embedding Mass-spring Mechanism-based Framework 

Embedding the mass-spring mechanism was a process that transformed the control 

lattice from a “place-holder” to a non-rigid deformable one. In order to represent 

elastic behaviours in the manner of mesh dynamics, the mass-spring model 

established a set of link-based relationships between masses in the manner of lines 

between vertices. Similar to the links between neighbouring vertices, a voxel-based 

system was carried out on the layer of exterior voxels after the displacement mapping 

process (as shown in Figure 6.3) (Provot, 1995): 

 Links between voxels (a, b) and (a+1, b), and voxels (a, b) and (a, b+1) were 

referred to as “structural springs” and were coloured in red. This can simulate 
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the pulling force applied on the voxels. 

 Links between voxels (a, b) and (a+1, b+1) were referred to as “shear springs” 

and were coloured in blue; this is to simulate the transition on the cross section 

of the lattice. It can simulate the shear stress running in parallel to the cross 

section, and the transformation of forces when tensional or compression stress 

is applied perpendicularly. 

 Links between voxels (a, b) and (a+2, b), and voxels (a, b) and (a, b+2), were 

referred to as “flexion springs” and are coloured in green. This can simulate 

the flexion stress (i.e. bending force) inside a layer of voxels. 

 

Figure 6.3  Mesh-based mass-spring system  

In order to simulate the effects of different forces, the mass-spring system relied on 

various combinations of these links. For example, for performing elastic effects and 

damper frameworks caused by stretching forces, the mass-spring relationship will be 

limited to a single type of the 3 spring links defined above.  

For simplifying the relevant calculations for the deformation process, the employed 

mass-spring mechanism only relied on the structural spring link, each vertex in this 

system was treated as one unit in mass, and the force was always applied on one 

control point (or vertex). In order to distinguish it from the other vertices, this control 
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point was named as the target vertex. For example, the target vertex ௫ܲ,௬,௭ could 

obtain acceleration ߙ௫,௬,௭ through the applied force ܨ௫,௬,௭ on it. After defining the 

start time T and duration t, the displacement was computed as the distance between 

the vertex’s starting position ௫ܲ,௬,௭ሺܶሻ and the end position ௫ܲ,௬,௭ሺܶ ൅  ሻ, which wasݐ

equal to the scalar of vector ቛ ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅  ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛ. Taking into consideration thatݐ

the applied forces are not constant, the resulting distance ቛ ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅  ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛݐ

cannot be obtained by calculating a simple quadratic equation with one known. As a 

result, the varying acceleration ߙ௫,௬,௭ and a series of varying velocities ௫ܸ,௬,௭ was 

approximately worked out during the duration ݐ  in equation 6.1, where the 

displacement of the vertex was calculated (Nealen, Müller et al., 2006).  

௫,௬,௭ሺܶߙ ൅ ሻݐ ൌ
௫,௬,௭ሺܶܨ ൅ ሻݐ

1
   

௫ܸ,௬,௭ሺܶ ൅ ሻݐ ൌ ௫ܸ,௬,௭ሺܶሻ ൅ ௫,௬,௭ሺܶߙݐ ൅  ሻ                (6.1)ݐ

௫ܲ,௬,௭ሺܶ ൅ ሻݐ ൌ ௫ܲ,௬,௭ሺݐሻ ൅ ݐ ௫ܸ,௬,௭ሺܶ ൅  ሻݐ

After defining the movement of the target vertex, the next step was to build an 

iteration to decompose the applied force on the other ends of the structural springs. As 

shown in Figure 6.4 (A), all the decomposed forces were constrained to obtain equal 

scalars at the same level. The iteration continuously carried on the decomposed forces 

applied in the order of the RedOrangeGreenBlack, as shown in Figure 6.4 (B), 

where the hollow ones represent the vertices lying outside the deformation radiation.  
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Figure 6.4  Diagrams of decomposing the applied force in mass-spring system 

For example, Figure 6.4 (C) shows a component force ܨ௨,௩,௪ on the associated vertex 

௨ܲ,௩,௪ (the orange point) that is connected with the target vertex ௫ܲ,௬,௭ (the red one). 

After locating the position of the moved target vertex ௫ܲ,௬,௭ሺܶ ൅  ሻ, the componentݐ

force ܨ௨,௩,௪ was calculated as in equation 6.2. In the Euclidean plane, the angle αଵ 

(dot product) between vectors ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅ ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ and ௨ܲ,௩,௪ሺܶሻݐ ௫ܲ,௬,௭ሺܶ ൅  ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ canݐ

be calculated by the equation 6.3. 

௨,௩,௪ܨ ൌ ௫,௬,௭ܨ cos  ଵ           (6.2)ߙ

ଵߙ ൌ cosିଵ ቆ
௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ·௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ

ቛ௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛቛ௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛ
ቇ    (6.3) 

And the component force ܨ௨,௩,௪ on vertex ௨ܲ,௩,௪ can be written as: 

௨,௩,௪ܨ ൌ ௫,௬,௭ܨ cos ቆ
௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ·௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ

ቛ௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛቛ௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛ
ቇ  (6.4) 
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Via iterating this formula calculation, all component forces on ௨ܲ,௩,௪’s neighbours 

can be worked out. When the angle between two vectors approximates to zero, the 

iteration will stop processing the branches of this vertex (the green one in Figure 6.4 

(A)). In other words, its branches (coloured in black) can still receive the component 

forces, but not anticipates in the further computations. Based on the calculated 

components of the applied forces, the associated displacements of the surrounding 

vertices can be calculated in equation 6.1.  

6.1.3  Implementing Resistance Force Mechanism  

The lattice deformation introduced in the above sections often suffered from a lack of 

realism in runtime (Provot, 1995). For example, Figure 6.5 (B) exhibits a 

“super-elastic” effect that occurred in dragging a flap of skin on a normal human head 

(as show in image A).  

 

Figure 6.5  Results of lattice deformation with mass-spring system 

In order to simulate the realistic and physics-based behaviours of human tissues, the 

deformation employed a stiffness term to “buffer” the current linear effects, as shown 

in Figure 6.5 (C). In reality, the stiffness term - ܨ௦௧௜௙௙௡௘௦௦ - will increase rapidly if 
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the deformation extent decreases, so that the results can support limited shape 

changes. In the simulation of the radial force distribution, the equation of ܨ௦௧௜௙௙௡௘௦௦ 

can be written as (Provot, 1995): 

௦௧௜௙௙௡௘௦௦൫ܨ ௨ܲ,௩,௪൯ ൌ െ∑ܭ௫,௬,௭,௨,௩,௪ ൤ ௫ܲ,௬,௭ ௨ܲ,௩,௪ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ െ ௫,௬,௭,௨,௩,௪଴ܮ ௉ೣ ,೤,೥௉ೠ,ೡ,ೢሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ

ฮ௉ೣ ,೤,೥௉ೠ,ೡ,ೢሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦฮ
൨   (6.5) 

where ܭ௫,௬,௭,௨,௩,௪ is a predefined stiffness coefficient of the structural spring between 

௫ܲ,௬,௭  and ௨ܲ,௩,௪ , and will vary according the length of this link. ܮ௫,௬,௭,௨,௩,௪଴  

represents the original status of the spring link. Because all the stiffness forces 

 ௦௧௜௙௙௡௘௦௦ surrounding ௫ܲ,௬,௭ and the component forces on its neighbouring verticesܨ

are opposite and collinear in pairs. Therefore, the displacements of the target vertex 

and its neighbours ௫ܲ,௬,௭ ௨ܲ,௩,௪ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ can be calculated after integrating the ܨ௦௧௜௙௙௡௘௦௦ and 

the calculated component force ܨ௨,௩,௪ in the above section. By defining different 

stiffness coefficients ܭ on the structured spring links, the resulting stiffness forces 

will make the deformed lattice present varied shape changes as shown in Figure 6.6. 

When the applied force, duration and the target vertex are all fixed, the change of 

stiffness parameters can determine the extent of deformation with the increase of ܭ 

value, which leads to more deformation effects. 
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Figure 6.6  Results of lattice deformation with different stiffness coefficients  

Based on this mechanism, the calculations of the radial force distribution in the lattice 

deformation process were determined by whether both the composition of the 

components of applied force and the current stiffness force all equal to zero or not. In 

this lattice deformation process, each vertex which lies in the distribution region were 

assigned with a component force, and the resulting displacement can be calculated in 

the following process, explained in Table 6.1.  

 

Define the position of target vertex ௫ܲ,௬,௭; the position of random vertex ௨ܲ,௩,௪ 

Define the component force ܨ௨,௩,௪ and a value ܨ଴ 

If ቛ ௫ܲ,௬,௭ሺܶሻ ௨ܲ,௩,௪ሺܶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛ equals zero //pointing at the target vertex 

   Calculate ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅  ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ for target vertex in equation 6.1ݐ

Else //pointing at the neighbouring vertex 

Calculate the component force ܨ௨,௩,௪ in equation 6.4 

    Calculate the stiffness force ܨ௦௧௜௙௙௡௘௦௦൫ ௨ܲ,௩,௪൯ in equation 6.5 

 Calculate the integrated force ܨ௨,௩,௪=ܨ௨,௩,௪ െ ௦௧௜௙௙௡௘௦௦൫ܨ ௨ܲ,௩,௪൯ 

Calculate ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅  ௨,௩,௪ in equation 6.1ܨ ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ with calculatedݐ

Return ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅  ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦݐ

Repeat 

Until ܨ௨,௩,௪ ൑  ଴ܨ
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Table 6.1  Mechanism of vertex displacement calculation 

 

6.2  Displacement Mapping  

6.2.1  Mapping Process Design 

In this mapping process, the mapping matrix ݏ݊ܽݎܶ_ܯ௠ൈ௡ served as a translator for 

the data mapping operation between ݊  and ݉  dimensional spaces, which 

respectively represent the lattice and the underlying volume model. The principle of 

the mapping process in traditional DOGME approaches is shown in Figure 6.7. 

 

Figure 6.7  Diagram of mapping process deployed in the DOGME  
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Figure 6.8  Diagram of I-DOGME 

Since the deformation method described in this thesis only comprised two types of 3D 

elements, vertices and voxels, the mapping matrix was denoted as ݏ݊ܽݎܶ_ܯଷൈଷ. 

Figure 6.8 illustrates the vertices’ displacements, named displacement constraints, in 

vertex space and the related results of volume deformation.  

In traditional DOGME methods, after finishing the lattice deformation, the 

displacement constraints, registered in the form of control lattices, will be 

“super-imposed” onto the given area by following a set of manually defined 

connections between control vertices and voxels (Bechmann and Gerber, 2003). In 

I-DOGME, this constrained relationship was replaced by an inherent relationship 

which was automatically derived from the MC-based lattice construction process; 

meanwhile its “off-line” region description mode was improved.  

6.2.2  Designs of Indexable Inherent Relationship (IIR) 

All vertices on the control lattice were all extracted by the MC process. In order to 

link these vertices with corresponding voxels, the IIR design utilized this inherent 

relationship to order the displacement mapping operations between voxels and 

vertices. Because each extracted vertex can be located on a voxel’s edge (explained in 

Chapter 4), this voxel’s coordinates was directly regarded as the vertex’s. Table 6.2 

shows the mechanism of indexing the voxel based on the vertices’ parameters. In 

order to simplify the explanation of this design, the volume of the voxel and the space 

of the shifting sample grid were all assumed to be a uniform size.  



Chapter 6 Volume Deformation 

119 
 

 

Table 6.2  Mechanism for locating voxel’s sequence number 

This usage of inherent relationship between vertices and voxel played an important 

role in this displacement mapping process, which solved the problem of complexity 

caused by the manual region description in off-line mode. In addition, this usage 

made a further demonstration that maintaining and encapsulating the inherent 

relationship should be a criterion of analysing the pros and cons of four surface 

simplification methods in section 5.2. With the IIR design, the principle of the 

improved mapping process in I-DOGME method is shown in Figure 6.9 

ቀ ௦ܶೣ, ௦ܶ೤, ௦ܶ೥ቁ ൌ ݐ݊݅ ቆ
,ܪ,ܹ ܦ

ܵ௪௜ௗ௧௛଴, ܵ௛௘௜௚௛௧଴, ܵௗ௘௣௧௛଴
ቇ ൅ ሺ1,1,1ሻ 

Define the space of shifting sampling grid, the volume of a voxel, and the volume 

of a sampling grid ሺܵ௪௜ௗ௧௛଴ ൈ ܵ௛௘௜௚௛௧଴ ൈ ܵௗ௘௣௧௛଴ሻ. 

Initialize the position of random vertex ௨ܲ,௩,௪ሺݑ, ,ݒ  ሻݓ

Initialize integer ሺ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሻ  

Define the size of volume model (W, H, D). 

Define the sequence number of each voxel ܦܫ௩௢௫௘௟  

Define the voxel array vol_data[x,y,z] 

Calculating the times ௦ܶ_௫, ௦ܶ_௬ and ௦ܶ_௭ of shifting grade in ܺ-, ܻ- and 

ܼ-axial respectively in  

Using ሺ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሻ in fetching the voxel’s sequence number  

௩௢௫௘௟ܦܫ   ൌ ሾܽݐܽ݀_݈݋ݒ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሿ  

Return ܦܫ௩௢௫௘௟ 
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Figure 6.9  Diagram of improved mapping process deployed in the I-DOGME  

After implementing the IIR design to guide the displacement mapping between 

control vertices and corresponding exterior voxels, the resulting deformation 

behaviour can be shown as the leftmost image in Figure 6.10. Modifying the stiffness 

coefficient can lead to different deformation results as shown in the rest images.  

 

Figure 6.10  Results of volume deformation with different stiffness values  

However, after applying the clipping planes to these deformation results (as shown in 

Figure 6.11), it was clearly visible that only a single layer of voxels in the volume 

model were affected. 
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Figure 6.11  Results of clipped results after the mapping process 

This is because the mapping process can only utilize the relationship between 

extracted vertices and exterior voxels, but cannot suffice the interiors due to the lack 

of connections between the exterior and interior voxels. As the extension of Figure 

6.2 (A), Figure 6.12 establishes a relationship among the extracted vertices 

(highlighted points), the exterior voxels (red cubes) and interiors voxels (black cubes). 

In order to accomplish this relationship, the most direct solution is connecting all 

interior voxels with the displacement constraints.  

 

Figure 6.12  Diagram of relationships between the control vertices and underlying voxels 

However, this idea will certainly cause excessive amounts of computational time in 

every deformation loop. For solving this problem, this design created new associated 

indexing operations relied on a sort of relationship-building mechanisms, to link 

exterior voxels (or displacement constraints) with interior voxels in the volumetric 

mapping stage.  
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6.3  Octree-based Lookup Function 

In order to assign the displacement to more voxels (especially the interior ones), an 

internal relationship between exterior and interior voxels was established. Similar to 

the distribution of seismic wave phenomena which occurs in earthquakes, the volume 

deformation process was expected to perform the gradient distribution of different 

deformation levels in the final result. Its principle is shown in Figure 6.13. 

 

Figure 6.13  Diagram of creating the octree-based lookup function 

 

Figure 6.14  Diagram of using the octree-based lookup function 

For example, as shown in Figure 6.14 (A), a layer of voxels (exteriors) obtained the 

displacement offsets based on the IIR design. In order to determine the internal 

relationship between exterior and interior voxels, an octree data structure was applied 
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to achieve a hierarchical management of all voxels in the form of branches and leaves. 

Following the lookup direction (as shown in image D), the internal voxels (green and 

orange ones) can be gradually located (as shown in images B and C).   

In order to implement the octree data structure, the volumetric space needed to divide 

itself into 8௡௨௠_௦௨௕ௗ  partitions according to the given amount of subdivision 

operations ሺܾ݊݀ݑݏ_݉ݑሻ (as shown in Figure 6.15). To simplify the explanation of 

the process, the volume space and all its partitions were all defined as cubic. The 

portioned cubes at the same depth in the structure acquired the same size.  

 

Figure 6.15  Diagram of the arrangement of 8 partitions  

As a result, the subdividing process in the Figure 6.14 (D) can be represented via a 

kind of nested relationship between leaf nodes (shown in Figure 6.16) 

 

Figure 6.16  Diagram of an digital nested relationship to present the octree structure 

To convert the volumetric space into an octree-based framework, an 8-bit RGBA 3D 
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texture called ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ was used to store this octree. As the basic component 

of these 3D textures, the Texel was used to record the distribution of nodes and the 

pointer-based relationships in the form of ሺܴ, ,ܩ ,ܤ   .ሻ݄ܽ݌݈ܣ

6.3.1  Implementing Octree Data Structure 

To store this octree structure, the ܴ, ,ܩ  triples were used to store the location of ܤ

nodes as the texture coordinates in the octree-based lookup function. ݄ܽ݌݈ܣ channel 

served as an indicator which determines the content stored in ܴܤܩ triples (݄ܽ݌݈ܣ ൌ

1  means storing a leaf; ݄ܽ݌݈ܣ ൌ 0.5  means recording the indices; ݄ܽ݌݈ܣ ൌ 0 

means an empty leaf). In order to simplify the explanation, all nodes in the octree had 

two coordinates: one for the volumetric space and another one for the texture space. 

The root node was located at (0, 0, 0) in ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ. This texture consisted of a 

number of grids (called ݎ݁ݐ݊݅_݀݅ݎܩ). For example, at depth ܦ௅, the ݎ݁ݐ݊݅_݀݅ݎܩ 

was a cubic space consisting of 2஽ಽ ൈ 2஽ಽ ൈ 2஽ಽ leaves. In like manner, ݎ݁ݐ݊݅_݀݅ݎܩ 

was only a cube of 2 ൈ 2 ൈ 2 leaves at the bottom level. After knowing the amount 

of voxels ݉ݑ݊_݈݁ݔ݋ݒ, the number of ݎ݁ݐ݊݅_݀݅ݎܩ, denoted as ݉ݑ݊_݀݅ݎܩ, will be 

different at each level in the data structures 

6.3.2  Constructing Octree-based Lookup Mechanism 

In texture processing stage, the octree-based lookup function was used to obtain a 

leaf’s texture coordinates ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ (exterior voxels) at the depth ܦ௅, and 

locate its coordinates. As a result, the leaf’s texture coordinates can be calculated 

(Lefebvre, Hornus et al., 2003) 
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ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ ൌ
ሺ௘ሺವಽషభሻ,௙ሺವಽషభሻ,௚ሺವಽషభሻሻା௙௥௔௖൫ሺ௘ಽ೐ೌ೑,௙ಽ೐ೌ೑,௚ಽ೐ೌ೑ሻൈଶ

ವಽ൯

ሺீ௥௜ௗ_௡௨௠ሻ
   (6.6) 

where ሺ݁ሺ஽ಽିଵሻ, ሺ݂஽ಽିଵሻ, ݃ሺ஽ಽିଵሻሻ is the texture coordinates of the leaf’s father node at 

the depth ሺܦ௅ െ 1ሻ, and the ݂ܿܽݎ function takes charge of keeping the fractional 

part of the parameter. The iteration of calculating texture coordinates was 

implemented in the process described by the pseudo code in Table 6.3. 

 

Table 6.3  Mechanism for locating grid nodes 

6.3.3  Accomplishing Volumetric Deformation 

After finishing the octree-based lookup mechanism, ݀ݎ݋݋ܿ_݀݅ݎܩ can provide the 

coordinates of the voxel based on its texture coordinates ൫݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙൯ and 

Define the root node ሺ݁଴, ଴݂, ݃଴ሻ and a random leaf ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ 

Define the number of grids ݉ݑ݊_݀݅ݎܩ 

Define the 3D textures ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ 

Define the depth ܦ௅ and the alpha value ݄ܽ݌݈ܣ஽ಽ 

If (݄ܽ݌݈ܣௗ௘௣௧௛ ൏ 0.9)  //not sampling the root node 

Calculating ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ at depth ܦ௅ in equation 6.6  

Fetching ݄ܽ݌݈ܣ஽ಽ from ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ with ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ 

If (݄ܽ݌݈ܣௗ௘௣௧௛ ൏ 0.1)  // empty node 

  Break 

Return ݀ݎ݋݋ܿ_݀݅ݎܩሾ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙,   ஽ಽሿ݄ܽ݌݈ܣ

Else 

 Break 

Return ݀ݎ݋݋ܿ_݀݅ݎܩሾ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙,  ஽ಽሿ݄ܽ݌݈ܣ
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depth parameter ݄ܽ݌݈ܣ஽ಽ in ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ. Its principle of generating the internal 

relationship is shown in Figure 6.17. 

 

Figure 6.17  Diagram of generating internal relationship for indexing operations 

The internal relationship was implemented via obtaining the interior voxels’ 

coordinates by the octree-based lookup function. As a result, after obtaining the 

exterior voxels’ displacements in the I-DOGME process, the interiors were assigned 

to calculated displacements by following the mechanism of vertex displacement 

calculation (explained in Table 6.1). Based on the I-DOGME and octree-based lookup 

function designs, the volume deformation successfully assigned computational 

deformations to the both exterior and interior voxels, and used a series of parameter 

settings to result different deformation extents (as shown in 6.18).  

 

Figure 6.18  Results of volume deformation with different parameter settings 
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6.4  Fixing Deformation 

As shown in Figure 6.18, the highlighted region represents the skull data belonging to 

rigid parts which should not perform “super-elastic” deformations. In order to fix the 

unrealistic features, the rigid part was firstly isolated before the deformation process, 

and independently manipulated with the dedicated lattices. In this solution, the 

connections between the rigid part and its surrounding regions are all vertices-based. 

As the most prominent example, the result of bending a neck region contains rigid and 

soft parts simultaneously, and the distribution of every part is clear (as shown in 

Figure 6.19 (B)).  

 

Figure 6.19  Results of fixed volume deformation  

Therefore, this solution was tested on this example via implementing the isolation 

operations and iterating the deformation mechanism for manipulating the “cervical 

vertebra” data and its surrounding soft tissues respectively. As the rigid part, the 

“cervical vertebra” data was firstly deformed to represent the rigidly bended features. 

Then, its deformed control lattice between the rigid and soft parts served as an 

embedded lattice of the soft tissues. In other words, the vertices’ displacements in 

deforming rigid part were also mapped onto the soft part in the opposite direction. 
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After accomplish the deformation of the soft part, the results can be shown in Figure 

6.19 (A and C). 

6.5  Summary 

This chapter has presented the principle of I-DOGME deformation method, and an 

index mechanism for simplifying the calculation operations in displacement mapping 

phases. This deformation method can provide a unified approach to the specification 

of physics-based volume deformation in the searching interior voxels, and facilitate 

manipulations of volume models for showing complicated deformation behaviours. 

The capability of this deformation method can be demonstrated through comparisons 

of the results of phased improvements in constructing deformable lattices, 

accomplishing realistic deformation behaviours, constructing relationships between 

extracted vertices and voxels and determining voxels of interest. 

The resulting deformation behaviours demonstrated the feasibility of utilizing this 

method to achieve FFD. Its advantages and versatility can be summarized as follows: 

 This novel volume deformation function followed the idea of traditional 

DOGME method to connect the control lattice and its underlying deforming 

object. Based on this idea, the I-DOGME method was proposed to overcome 

the inherent problems insides the DOGME-based applications, and 

simultaneously preserve the displacement mapping operations inside 

volumetric space with the assistances of volumetric octree-based lookup 
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function. Consequently, this I-DOGME can solve the problems of manual 

lattice construction, and maintain the precision of transferring displacement 

information between the control vertices and corresponding voxels.  

 This volume deformation function can perform applying forces on the 

volume object locally or globally. Different from the continuous and 

constrained deformation in the current achievements mentioned in chapter 3, 

this function can successfully enable partial deformation, i.e. discontinuous 

deformation. Besides the clustered data segments provided by the volumetric 

data processing function, the customisable control lattice in I-DOGME can 

also simplify the size of interesting data segment in deformation process for 

improving its efficiency. In addition, this function can also enrich more types 

of deformation behaviours than continuous deformation-based methods’ 

work. 

 This method can provide windows which allow real-time modification of the 

properties of control lattices and deformable solids. During the simulation, 

modifying the stiffness coefficient can enable the real-time customizations of 

the deformation behaviours. In addition, the lattice simplification process 

allows real-time management of constructed lattices, and consequently 

achieves variety of deformation results. 

 Through performing the deformation behaviours via both vertex-based and 

voxel-based mass-spring systems, the progress of transformation between 

different elements can be technically represented in the manner of defined 
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deformation parameters and calculated displacements in this deformation 

function. As the result of this design, the whole deformation process can be 

restored the GPU-accelerated programme, and consequently maintain the 

efficiency of volume deformation function. 

 This method can perform the physically precise representation of elastic and 

homogeneous solids. Unlike the limited deformation behaviours and 

unrealistic deformation results achieved by the constrained modelling 

strategies in non-physics-based deformation approaches, this designed 

volume deformation method can represent the results with free-form 

deformation extents by constructing lattices to partition the continuous data 

and customizing the deformation parameter settings for avoiding uniform 

transformations. 
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Chapter 7 System Integration and Acceleration 

This chapter listed the details of efficient volume deformation through constructions 

of GPU-parallel computing architectures. More precisely, a Single Instruction, 

Multiple Data streams (SIMD) architecture was constructed to solve the following 

problems: time-consuming iteration of mesh simplification loops in the lattice 

construction process, complicated indexing mechanism in running the octree-based 

lookup function, and huge data accessing workload in displacement mapping process. 

This project aimed to accomplish this design by utilizing an Nvidia graphics card and 

its parallel computing model (CUDA) (see Appendix A). 

In the past ten years, a lot of CUDA-based inventions have been proposed for various 

applications. This project took advantage of several robust ideas to implement the 

goal of program accelerations. The design for adaptive lattice control in this project 

was derived from the idea of tessellation management for surface deformation 

(Bunnell, 2005). Besides, Bunnell also proposed the displacement mapping strategy 

which is a texture-based method for managing geometric transformation between 

surfaces. The texture mapping technique is widely used to “cause” an assembly of 

detailed and complex features on the surfaces of objects or 2D image planes. By 

developing this texture-based mapping technique for volume deformation, the spatial 

arrangement of voxels can be efficiently manipulated in the form of 3D textures. The 

efficiency of lattice modification in this project benefited from the investigation of 
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adaptive control of meshes. The use of octree textures to render complicated features 

in surface modelling applications provided a method of constructing a hierarchical 

structure to manage the spatial distribution of polygons (Lefebvre, Hornus et al., 

2003). By applying this developed data structure to the volumetric space, each voxel 

can be exactly located, and consequently reacts to the deformations.  

7.1  Preparations of CUDA-based Programming  

In CUDA-based programming, the SIMD architecture is named Single Instruction, 

Multiple Threads (SIMT). A thread is the smallest execution unit in this programming 

model, and enables direct access to data arrays according to given indexes by means 

of texture coordinates. In other words, the whole data set can be accessed in order by 

an assembly of threads, and the entire data processing operation can be executed by 

parallelizing the computation tasks in groups of threads. A block is an assembly of 

threads, and uses the unique coordinates of the threads to construct the execution 

sequence in various ways, such as in concurrent, serial or other particular orders. 

Utilizing the shared memory, each block can implement the cooperation of its 

included threads by using the ݏ݀ܽ݁ݎ݄ݐ_݄ܿ݊ݕݏ function. In addition to the concurrent 

execution sequence, a block can schedule various routes of progress for each thread, 

in order to achieve the anticipated execution sequences, such as the serial order and 

complicated combinations of multiple orders. As a group of blocks, a grid is the 

largest unit and takes charge of executing kernel functions. Apart from the 

cooperation operations of threads within the same block, there is no synchronization 
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between blocks because the shared memory is “exclusive”, i.e. every shared memory 

is just for one block. As a result, there cannot be any synchronization operations at 

block level. Figure 7.1 shows the hierarchical structure of the CUDA parallel 

computing model. In this project, the grids labelled with serial numbers were used to 

signify the usage of the GPU at different processing stages.  

According to different purposes of acceleration design, there will present different 

sketch maps of block and thread arrangements in the CUDA programming structure. 

For example, in order to maintain the sequence of original sampling process inside 

CPU, the CUDA-based accumulation of voxels’ properties requires the arrangement 

of block and thread in the manner of grid 0 during the parallel processing work in 

GPU. Different from grid 0, the alternative arrangements for block and thread in grid 

3 are respectively prepared for subdividing and simplifying operations in lattice 

refinement process. 

 

Figure 7.1  Diagram of hierarchical structure in CUDA programming model 

The three investigated CUDA-based-applications mentioned in the above paragraphs 
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all follow the idea of constructing SIMT architecture to index partitioned data 

segments and synchronize the cycles of data processing by executing a kernel 

function. The following subsections will detail the CUDA-based procedural 

programming operations in the C++ programming environment, with related pseudo 

codes, diagrams and results. 

7.2  CUDA-based Volume Visualization 

In order to carry out a sequence of data registration, transmission, addressing and 

computation operations between a CPU and a GPU, this project treated the 

texture-based volume visualization technique as the basis in terms of system 

prototyping. The CUDA-based visualization pipeline is shown in Figure 7.2.  

 

Figure 7.2   Diagram of CUDA-based volume rendering pipeline 

In order to avoid complicated interpolation works and derived configuration 

processes, the choice of proxy geometry in this system was view-aligned textures. In 

this visualization process, data transfer between the CPU and GPU was implemented 

by parameter copying operations; for example, ܿ݁ܿ݅ݒ݁ܦ_݋ݐ_ݐݏ݋ܪ_ݕ݌ܿ_݉݁ܯ_ܽ݀ݑ 
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denoted the direction of transfer operations, ܿݎݐ݄ܲ݀݁ܿݐ݅ܲ_ܽ݀ݑ  managed the 

properties (data source, data type and sizes of allocated memories), and various 

declarations of texture parameters (judgements on data normalization, filtering and 

addressing modes). By executing these parameter copying instructions, the volume 

data set could be successfully stored in the device memory in the form of 3D textures. 

After loading the data from the CPU, the visualization process can be divided into 

four stages: determining the geometric attributes of 3D textures in the geometric 

modelling function; configuring a rapid addressing mode in the kernel sampling 

function; creating a texture-based LUT in the kernel TF to “render” voxels, and 

constructing the kernel function to calculate the accumulation of optical properties. 

After executing these kernel functions, this visualization process would end by 

producing 2D results and uploading them to fragment operations in the CPU. In the 

following subsections, the four data processing stages will be detailed with their 

corresponding pseudo-codes. 

7.2.1  Geometric Modelling Function 

In function, there were two kinds of size which need to be declared in advanced. One 

is the size of the data partitioning and the other is the size of the sampling region. 

Data partitioning takes charge of the ܾ݈݁ݖ݅ݏ݇ܿ݋ function to create a thread-based 

presentation of the volume data. For example, when using ܾ݈݁ݖ݅ݏ݇ܿ݋ ሺܽ, ܾሻ  to 

represent a ݄ݐ݀݅ݓ݁ݖ݅ݏ כ ݄ݐ݈݃݊݁݁ݖ݅ݏ כ  data set, each block can contain ݄ݐ݌݁݀݁ݖ݅ݏ

ܽ כ ܾ  threads. Consequently, the gridsize could be obtained from a calculation 

process which is simplified in terms of pseudo codes in example 7-1.  
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Example 7-1. Example of calculating gridsize 

 

7.2.2  Kernel Sampling Function 

As another important parameter in this function, the size of the sampling region was 

determined through setting a series of boundaries. In this visualization diagram, six 

imagined planes served as limitations of the sampling field (shown in Figure 7.3). 

 

Figure 7.3  Illustrations of cubic sampling region 

After finishing the data partitioning, and determining the sampling regions, the 

Define sampling times  (n,m); 

Define data size  blocksize(c,d);  

Define sampling grid size  gridsize(a,b);  

Define division function  iDivUp(x,y); 

   If (x%y്0 ) 

      return iDivUp(x,y) = (x/(y+1)); 

   else 

     return iDivUp(x,y) = (x/y); 

//Calculate gridsize 

gridsize(a,b) = iDivUp (blocksize(c,d), (n,m));   

Return gridsize(a,b); 
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single-channel-based sampling process in traditional texture-based volume 

visualization can be replaced by a multiple-channel-based sampling method. Because 

of the constructed SIMT architecture, the sampling operations can be divided and 

assigned to blocks. The sub-sampling operations in each block can be accomplished 

by parallelizing the executions of the kernel sampling function at thread level. In this 

sampling function, the ܦ3݁ݎݑݐݔ݁ݐ_ܣܦܷܥ function was used as the basic functional 

unit to retrieve the voxels directly from groups of threads. 

7.2.3  Kernel TF 

In kernel TF, the look-up-table was stored in a 1D texture. By defining 

 the frequency of retrieval operations in 1D ,݈݁ܽܿݏ_ݎ݂݁ݏ݊ܽݎݐ and ݐݏ݂݂݁݋_ݎ݂݁ݏ݊ܽݎݐ

texture-based LUT can be determined. Therefore, the voxels extracted by the 

sampling process can be assigned with the retrieved values from LUT. These values 

were represented in terms of four dimensional float arrays (ܿݎݑ݋݈݋ ሺݎ, ݃, ܾ,  ሻ), inݓ

which ܿݎݑ݋݈݋. ݎ .ݎݑ݋݈݋ܿ , ݃ .ݎݑ݋݈݋ܿ , ܾ  and ܿݎݑ݋݈݋. ݓ  respectively mean the 

ܴ, ,ܩ   .value ݄ܽ݌݈ܣ and ܤ

7.2.4  Kernel Accumulation Function 

As the complement of the kernel function and the preparation for fragment operations 

in the CPU, the kernel accumulation function accumulated the optical values, 

converted the results into desired formats, and implemented self-labelling for 

rendering the results in the final display. The kernel accumulation function can be 

classified by means of the following pseudo codes:  



Chapter 7 System Integration and Acceleration Strategies 

138 
 

Example 7-2. Example of kernel accumulation function 

 

By using the serial numbers of the associated blocks and enveloped threads, the 

self-labelling tool “painted” each thread by following the thread’s numbers in blocks. 

In order to avoid the inaccurate computations caused by the various parameter values 

(such as 256 microns, 3 microns per 1 sampling shift distance, and 2048 units), there 

was a “clump”-like data normalization process, which constrains these values to be 

indexed using a special thresholding, ሾ0, 1ሿ. 

Define colour value  Color(r,g,b,a); 

Define accumulated colour value  Sum(R,G,B,A); 

Define the maximum number of circle  max_circle; 

Define the upper limit for blending process  Opaci;  

Define the block ID  BlockIdx(x,y);  

Define the block dimension  BlockDim(x,y); 

Define the Thread ID  ThreadIdx(x,y);   

Define index number  index_number_(x,y); 

//real-time calculation of index number 

index_number_(x,y) = BlockIdx(x,y)*BlockDim(x,y) + ThreadIdx(x,y); 

for (i = 0, i<max_circle; i++) //execute the accumulation circle  

{ 

Color(r,g,b) = Color(r,g,b) * Color.a;  //multiply with alpha value 

/Sum(R,G,B,A) = Sum(R,G,B,A) + Colour(r,g,b,a) * (1 – Sum.A); 

  if (Sum.A > Opaci)  

      break; 

} 

Return Sum(R,G,B,A); 
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7.3  CUDA-based Lattices Construction  

In I-DOGME design, an advanced lattice construction method can help to increase the 

efficiency of the whole deformation system. The combination of a mesh subdivision 

scheme and MC-based iso-surface construction can improve the accuracy and 

configurability of the lattices consecution process, and the CUDA-based combination 

can further improve the system in terms of meeting the requirement of a high 

interactive rate.   

The pipeline of CUDA-based lattices construction is shown in Figure 7.4. Besides the 

common data transfer and volume data storage, this lattices construction process 

carried out an adaptive control of tessellation in extracted iso-surface, by designing 

three kernel functions. In the following subsections, the implementations of these 

kernel functions will be explained respectively. 

 

Figure 7.4  Diagram of CUDA-based lattice construction 

 

7.3.1  Kernel MC Function 

After accomplishing the regular thread and block operations described in section 
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7.2.1, the serial sampling sequence in CPU-based MC process was converted into a 

set of synchronized executions of sampling windows. In other words, the 

CUDA-based MC process can simultaneously enable the vertices extraction processes 

on threads inside each block. The mechanism of parallelized vertices extraction in the 

kernel MC function is shown in example 7-3. 

Example 7-3. Example of kernel MC function 

 

As common properties in the MC process, a series of parameters need to be 

predefined, e.g. the size of the sampling window ݁ݖ݅ݏܹ݈݊݅݁݌݉ܽݏሺܣ, ,ܤ ሻܥ . 

According to the determined sampling frequency, the MC process treated a given 

Define the extracted vertex  ver_pos(x,y,z); 

Define the sampling window  sampleWindsize(A,B,C);  

Define the “leg” among sampling windows  sampleWinShiftsize(a,b,c); 

Define the location of the sampling window  sampleWinPos(e,f,g);  

Define the size of memory for a sampling window in manner of mask   
         sampleWindSizeMask(h,i,j); 

Define voxel size  unit3 voxelsize(1,1,1);  

Define index number for classifying vertices  unit index_I; 

//calculate current position of sampling windows 

sampleWindPos.e = index_I & sampleWinSizeMask.h; 

sampleWindPos(f.g) = 

(index_I >> sampleWinShiftsize(b,c)) & sampleWinSizeMask(i,j); 

//locating vertices via calculating their coordinates 

ver_pos(x,y,z) = (-1.0,-1.0,-1.0) + (sampleWinPos(e,f,g) * voxelsize(1,1,1)); 

Return ver_pos(x,y,z); 



Chapter 7 System Integration and Acceleration Strategies 

141 
 

number of voxels as a standard volume. Based on this setting, all size parameters in 

MC process were all defined in terms of multiple standard volumes. In this project, 

MC was used to generate lattices because of its capability of passing though every 

voxel. Therefore, the standard volume in this kernel MC function was defined as a 

voxel size.  

The volume of the one-off sampling space was written as a 

2ଷ כ ܣሺ݁ݖ݅ݏܹ݈݊݅݁݌݉ܽݏ െ 1, ܤ െ 1, ܥ െ 1ሻ  which was designed for avoiding 

sampling starting point twice. In the same way, the ݁ݖ݅ݏݐ݂݄ܹ݈݅ܵ݊݅݁݌݉ܽݏ ሺܽ, ܾ, ܿሻ 

represented the shift control of the sampling window, i.e. the uniform space between 

each two neighbouring sampling spaces was 2ଷ כ ሺܽ݁ݖ݅ݏݐ݂݄ܹ݈݅ܵ݊݅݁݌݉ܽݏ െ 1, ܾ െ

1, ܿ െ 1ሻ. ݁ݖ݅ݏ݈݁ݔ݋ݒሺݑ, ,ݒ ሻ meant that each voxel occupied a 2ଷݓ כ ݑሺ݁ݖ݅ݏ݈݁ݔ݋ݒ െ

1, ݒ െ ݓ,1 െ 1ሻ. For simplifying the calculation workload, the ݁ݖ݅ݏ݈݁ݔ݋ݒሺݑ, ,ݒ  ሻݓ

was initialized to ݁ݖ݅ݏ݈݁ݔ݋ݒሺ1,1,1ሻ. 

7.3.2  Kernel Triangulation Function 

After finishing the sampling process, this kernel function served as a vertex shader to 

triangulize numerous polygons based on the extracted vertices. All polygonization 

modes (named cube configuration in MC-based applications) were indexed in the 

  .texture ݔ݁ܶ_ݎ݁ݒ

Before the triangulation process, the extracted vertices were classified into a number 

of assemblies according to the different exterior voxels. The mechanism of locating 

these voxels is shown in Example 7-4. 
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Example 7-4. Example of kernel triangulation function (I) 

 

Example 7-5. Example of kernel triangulation function (II) 

 

After locating voxels, the inherent relationship between vertices and voxels in IIR 

design could be constructed, i.e. the number of vertices extracted from each exterior 

voxel could be obtained. The combination of vertices could be determined precisely, 

meanwhile, the cube configuration could be determined correctly. As a result, a mesh 

Define the value for iso-surface extraction  iso_value; 

Define the sampling array  sampleWin; 

Define the sampling status  sample_field; 

Define the cube configurations  index_cube; 

For (i=0, i<8, i++) 

{  

sample_field [i] = sampleWin (volume_data, sampleWinPos, sampleWinsize); 

index_cube= uint (field[i]< iso-value)*2^i; //256 cube configurations 

} 

Return ܾ݁ݑܿ_ݔ݁݀݊ܫ; 

Define index number for accessing voxels  index_inter_I;  

Define voxel position  position (x,y,z); 

//judging the state of intersection between sampling windows and voxels 

position(x,y,z) = min(position(x,y,z), size(x,y,z)-1); 

//calculate an index number 

index_inter_I = (position.z*size.x*size.y) + (position.y*size.x) + position.x; 

//fetch the voxel from the volume data  

Return texture index_inter_I; 
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surface could be accurately constructed through the triangulation process. The 

mechanism is shown in Example 7-5.  

7.3.3  Kernel Subdivision Function 

Based on the idea of tetrahedral-based subdivision scheme in CUDA-based 

Catmall-Clark application, the triangle-based application was devised and 

implemented to serve as the kernel subdivision function for achieving flexible lattice 

refinement operations. Before being stored into textures, the object mesh needs to be 

separated into triangle-based units through step_1 in Figure 7.5. Then, these separated 

units will be treated as individual object in the following subdividing and 

simplification operations.  

 

Figure 7.5   Diagram of triangulizing polygons 

Afterwards, in step_2, each unit was stored in the manner of texture units by indexing 

its vertices and surrounding points. Consequently, the results of associated 

subdividing and simplification operations on the each unit will be represented by the 
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modification of the above mentioned points. Besides, step_3 revealed the state of 

sorting a unit in a 2D array which records the points’ coordinates within the plane of 

this unit. The mechanism of kernel subdivision function is shown in Example 7-6. 

Example 7-6. Example of kernel subdivision function 

 

Define the initial vertices vertex(x,y.z), index number index_ver (x,y) and modified 
vertices sub_vertex(x,y,z);  

Define weight parameters for subdivision α(1/8,6/8,1/8), β(3/8,5/8,0);  

Define two data array for storing initial coordinates ver_co and fetching 
coordinates  ver_in_co; 

if ( indicate = 0) //regular scheme 

{  vertex(x,y,z) = (ver_co, index_ver.x,0); 

sub_vertex(x,y,z) = vertex(x,y,z) + text3D (ver_inte_co, index_ver.x, 0, 0) + 

text3D(ver_inte_co, 0, index_ver.y, 0) + text3D(ver_inte_co, index_ver (x,y), 0); 

}  

Return sub_vertex(x,y,z) * ߙ; 

else //reverse scheme 

{  Sub_vertex(x,y,z) = (ver_co, index_ver.x, 0); 

vertex.x = sub_vertex.x + text3D (ver_inte_co, index_ver.x, 0, 0).x  

+text3D(ver_inte_co, 0, index_ver.y, 0).x 

+ text3D(ver_inte_co, index_ver (x,y), 0).x; 

Vertex(y,z) = sub_vertex.z + text3D (ver_inte_co, index_ver.x, 0, 0).z  

+ text3D(ver_inte_co, 0, index_ver.y, 0).z  

+ text3D(ver_inte_co, index_ver (x,y), 0).z; } 

Return vertex(x,y,z) * β; 
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7.4  CUDA-based Displacement Mapping 

In this system, displacement mapping process existed between extracted vertices and 

exterior voxels, and between exterior and interior voxels. The mechanism of 

displacement mapping process is shown in Figure 7.6. This design can solve the 

problem of time-consuming mechanisms of recursive octree transversal, and the 

associated indexing operations were all implemented on a CUDA-based octree data 

structure to achieve the goal of acceleration.  

 

Figure 7.6   Diagram of octree data structure and the displacement mapping design 

7.4.1  Kernel Octree-based Lookup Function 

In this constructed hierarchical data structure, the voxels were represented in a part of 

the octree in the form of a terminal or non-terminal octant, and the nested 

relationships between different nodes determined the assignments of displacements to 

corresponding voxels. In the I-DOMGE process, the number of exterior voxels was 

determined by the status of modified lattices, e.g. the higher simplification level will 

cause less voxels to be influenced because the decreased amount vertices in the 
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lattices or vice versa. In the same way, the depth in the octree data structure 

determined the number of voxels which can be located by the lookup function. Figure 

7.7 shows different results of tree lookup function with different depths (represented 

via levels). By changing the depth attributes in the lookup function, the final results of 

the tracking process will perform various statuses in the form of the numbers of 

voxels. 

 

Figure 7.7  Results of octree-based lookup function 

In this octree-based lookup functions, there was an indirection “pool” which is for 

retrieving the newest lookup results. If the results denote an index, the lookup 

function will carry on to a deeper level. Otherwise, the latest result in the indirection 

pool will be treated as the final output. In the volume deformation process, the 

indirection pool was designed to enable a real-time data storage record the latest 

voxels’ sequence number. These sequence numbers can form a “connection” between 

the exterior voxel and its underlying interiors, and represented it in the form of a 

group of leaf nodes at different depth levels in octree data structure. In other words, 

the “connection” recorded a set of nested relationships (as shown in Figure 7.7). The 

mechanism of the kernel tree lookup function is shown in Example 7-7.    
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Example 7-7. Example of kernel tree lookup function 

 

7.4.2  Kernel Mapping Function 

Example 7-8 shows the mechanism of the kernel mapping function. 

Define the location of object node(s)  node_co (x,y,z);  

Define the location of object node(s) in indirection pool  node_inte_co (x,y,z);  

Define a texture for storing intermediate coordinates texture  co_inte_tex;  

Define a texture for storing initial coordinates texture  co_tex;  

Pointer to a data array for storing coordinates  coord;  

Pointer to a data array for storing coordinates on the connection conne_co;  

Define the size of volumetric objects  volsize (w,l,d);  

Define the upper limitation for lookup function  lookup_max_depth;  

Define index number for accessing coordinates  index_co (x,y);  

Creating octree-based lookup (node_co, node_inte_co, coord); 

{ 

node_inte_co = make_float3 (0.0, 0.0, 0.0); //initialize indirection pool 

node_co = make_float4 (node_co (x,y,z), 0.0);  

for (i = 0, i < lookup_max_depth; i ++) 

{ 

  node_co = texture1D (co_tex, volsize.d * index_co.x * index_co.y); 

node_inte_co= make_float3 (node_co (x,y,z)); 

Comparing node_co.w with 0.9 and 0.1; 

} 

Return conne_co[index_ co(x,y)] =  

(node_inte_coord(x,y,z), (volsize.d * index_co.x * index_co.y  

+ volsize.l * index_co.y + volsize.w)); 

} 
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Example 7-8. Example of kernel mapping function 

 

 

disp_inte_co(x,y,z) = 

 texture1D (dis_tex, (volsize.d * index_co.x * index_co.y  

+ volsize.l *index_co.y + volsize.w); 

//attach a displacement map to the original coordinates recorded in pool 

  disp_inte_co(x,y,z) = disp_inte_co(x,y,z) + disp_co(x,y,z); 

} 

Return  voxel_co [index_label(x,y)] = make_float4 (node_inte_co (x,y,z),  

(volsize.d * index_co.x * index_co.y  

+ volsize.l * index_co.y + volsize.w)); 

} 

Pointer to a data array for storing voxels’ displacements  voxel_co; 

Pointer to a data array for storing displaced coordinates  disp_tex; 

Define the upper limitation for indexing  index_label_max;  

Define the location of object node(s)  disp_co (x,y,z);  

Define the changed location of object node(s)  disp_inte_co (x,y,z); 

Define the texture coordinates  index_co (x,y,z);  

Pointer to a data array for storing coordinates  conne_co;  

Define the size of volumetric objects  volsize (w,l,d); 

//displacement mapping function 

Creating disp_tex (disp_co, disp_inte_co, conne_co); 

{ 

for (i = 0, i < index_label_max; i ++) 

{ 

   index_co (x,y,z) = texture3D(connec_co); 

//indexing displacement values 
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Based on the implementation of the kernel octree-based lookup function, the related 

regions surrounding the control point can be efficiently located and the connections 

can be recorded in ܿ݋ܿ_݁݊݊݋ texture with their coordinates. Consequently, the new 

coordinates calculated by manipulating the mass-spring system can avoid being 

assigned to other meaningless regions. For example, the ܿ݋ܿ_݁݊݊݋ ሺݔ,  ሻ can index aݕ

cluster of nodes processed in the ሺݔ,  an efficient ,݋ܿ_݁݊݊݋ܿ ሻ block. By usingݕ

carrier can be designed to transfer the coordinates between nodes and corresponding 

voxels in the form of 3D displacement mapping mode. 

7.5  Summary 

7.5.1  SIMT Architecture  

As described in this chapter, all volume-based processes were parallelized and 

synchronized in the SIMT architecture. By determining the properties of thread and 

block, volumetric content were averagely partitioned and assigned to blocks and 

underlying threads. As a necessary preparation for various parallelization designs, 

SIMT architecture labelled every block and associated threads with a unique 

indexable serial number, which serves as recording the sampling sequence in 

synchronization process. 

7.5.2  Synchronizing Kernel Functions  

By taking advantage of GPU programming, single-channel-based processes were 

converted into multiple-channel-based ones by means of simultaneous executions of 
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multiple kernel functions. Compared with corresponding CPU-based 

implementations, the CUDA-based acceleration designs in this system did help with 

achieving high efficiencies, supporting complicated processes and improving the 

trade-offs between effect and speed.  

In the next chapter, the system will be tested by experimenting on each processing 

stage. The increased efficiency, improved visual effects, configurable operations and 

derived benefits of the purposive designs will be listed, in order to testify to the 

feasibility of this designed volume deformation system. The contribution to 

knowledge will be evaluated by a series of comparisons with similar research 

achievements. 
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Chapter 8 Test and Evaluation 

After completing the functional module designs and accelerated implementations, a 

series of tests were conducted to evaluate the performances of three key processes: 

volume data segmentation, lattice construction, and interactive deformation, which 

were presented in this chapter. The results of the experiments can be used to assess 

the validity and effectiveness of this interactive volume deformation (IVD) designs. 

8.1  Efficiency Evaluation on Volume Segmentation 

The segmentation designs in the volume data processing module tried to extract two 

kinds of segmentation masks from the volume data. One mask was used to number all 

classified segments inside the volumetric space. The other one was used to isolate the 

interesting segment(s) from the same space. Section 4.1 mainly focused on the usage 

of the first mask. With the context of segmentation improvement and representing 

clusters, the performances of the second mask were covered in the subsequent 

sections, as the key information in the other two experiments.  

Although clipping techniques can provide a rapid presentation of the volume models’ 

interiors, a greyscale visualization of volume data cannot fully describe the 

differences between data segments which share the same scalar value, i.e. the regions 

rendered with the same intensity information (e.g. the highlighted regions in Figure 

8.1 (A)). Therefore, the multidimensional TF was devised to implement a further 
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segmentation process visually (as shown in image C). However, in using different 

colours to emphasize the differences between these two regions, the associated trial 

and error tests in modifying TF manually (as shown in image B) cost too much time, 

because of the lack of a standardized colouring plate.  

By designing an automatic clustering-based segmentation method, the clustered 

results can be used to automatically generate a standardized colour combination (as 

shown in image D) to replace the manual configurations. This devised function not 

only achieved a data-driven analysis of the volume data, but output similar effects to 

the traditional multidimensional TF’s results. Both TF function designs illustrated in 

Figure 8.1 can separate the same volume data sets into five parts with rendering them 

in corresponding colour properties. 

 

Figure 8.1  Results of DVR with a 2D TF and the ATF design 

Table 8.1 records the performance of testing the volume data processing module with 
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different volume data. By comparing the ܭ values generated by MSVS and KMVS, 

it can be observed that this module filtered the over-segmentation generated in MSVS 

via using KMVS’s low sensitivity to tiny features, and avoided the extra computations 

for fixing under-segmentation in KMVS. With an increase in volume data size, the 

reduced cluster number can demonstrate the advantage of the integration of MSVS 

and KMVS, and the visualized results are shown in Figure 8.2.  

 Data 

Size 

(KB) 

MSVS 

Processing 

Time (s) 

Generated 

K in 

MSVS 

KMVS 

Processing 

Time (s) 

Output 

K in 

KMVS 

Inner Ear 0.48k 430 7 24 4 

Teddy Bear 0.9k 541 16 61 4 

Engine Data 7.0k 1k 9 109 3 

MRI Human Head 16.0k 3k 31 222 5 

CT Human Head 27.1k 4k 65 438 6 

Celiac Data 237.0k 10k 112 600 9 

Table 8.1  Results of using KMVS and MSVS to process different data sets 

As a pre-processing operation, the automatic data analysis just served as a one-off 

guide for enabling a comprehensive display of the volume data, and was not iterated 

in the subsequent operations. Therefore, the performance of future deformation 

processes will not be restricted by a lengthy processing time. 
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After accomplishing this volumetric data processing function, different volume data 

sets were tested and their processing results were shown in Figure 8.2. The coloured 

features in different data sets can verify that the uniform configuration of rendering 

properties in ATF function can enable all elastic parts (such as the cartilage 

appendage in ear data, the twistable fastener in the nose area of teddy bear data, the 

stratum corneum in MRI human head data, the gum in CT-scanned human head data, 

and the soft tissue in human celiac data) to be rendered in yellow. In the same way, 

the high density parts (the auditory canal part, the teddy bear’s crust, the engine’s 

framework, the soft tissue canned by MRI, the mixed osseous features in CT data, and 

the human backbone) were highlighted in green. And the intermediate data was 

fulfilled with blue features.  

 

Figure 8.2   Results of the volume data processing module  
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8.2  Effectiveness Test on Lattice Construction 

Because the visualized results can only trace the boundaries of clusters visually, 

specific operations were required to parameterize the interesting segment(s) for 

further operations. In other words, the visualization process cannot prevent 

unnecessary parts from joining all the subsequent computations. Therefore, the second 

segmentation mask for isolating interesting data segment(s) from the continuous 

volume was iterated for localizing the related voxels spatially. In addition, the size of 

the processing data was decreased by using this mask to filter out the unnecessary 

parts. The associated computation workloads was reduced and the system efficiency 

was improved as well as. 

In the lattice construction process, this mask shortened the sampling range before 

executing the MC algorithm. As shown in Figure 8.3, these isolated part (delineated 

by blue lines in image A, C, E and G) were respectively represented via 

corresponding iso-surfaces (revealed in image B, D, F and H). The numbers of 

extracted vertices inside the isolated results are 13K, 2K, 21K and 109K, different 

from the previous ones 114M, 371M, 220M and 1200M. The associated frame rates 

will be listed in the section 8.4. As a result, the constructed lattices for volume 

deformation can be the “model-fitting” one which closely envelops the deformation 

object.  
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Figure 8.3   Results of extracting lattices from the isolated segments  

8.3  Flexibility Assessment on Interactive Deformation 

In this thesis, the principle of the devised FVD method consisted of three concept 

designs. The first design, I-DOGME, parameterized the applied forces through 

implementing a general mesh deformation solution onto the constructed lattice.  

For indexing the displacement mapping operations between the vertices on the control 

lattice and the exterior voxels, the second design used the IIR derived from the 

MC-based lattice construction process to form a dedicated LUT. In order to address 

each vertex in a unique index, no new vertices are permitted to be generated after the 

lattice refinement process. 

The third design involved the construction of a volumetric displacement diagram to 

characterize the interior voxels’ movements. If there is no further “depth” calculation, 



Chapter 8 Test and Evaluation 

157 
 

its mechanism will be partly similar to the latest non-physics-based volume 

deformation approach, whose crucial achievements are illustrated in Figure 8.4 (A to 

D). Correspondingly, images F to D show the similar outputs implemented by the 

third design without the “depth” calculation. 

 

Figure 8.4   Results of non-physics-based deformation. Images B to D respectively represent the 

results of axis-aligned linear transformation, feature-aligned isolation operation, and constrained 

interpolation design (courtesy of Correa et al.) 

As shown in Figure 8.4 (F to H), the highlighted behaviours, namely the axis-aligned 

results, exhibit a series of unnatural shape changes which merge the skin data and 

skull data together. Different from the manually constrained operations in this latest 

non-physics-based volume deformation approach, the third design utilized an 

octree-based lookup mechanism to provide a set of internal relationships for 

connecting exterior and interior voxels, and treats the relative distances between 

vertices and voxels as the “depth” parameters to implement a gradient distribution of 

displacements (as shown in Figure 8.5). In other words, the calculated depth values 
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were regarded as the specific factors which parameterize the gradient changes in the 

distances. 

 

Figure 8.5   Results of the IVD method 

After implementing these three concept designs, the above deformation behaviours 

can demonstrate the feasibility, applicability and efficiency of the devised IVD 

method system. 

8.4  System Run-time Performance Evaluations 

The run-time evaluation work was based on performances obtained on a consumer 

grade desktop which was mainly equipped with an Intel Core 2 Quad Q9400 CPU, 4G 

RAM and a Nvidia GeForce GTX 260 graphics card. This section divides the 

evaluation work into four parts. 

 Volume data analysis 
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Figure 8.6   Comparative results of different TF designs. Images B to D are the results of latest TF 

designs (courtesy to Liang et al.) 

In Figure 8.6, images F to H respectively show the visual results of automatic volume 

data analysis generated in the volumetric data analysing process. Images (B to D) 

show the results of different chains of multiple TFs (e.g. 2D  ൅  1D  ൅  1D  ൅ … or 

2D  ൅  2D  ൅  1D  ൅ 1D … or even 2D  ൅  2D  ൅  2D  ൅ …) decided in the latest TF 

design (Zhou, Schott et al., 2012). The results all highlight the specificities inside 

volume data. The automatic TF design described in this thesis can efficiently output 

similar results to those designs which need to rely on expensive trial and error 

operations for evaluating the chain of multiple TFs in the TF combination approaches.  

 GPU-acceleration design 

Figure 8.7 delineates a speed distribution plot which records different performances of 

using IDV to deform different volume data sets on different platforms. From this 

figure, the advantage of GPU-based volume deformation system over the CPU-based 
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can be clearly represented even processing simple data sets. With the increase of 

volume data size, the benefit from implementing GPU platform is gradually 

decreased, but the real-time record of frame rates of GPU-based acceleration designs 

is still higher than the corresponding programs in CPU. More precisely, the GPU 

platform can enable more volume deformation program to run at a “responsive” speed 

(framer rate is between 14 and 24 fps) than CPU works. 

 

Figure 8.7   Comparative results of different implementations 

Figure 8.8 illustrates the comparison between the devised IVD method and the latest 

volume deformation solution (named constrained illustrative volume deformation 

(Correa, Silver et al., 2010)) in processing volume data sizes (less than 40MB). It can 

be seen that the performance data for the IVD meet the criteria for interactive 

deformation, alongside which the constrained illustrative volume deformation also 

followed in its system performance evaluations. 
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Figure 8.8   Comparative results of different deformation solutions 

 Adaptive lattice simplification 

The lattice simplification served as an optimization of the lattice construction process, 

which reduces the number of extracted vertices in order to generate different levels of 

resolution, as illustrated in Figure 8.6. Since the voxels’ displacements derive from 

these vertices’ properties, the simplified lattices can enable the result to represent 

different deformation extents (as shown in Figure 8.6 (A to D)). 

 

Figure 8.9   Results of deformed behaviours resulting from different lattice simplification levels 
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Furthermore, the simplified lattices can accelerate the deformation process. Figure 

8.10 shows the interactive rates of testing different levels of resolution. The lattice 

refinement will overleap several vertices during the reverse subdivision process. 

Consequentially, the simplified control lattice might loss a few overleapt vertices’ 

displacements and lead to a tiny influence of resulting deformation behaviours. 

However, as shown in Figure 8.10, the higher simplification level number will lead to 

higher frame rates, especially work on processing the large volume data set, e.g. 

maintaining the deformation of human celiac data at 19.36 fps on the simplification 

level 4.   

 

Figure 8.10  Comparative results of different lattice simplification levels 

 Freeform deformation behaviours 

Figure 8.11 illustrates a number of deformation results of the IVD method. In images 

(A to H), the results of non-physics-based deformation were generated by 

implementing a series of linear transformation on the extracted lattices. As shown in 

image I to L, the deformation approach enabled the representation of gradient changes 
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in the deformed areas.  

 

Figure 8.11  Various results of IVD method  

In addition, by configuring the simplification level of the lattices, the variables of the 

mass-spring mechanism and the properties of the volumetric displacement diagram, 

the deformation mechanism can be modified to output various customized 
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deformation results (shown in image M to T). 

8.5  Summary 

This chapter has described the system test operations which were implemented from a 

quantitative perspective. Firstly, the important concept designs were summarized with 

presenting their test results. Then, the performance evaluation began to quantify the 

achievements of the IVD system through a series of contrasts in interactive rates. 

Simultaneously, a number of deformation results were listed to demonstrate the 

capabilities of the system in terms of freeform deformations and customized 

manipulations. At the end of this chapter, this section aims to claim the advantages of 

the IVD approach by comparison with the latest physics-based and non-physics-based 

volume deformation approaches (assisted breast survey (Patete, Iacono et al., 2012) 

and constrained illustrative volume deformation (Correa, Silver et al., 2010)).  

 

Figure 8.12  Comparison table showing performances of IVD, assisted breast survey (ABS) and 

constrained illustrative volume deformation (CIVD)  

As shown in Figure 8.12, the IVD approach represents the highest efficiency because 
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its automatic visualization diagram and accurate data deformation. It is more 

convenient than the constrained off-line interpolation operations in CIVD and the 

semi-automatic procedures in ABS. As a dedicated clinical analysis application, ABS 

gives the highest accuracy because it studies the deformation behaviours in microns. 

However, the specific requirements of clinical simulations restrict the usage of the 

ABS approach. In addition, the non-physics-based deformation cannot assist CIVD in 

implementing true flexible deformations as well as the physics-based approach’s 

results. Due to the constructed mass-spring system in both the IVD and ABS 

approaches, their deformation behaviours are more accurate than the manually 

constrained results in CIVD. The biggest advantage of CIVD is enabling volume 

shading terms in rendering deformation results. The other two approaches just focus 

on the deformation extents and leave the associated rendering designs to future 

operations. 

By summarizing this comparison table, this chapter has managed to demonstrate the 

feasibility of the IVD design and the test results have given enough evidence of the 

applicability of this design in real-time manipulation applications. 
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Chapter 9 Conclusions and Future Work 

This thesis presented a novel physics-based volume deformation approach that 

enables real-time manipulations of volume data. A new notion of displacement 

mapping was devised for processing the voxels’ displacement parameters, so that the 

presented approach could perform a series of flexible and interactive volumetric 

deformation behaviours. The implementation of this deformation approach was 

accomplished in 4 key phases, volume data processing, lattice manipulation, 

deformation control and GPU-accelerated implementation. 

The construction of volumetric data processing function can perfectly solve the 

limitations of complicated volume data analysis and successfully make the visual 

results meet the pre-defined criteria of visualization term. Besides, this function 

simultaneously prepares the isolation of interesting data segment(s) for the following 

lattice and deformation operation. About the associated rendering of deformed 

features is left to in the future work plan. 

As an intermediate process in this deformation system, the lattice manipulation 

succeeds in building up model-fitting lattice, mapping the vertices displacements onto 

voxels and maintaining the system performance via its lattice refinement function. 

However, its shortage in preserving the integrity of displacement information during 

the lattice simplification phase can lead to a few artefacts. For example, according to 

the mesh deformation tested by Patete, the influence of displacement will lead to the 
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0.01%-1.0% difference to the real result (Patete, Iacono et al., 2012). With the idea of 

further rendering, the loss of displacement will be mentioned in the future work plan. 

In addition to the visualization improvements, the novel physics-based volume 

deformation design is another important part in this project. First of all, this 

deformation function can not only accomplish both physics-based and 

non-physics-based volume deformation behaviours, but support customisable and 

localisable manipulation of interesting data segment(s). 

The GPU-based acceleration designed had sufficiently exhibited its power of 

maintaining the designed volume deformation system to enable the real-time 

customisation operations at an interactive rate (over 14 fps).  

9.1  Conclusions 

9.1.1  Efficient Volume Data Processing 

Chapter 3 described a solution which analyses the volume data structure and enables a 

volumetric features extraction function by using two kinds of segmentation masks. By 

developing the image segmentation algorithms to classify the volume data, an 

automatic volume segmentation process was constructed to generate one kind of 

segmentation mask which records the properties of the volumetric data segments. This 

mask was rendered by a set of visual information which was generated by an online 

LUT in the ATF design, which was designed to paint the associated data segments in 

the final display in the data-driven mode. This visual information can describe the 
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volume data structure, based on which the other kind of segmentation mask was used 

to isolate the interesting segment(s) from the volumetric space. 

As a data pre-processing approach, the volume data processing was designed to 

complete the information extraction before starting any further processing operations. 

Therefore, its processing time was not considered in the evaluations of the 

performance of the deformation processes. 

9.1.2  Adaptive Lattice Manipulation 

The construction of control lattices played an important part in the deformation 

preparation stage. Chapter 4 explained a solution for constructing lattices to enclose 

the volume data. The feasibility of the solution was proven by the fact that its 

MC-based lattice construction successfully generated “model-fitting” control lattices 

which could completely enclose the deformation object and precisely match its 

outlines. It could avoid the manually determined boundaries which usually cover a 

number of unnecessary parts, and result in constrained assumptions.  

Due to the high sampling frequency of the method, the extracted lattices comprised 

overabundant control points. Therefore, a number of mesh simplification methods 

were tested to solve the problem of oversampling successfully. Besides the criteria for 

different simplification mechanisms, the mesh simplification design explained in 

Chapter 4 laid down a new one, which stated that both the generation of new vertices 

and the merging of several vertices into a new one were not permitted. This criterion 

was intended to ensure a relationship by which each extracted vertex could be 
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addressed to a voxel by indexing it in the IIR design. 

9.1.3  Flexible Deformation Control 

After finishing the lattice construction, the deformation preparation was continued by 

executing the other important part: displacement mapping. In Chapter 5, the 

framework presented for a new displacement mapping method consisted of two 

conversions. The first conversion used the vertices’ displacements to parameterize the 

deformation on the control lattices, and mapping them to exterior voxels. This 

conversion relied on the IIR between the extract vertices and a layer of exterior 

voxels. The second conversion was between the exterior voxels and the underlying 

volumetric space. In order to implement a resulting distribution of movements inside 

this space, the notion of a volumetric displacement diagram was implemented by 

devising an octree-based lookup function to locate the interior voxels, and assigning 

the computed displacements to them. Based on these two conversions, the volume 

deformation could be successfully implemented, so that the deformation operations 

could be parameterized within the associated variables. 

9.1.4  GPU-accelerated System Integration  

Chapter 7 encoded a series of GPU-accelerated implementations. The time-consuming 

data access and computation operations were separated into a set of sub-tasks. By 

describing the associated principle of constructing kernel function and iterating it on 

all subtasks simultaneously in the CUDA-based parallel processing framework, the 

large vertex extraction workload and the complicated conversions design in 
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deformation preparation could be accomplished efficiently. Based on the results of the 

system evaluation described in Chapter 8, it has been proven that GPU-based 

implementations can enable rapid deformation representations and interactive 

manipulations of volume data.  

9.2  Future Work 

The novel physics-based volume deformation pipeline presented in this thesis can 

manipulate the voxels’ displacements to achieve complicated simulations and 

freeform deformations.  

There are a number of imminent steps that once realized could further improve the 

IVD system. First of all, the volume data processing can be implemented on GPU, so 

that its accelerated performance can enable a rapid display of analysis results. In order 

to highlight the given features in deformation results, the volume data processing 

should allow a series of real-time (or near real-time) modifications for customizing 

them. Its GPU-accelerated implementations will rapidly provide direct feedback of 

the modifications of volumetric data analysis module. Secondly, a new approach to 

local mesh simplification, which divides the control lattice into useful and useless 

meshes, can be implemented to reduce the number of vertices in the simplification 

process. Meanwhile, the mesh simplification design can be assisted by a dedicated 

function which serves to preserve sharp features during the simplification period. 

Thirdly, the deformation behaviours can be enriched by implementing discontinuous 
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operations and results, both of which can be used to simulate ruptures in manipulating 

rigid materials.  

In addition, the GPU-based visualization pipeline has shown potential for adding 

advanced rendering terms to the final results. The envisaged future works can extend 

the current system to comprise a comprehensive set of latest illumination terms 

through enabling layer-based or voxel-based rendering mode. For example, the 

rendering effects will be generated by the approximate Monte-Carlo light transports 

on the layers of voxels. For high-precision applications, e.g. clinical simulations, the 

computed deformation results should not only manipulate the large volume data 

accurately, but also shade correct illumination effects corresponding to different tissue 

substances through implementing the lighting scattering methods.  
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Appendix A 

Because of the benefits from applying GPU, the traditional computing process is 

evolving from “central processing” on the CPU to “co-processing” on the CPU and 

GPU. In order to support this new computing paradigm, Nvidia built up CUDA, a 

parallel computing architecture, to facilitate the heterogeneous computing with CPU 

and GPU. As a subset of C with dedicated extensions, CUDA is a programming 

model that enables dramatic increases in computing performance by harnessing the 

power of the GPU.  

CUDA serves as a technically partition of an object task into a certain amount of 

subtasks and assigns them to be accessed and processed in the manner of threads in 

GPU. Although both processing mechanisms are based on the thread, the advantage of 

GPU’s threads over CPU’s contains: very little creation overhead (i.e. GPU can own 

more threads than CPU) and indexable ID for rapid switching (i.e. offering faster 

thread management). Besides, as a special feature of GPU, the inherent threads are 

available for synchronisation which can overcome the problems of limited memory 

bandwidth and redundant computation. Consequently, utilizing GPU to process the 

computation works can save processing time and increase system efficiency. 

Inside this cooperative processing, CPU and GPU are two distinct processors and 

require two different types of memory: host memory (only available in CPU but not 

accessible for GPU’s threads) and device memory (dedicated storage unit in GPU). 
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For the communication between them, there constrainedly exists a series of memory 

allocation operations which standardise the data transfer tasks.  

As a powerful tool of GPU-based acceleration, CUDA has been becoming popular in 

various categories of recent graphics cards, representing a significant installed base 

for different application developers or researchers. 

Appendix B 

Consumer grade is for describing a gear manufactured for general users who want 

ordinary application with an acceptable price of it. Different from professionals, the 

consumer grade gear is normally designed to suffice for various user demands without 

any special service restrictions. 

As an example of consumer grade gear, the consumer grade computer owns various 

features: low prices, low quality, popular, convenient maintenance and management, 

etc. Although it cannot achieve the same high-performance as the professional gear 

(the workstation), the consumer grade computer has been becoming more powerful 

through benefitting from the hardware development the design and application of new 

materials in the past two decades. 

 


