
University of Huddersfield Repository

Xu, Qian

Interactive Volume Deformation Based on Model Fitting Lattices

Original Citation

Xu, Qian (2012) Interactive Volume Deformation Based on Model Fitting Lattices. Doctoral thesis,
University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/17820/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Interactive Volume Deformation Based
on Model-Fitting Lattices

BSc. Qian Xu

A thesis submitted to the University of Huddersfield in partial
fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

Jun 2012

I

Acknowledgements

I would like to thank the School of Computing and Engineering at the University of

Huddersfield for providing this great opportunity of study and facilitating me

throughout this project. I wish to thank my colleagues at the Computer Graphics,

Imaging and Vision (CGIV) Research Group within the University of Huddersfield

for their continuous and consistent help and support to the project and myself.

I would like to express my sincere gratitude to my director of studies, Dr Zhijie Xu,

for his exceptional support and guidance throughout this project. He was willing to

take a chance on my research from the beginning, and has always pushed me to fill in

that one last detail to elevate the level of my thinking and my works.

A great deal of consideration and thanks must go to my family. My parents, Yonghan

Xu and Yan Ping, continue to be my role models for living life with passion,

creativity, and hard work. They have sacrificed many days without me, yet all of this

would be for nothing without them.

II

Abstract

Volume visualization, which is a relatively new branch in scientific visualization, not

only displays surface features of a model, but enables an intuitive presentation of the

internal information of the object. Its comprehensive visualization algorithms

developed in the last decade have brought in challenges such as complex data

processing, real-time operations, and application-specific system performances. These

challenges were elaborated in the manner of research objectives in the thesis.

By devising a novel volume deformation pipeline, this thesis managed to explore

volume-model-related operations applied for complicated applications through

illustrating the feasibility of the designed system that was verified by experimental

results. The contribution of the programme was demonstrated via testifying the

effectivities of the four system design characteristics. Firstly, the clustering-based

segmentation methods were adopted by the volumetric data processing module within

the proposed volume deformation system for managing the complicated structures

often existing in large volume data sets. Secondly, a novel mesh construction method

was formulated in terms of optimizing the control lattices for the following

deformation process. Thirdly, the volume deformation approach devised in the

research has taken advantages of the parameterization process of the entire

shape-change process. Finally, the GPU-based parallel process architecture was

utilized to accelerate the calculation of Gaussian sampling in the lattice construction

process; the progressive locations of the removed points in the simplification scheme;

and the integration of kinetic energy for determining the deformation behaviours.

III

List of Publications

Xu, Q., D. Gledhill, et al. (2011). "Volume deformation based on model-fitting surface

extraction." In: Proceedings of the 17th International Conference on Automation and

Computing: 175-180.

Xu, Q., M. Holder, et al. (2010). "Improved iso-surface extraction for hybrid

rendering application." In: Proceedings of the 16th International Conference on

Automation and Computing: 96-101.

Xu, Q., Z. Xu, et al. (2009). "Predicting specific gravity and viscosity of

level-of-detail control in hybrid rendering application." In: Proceedings of Computing

and Engineering Annual Researches’ Conference 2009: 76-81.

Xu, Q. and Z. Xu (2009). "A hybrid rendering framework for the real-time

manipulation of volume and surface models." In: Proceedings of the 15th

International Conference on Automation and Computing: 160-165.

IV

List of Figures

Figure 1.1 An engine box represented via different modes. ... 2

Figure 1.2 A CT scan of a human brain ... 3

Figure 1.3 A diagram of the design system pipeline .. 9

Figure 2.1 Various applications of volumetric information ... 12

Figure 2.2 Illustrations of volume model formations ... 13

Figure 2.3 Diagrams of forward-mapping and backward-mapping methods 15

Figure 2.4 Shading results determined by different optical models 16

Figure 2.5 A diagram of a viewing ray for volume rendering integral 18

Figure 2.6 A diagram of tri-linear interpolation ... 20

Figure 2.7 Diagrams of colour accumulation and approximated rendering integral 22

Figure 2.8 The results of ray-casting.. 22

Figure 2.9 Diagrams of pre-, post- and pre-integrated classifications 24

Figure 2.10 The results of object-aligned slices ... 27

Figure 2.11 Results of view-aligned slices. ... 29

Figure 2.12 A diagram of the shear warp model with the parallel projection mode 30

Figure 2.13 A diagram of interpolating scan-lines ... 32

Figure 2.14 A diagram of shear warp algorithm with the perspective projection mode 32

Figure 2.15 A diagram of MIP ... 34

Figure 2.16 Results of MIP .. 35

Figure 2.17 Illustrations of MIP-based and LMIP-based imaging methods 36

Figure 2.18 Various shading effects .. 37

V

Figure 2.19 Results of first hit approach for the human head data set 38

Figure 2.20 A diagram of deferred shading approach .. 39

Figure 2.21 A diagram of deferred ambient occlusion approach ... 39

Figure 2.22 A result of volume scattering .. 40

Figure 2.23 A diagram of a shading composition design ... 41

Figure 3.1 A diagram of the clipping method via tagged volumes 44

Figure 3.2 A diagram of the depth-based volume clipping method 45

Figure 3.3 Illustrations of surface deformation models ... 45

Figure 3.4 Illustrations of the ray-deflector volume deformation method 47

Figure 3.5 Results of the spatial TF method .. 47

Figure 3.6 Illustrations of the warping-based volumetric representation method 49

Figure 3.7 A diagram of a physics-based deformation method for medical simulations ... 49

Figure 3.8 A diagram of Chain-Mail algorithm ... 51

Figure 3.9 Results of Chain-Mail-based deformation .. 51

Figure 3.10 Diagrams of FEM-based approximate representation 52

Figure 3.11 Illustrations of FEM-based volume deformation .. 53

Figure 3.12 A diagram of Mass-spring system .. 53

Figure 3.13 Illustrations of a volume deformation based on Mass-spring system 54

Figure 3.14 Diagrams of CVG-based Boolean operations ... 55

Figure 3.15 Results of CVG-based Boolean operations .. 55

Figure 3.16 Illustrations of a dynamic CT baby data ... 56

Figure 3.17 Illustrations of a volumetric particle system ... 57

Figure 3.18 Illustrations of CFD simulations based on volume animation techniques. 57

VI

Figure 3.19 The comparison table of Chain-Mail, FEM and Mass-spring performances 59

Figure 4.1 Display of a CT-scanned human head data. ... 64

Figure 4.2 The results of HVS. .. 67

Figure 4.3 The results of EMVS. ... 70

Figure 4.4 The results of KMVS. ... 72

Figure 4.5 The results of MSVS. ... 80

Figure 4.6 Diagrams of ATF design and the result of analysing a CT-scanned data 83

Figure 4.7 Energy ݔܧ, in active contour algorithm versus the number of iteration 85 ݕ

Figure 4.8 Illustrations of active contour algorithm ... 86

Figure 4.9 Illustrations of a domain of interest initialized in active surface algorithm 86

Figure 4.10 Results of active surface algorithm in volume segmentation 89

Figure 5.1 Results of constructed lattices based on the segmented information 91

Figure 5.2 Diagram of sampling process in MC algorithm .. 93

Figure 5.3 Diagram of the look-up table for surface-edge intersection 94

Figure 5.4 Results of extracted iso-surfaces. ... 94

Figure 5.5 Results of extracted iso-surfaces .. 96

Figure 5.6 Results of decreasing sampling rate ... 98

Figure 5.7 Illustrations of adaptive subdivision method .. 99

Figure 5.8 Illustrations of vertex decimation method .. 100

Figure 5.9 Illustrations of vertex merging method ... 101

Figure 5.10 Illustrations of vertex adaptive subdivision solution 104

Figure 5.11 Illustrations of deformed control lattices .. 104

Figure 6.1 Pipeline of deformation module ... 107

VII

Figure 6.2 Random shape changes on the extracted lattice (in 2D and 3D) 109

Figure 6.3 Mesh-based mass-spring system ... 111

Figure 6.4 Diagrams of decomposing the applied force in mass-spring system 113

Figure 6.5 Results of lattice deformation with mass-spring system. 114

Figure 6.6 Results of lattice deformation with different stiffness coefficients 116

Figure 6.7 Diagram of mapping process deployed in the DOGME 117

Figure 6.8 Diagram of I-DOGME .. 118

Figure 6.9 Diagram of improved mapping process deployed in the I-DOGME 120

Figure 6.10 Results of volume deformation with different stiffness values 120

Figure 6.11 Results of clipped results after the mapping process 121

Figure 6.12 Diagram of relationships between control vertices and underlying voxels 121

Figure 6.13 Diagram of creating the octree-based lookup function 122

Figure 6.14 Diagram of using the octree-based lookup function 122

Figure 6.15 Diagram of the arrangement of 8 partitions .. 123

Figure 6.16 Diagram of an digital nested relationship to present the octree structure 123

Figure 6.17 Diagram of generating internal relationship for indexing operations 126

Figure 6.18 Results of volume deformation with different parameter settings 126

Figure 6.19 Results of fixed volume deformation ... 127

Figure 7.1 Diagram of hierarchical structure in CUDA programming model 133

Figure 7.2 Diagram of CUDA-based volume rendering pipeline 134

Figure 7.3 Illustrations of cubic sampling region .. 136

Figure 7.4 Diagram of CUDA-based lattice construction .. 139

Figure 7.5 Diagram of triangulizing polygons ... 143

VIII

Figure 7.6 Diagram of octree data structure and the displacement mapping design 145

Figure 7.7 Results of octree-based lookup function ... 146

Figure 8.1 Results of DVR with a 2D TF and the ATF design .. 152

Figure 8.2 Results of the volume data processing module ... 154

Figure 8.3 Results of extracting lattices from the isolated segments 156

Figure 8.4 Results of non-physics-based deformation ... 157

Figure 8.5 Results of the IVD method ... 158

Figure 8.6 Comparative results of different TF designs .. 159

Figure 8.7 Comparative results of different implementations .. 160

Figure 8.8 Comparative results of different deformation solutions 161

Figure 8.9 Results of deformed behaviours resulting from lattice simplification levels . 161

Figure 8.10 Comparative results of different lattice simplification levels 162

Figure 8.11 Various results of IVD method ... 163

Figure 8.12 Comparison table showing performances of IVD, ABS and CIVD 164

IX

List of Tables

Table 4.1 Mechanism of HVS .. 67

Table 4.2 Mechanism of EMVS ... 69

Table 4.3 Mechanism of KMVS ... 72

Table 4.4 Comparison between processing times ... 73

Table 4.5 Comparison among performances of processing different data 74

Table 4.6 Comparison among three kinds of clustered results. .. 75

Table 4.7 Comparison between the results of EMVS and KMVS 76

Table 4.8 Mechanism of MSVS ... 80

Table 4.9 Mechanism of active surface algorithm. ... 88

Table 5.1 Comparisons between results of decimation and subdivision solutions 102

Table 5.2 Comparison between results of decimation and subdivision solutions 103

Table 6.1 Mechanism of vertex displacement calculation .. 117

Table 6.2 Mechanism for locating voxel’s sequence number ... 119

Table 6.3 Mechanism for locating grid nodes .. 125

Table 8.1 Results of using KMVS and MSVS to process different data sets 153

X

List of Abbreviations

1/2/3D one-/two-/three-dimensional

ATF Automatic Transfer Function

BRDF Bidirectional Reflectance Distribution Function

CFD Computational Fluid Dynamics

CSG Constructive Solid Geometry

CT Computer Tomography

CUDA Compute Unified Device Architecture

CVG Constructive Volume Geometry

DIP Digital Image Processing

DOGME Deformation of Geometric Models Editor

DVR Direct Volume Rendering

EM Expectation-maximization

EMVS Expectation-maximization algorithm-based Volume Segmentation

FEM Finite Element Method

FFD Free-Form-Deformation

HVS Hierarchical clustering-based Volume Segmentation

I-DOGME Improved Deformation of Geometric Models Editor

IDVR Indirect Volume Rendering

XI

IIR Indexable Inherent Relationship

IVD Interactive Volume Deformation

KM K-means

KMVS K-means clustering-based Volume Segmentation

LUT Lookup Table

MC Marching-Cubes Algorithm

MIP Maximum Intensity Projection

MRI Magnetic Resonance Imaging

MS Mean-shift

MSVS Mean-shift clustering-based volume Segmentation

PC Personal Computer

PDE Partial Differential Equation

SIMD Single Instruction, Multiple Data

SIMT Single Instruction, Multiple Threads

TF Transfer Function

XII

Table of Contents

Acknowledgements .. I

Abstract ... II

List of Publications ... III

List of Figures .. IV

List of Tables .. IX

List of Abbreviation .. X

Table of Contents .. XII

Chapter 1 Introduction ... 1

1.1 Volume Data Acquisition .. 3

1.2 Volume Visualization and Deformation .. 5

1.3 Research Objectives ... 6

1.4 Contributions to Knowledge .. 9

1.5 Thesis Outlines .. 11

Chapter 2 Review on Volume Visualization Approaches ... 12

2.1 DVR Optical Model ... 15

2.2 Ray-casting Theory and Practice .. 16

2.2.1 Volume Rendering Integral Model .. 17

2.2.2 Tri-linear Interpolation ... 19

2.2.3 Alpha Blending Operation .. 20

2.2.4 Classification Process .. 23

XIII

2.3 Texture-mapping Approaches .. 27

2.4 The Shear-warp Model ... 30

2.4.1 Parallel Projection Algorithm ... 30

2.4.2 Perspective Projection Algorithm .. 32

2.5 The Maximum Intensity Projection .. 34

2.6 Volume Shading Techniques ... 36

2.6.1 Monte-Carlo Techniques for Iso-surface .. 37

2.6.2 Volume Scattering ... 40

2.7 Research Objectives ... 41

Chapter 3 Volume Model Manipulation Strategies ... 43

3.1 Volume Clipping .. 43

3.2 Volume Deformation .. 45

3.2.1 Non-physics-based Deformation ... 45

3.2.2 Physics-based Deformation .. 49

3.3 Constructive Volume Geometry ... 54

3.4 Volume Animations .. 56

3.5 Analysis on Current Challenges ... 58

3.6 Design Criteria ... 60

Chapter 4 Volumetric Data Processing ... 63

4.1 Applying Clustering Methods for Classifying Volume Data ... 64

4.1.1 Hierarchical Clustering-based Volume Segmentation (HVS) 65

4.1.2 Expectation-Maximization Algorithm-based Volume Segmentation (EMVS) 67

XIV

4.1.3 K-means Clustering-based Volume Segmentation (KMVS) 70

4.1.4 Evaluations of Segmentation Approaches .. 73

4.2 Segmentation Improvement and Cluster Representation ... 78

4.2.1 Mean-Shift Clustering-based Volume Segmentation (MSVS) 78

4.2.2 Design of Automatic Transfer Function (ATF) .. 82

4.3 Design of Boundary Extraction .. 83

4.3.1 Active Contour Algorithm .. 84

4.3.2 Region-based Active Surface Method ... 86

4.4 Summary ... 89

Chapter 5 Lattice Construction and Refinement ... 91

5.1 Marching Cubes Algorithm ... 92

5.1.1 Sampling and Vertex Extraction Process ... 92

5.1.2 Triangulation Process .. 93

5.1.3 Automatic Construction and Model-fitting Lattices .. 94

5.2 Lattice Refinement ... 95

5.2.1 Varying Sampling Rates .. 97

5.2.2 Adaptive Subdivision Scheme .. 98

5.2.3 Vertex Decimation Approach ... 99

5.2.4 Vertex Merging Method ... 100

5.2.5 Tests and Evaluations .. 101

5.3 Summary ... 105

Chapter 6 Volume Deformation .. 107

XV

6.1 Constructing Deformable Solids .. 108

6.1.1 Lattice Deformation ... 109

6.1.2 Embedding Mass-spring Mechanism-based Framework .. 110

6.1.3 Implementing Resistance Force Mechanism .. 114

6.2 Displacement Mapping ... 117

6.2.1 Mapping Process Design .. 117

6.2.2 Design of Indexable Inherent Relationship (IIR) .. 118

6.3 Octree-based Lookup Function .. 122

6.3.1 Implementing Octree Data Structure ... 124

6.3.2 Constructing Octree-based Lookup Mechanism ... 124

6.3.3 Accomplishing Volumetric Deformation ... 125

6.4 Fixing Deformation .. 127

6.5 Summary ... 128

Chapter 7 System Integration and Acceleration .. 131

7.1 Preparations of CUDA-based Programming .. 132

7.2 CUDA-based Volume Visualization ... 134

7.2.1 Geometric Modelling Function ... 135

7.2.2 Kernel Sampling Function .. 136

7.2.3 Kernel TF ... 137

7.2.4 Kernel Accumulation Function ... 137

7.3 CUDA-based Lattices Construction ... 138

7.3.1 Kernel MC Function .. 139

XVI

7.3.2 Kernel Triangulation Function .. 140

7.3.3 Kernel Subdivision Function .. 143

7.4 CUDA-based Displacement Mapping ... 145

7.4.1 Kernel Octree-based Lookup Function .. 145

7.4.2 Kernel Mapping Function .. 147

7.5 Summary ... 149

7.5.1 SIMT Architecture .. 149

7.5.2 Synchronizing Kernel Functions ... 149

Chapter 8 Test and Evaluation .. 151

8.1 Efficiency Evaluation on Volume Segmentation ... 151

8.2 Effectiveness Test on Lattice Construction ... 155

8.3 Flexibility Assessment on Interactive Deformation .. 156

8.4 System Run-time Performance Evaluations .. 158

8.5 Summary ... 164

Chapter 9 Conclusions and Future Work .. 166

9.1 Conclusions ... 167

9.1.1 Efficient Volume Data Processing... 167

9.1.2 Adaptive Lattice Manipulation ... 168

9.1.3 Flexible Deformation Control ... 169

9.1.4 GPU-accelerated System Integration ... 169

9.2 Future Work .. 170

References ... 172

Chapter 1 Introduction

1

Chapter 1 Introduction

In contrast to the “pure” mathematical studies carried out by a small group of elite

mathematicians in the 19th century, the so-called applied mathematics had been

enjoying great success and public attention since the turn of the 20th century

(Gluchoff, 2005). One of the main contributions to this phenomenon is the increased

integration of the theoretical and abstract mathematical concepts with other scientific

disciplines, such as physics, engineering, economics and even biology (Matsuura,

Oharu et al., 2003; Dumas, Druez et al., 2009; Hernandez, Mateos et al., 2009; Britz,

Strutwolf et al., 2011). The breakthroughs in those vastly diversified areas were

supported by new mathematical tools and theories developed in the first half of the

20th century: statistics, topology and modern integral theory.

The invention and wider spread of modern computer technologies since the second

half of the 20th century have further accelerated this trend. For example, stemming

from computer graphics, volume rendering has been growing into an important

research field in the last two decades (Engel, 2004). Most of the developments of

volume visualization and application techniques in the 1980s and 90s had focused on

exploring the theoretical and mathematic foundations of the visualization process.

Since the mid-1990s, three leading research groups have proposed a series of

improvements for PC-grade and efficient volume visualization techniques: the

portable visualization clients by the Visualization and Interactive Systems group in

the University of Stuttgart (Engel, Oellien et al., 2000); advanced volumetric

modelling methods by the Visual and Interactive Computing group in the University

of Swansea (Chen and Tucker, 2000), and versatile volume shading designs by the

Chapter 1 Introduction

2

Scientific Computing and Imaging Institute in the University of Utah (Kniss, Premoze

et al., 2003).

Compared with conventional 3D modelling and visualization techniques, volume

models allow direct or indirect access to their internal structures, instead of only

showing their surface features. In Figure 1.1, all four snapshots are showing an engine

box. Besides the vivid surfaces, wireframe-based model A does not show any internal

information. In contrast, model B is a volume model, which can be processed into

model C and D respectively to exhibit the interiors via two popular representation

modes.

Figure 1.1 An engine box represented via different modes. Model A is a surface model. Model B

presents a volume model; model C shows the internal structure through modifying the optical

characters; which model D represents the interiors via the clipping operation.

This visualization technique aims to gain the understanding of multi-dimensional

information and to display it as images. Similar to other modelling techniques, it also

suffers from a series of challenging problems, such as occlusion within models,

random data structures, noisy data, and artefacts generated from display mechanisms.

The main objectives of recent researches were to develop solutions for exploring the

“visibility” of various volumetric structures (Aykanat, Cambazoglu et al., 2007;

Sakamoto, Kawamura et al., 2010). This thesis deepened the understandings by

devising a novel solution of which users can freely customize the behaviours of

Chapter 1 Introduction

3

volume visualization process via interactive manipulation. In this thesis, Chapter 1

starts explaining the volume data source and carry on a brief introduction of two kinds

of general volume data acquisition methods. After accomplishing the recapitulative

content, the research objectives and the main contributions from the programme will

be highlighted at the end of this chapter accompanied by the thesis outline.

1.1 Volume Data Acquisition

In the 1960s, an American theoretical physicist, Allan M. Cormack, published a

mathematical model for calculating different rates of absorption of ionized radiation

(i.e. X-ray) when crossing through different body tissues (Cormack, 1979). Based on

this model, a British engineer, G. N. Hounsfield, invented the world’s first

Computerized Tomography (CT) scanner, an imaging device that allows 2D or 3D

sectional or volumetric models to be reconstructed in order to represent internal

information from the probed subject (Hounsfield, 1979). Due to their significant

achievements, Cormack and Hounsfield won the Nobel Prize in 1979. Figure 1.2

shows the snapshots of a sliced human brain.

Figure 1.2 A CT scan of a human brain

The model proposed by Cormack was based on the Radon transformation in Integral

Chapter 1 Introduction

4

Geometry developed by Johan Radon in 1917 and translated into English in 1986

(Radon, 1986). The Radon transform is widely applicable to tomography, the creation

of an image from the scattering data associated with cross-sectional scans of an

object. If a function ݂ሺݔ, ሻݕ represents an unknown density, then the Radon

transform represents the scattering data obtained as the output of a tomographic

scanner. Hence the inverse of the Radon transform can be used to reconstruct the

original density from the scattering data, and thus it forms the mathematical

underpinning for tomographic reconstruction, also known as image reconstruction.

The Cormack model resolves the inverse Radon Transformation issue through

convolution and inverse projection. Therefore, once the ݂ሺݔ, ሻ is determined, it isݕ

possible to reconstruct the sectional images of the measured tissue. Techniques like

Magnetic Resonance Imaging (MRI) may use a less invasive measuring mechanism,

but its foundation theory is similar to that for scanned image registering and

reconstruction.

Current CT and MRI scanning processes were normally time-consuming and

uncomfortable for patients, due to the rigid body postures which need to be

maintained throughout the dedicated solutions (Olabarriaga and Smeulders, 2001;

Fluck, Vetter et al., 2011). The latest advancements in digital processing have seen

fast scanning technologies being developed and utilized with varying degrees of

success (Zhou, Matsumoto et al., 2010; Cho, Cho et al., 2012). However, the scanned

images often suffer from unsatisfactory qualities (e.g. noise-level) due to their

inherent acquisition mechanisms that can cause great difficulties for image and 3D

reconstruction (Qian, Joshi et al., 2011). One of the motives for this research is to

investigate data filtering (pre-processing) techniques, prior to attempts being made to

Chapter 1 Introduction

5

improve the performance of the following volume visualization and deformation

approaches.

1.2 Volume Visualization and Deformation

After sampling the volume data in a regular sequence, the inherent information can be

converted into a series of parameters. The following visualization work can be

implemented directly (known as Direct Volume Rendering, or DVR), or

accomplished indirectly by relying on an iso-surface and then “copying” the

polygonal displaying strategy using surface modelling techniques (called Indirect

Volume Rendering, or IDVR). In order to explore the various features inside the

volume data, a special Lookup Table (LUT) is utilized for the purpose of data

classifying, and to “individualize” them with associated values. These values are to be

accumulated together on the image plane so that the inherent information can be

represented via an understandable image.

As a process for manipulating volume models, volume deformation can be

categorized as both non-physics-based and physics-based (Correa, Silver et al., 2010).

The former techniques were well-known because of the ability to “freely” deform

volumetric objects. In associated deformation applications, there was little or no

regard to the consideration of physical realism (Forsberg, Mooser et al., 2008;

Sugihara, Wyvill et al., 2010). In contrast, physics-based techniques are strictly

governed by the result of utilizing physical equations to calculate the external and

internal forces (Nealen, Müller et al., 2006; Bordemann, 2008). As the line between

these non-physics-based and physics-based deformation approaches is becoming

blurred in surface modelling techniques, more and more researchers are trying to use

non-physics-based techniques to produce the physical effects in volume-based

Chapter 1 Introduction

6

applications (Correa, Silver et al., 2010). However, most of them relied heavily on

man-made constraining operations and one-sided assumption-based works, which had

undoubtedly caused many artefacts and imprecise outputs during the “real-life”

simulations.

This thesis referred to physics-based volume deformation as a technique whereby

deformation was driven explicitly by applying forces on the control lattices enclosing

the volume model. In addition, both inertia and internal forces were considered. This

deformation method aims to describe the deformation behaviours and exhibit the

internal transformation precisely.

As an important criterion for evaluating deformation techniques, the performance of

interactive operations always influences the development of volume deformation

(Yuan, Zhang et al., 2010). The requirement for “on-the-fly” mechanisms exists at

every stage of the deformation pipeline, such as the sampling, transforming and final

displaying stages. In particular, the physics-based methods rely on complicated

calculations in order to provide precise deformation results, and consequently

physics-based manipulations of the volume model will lead to an inconceivably

time-consuming data processing. As a result, the physics-based volume deformation

requires hardware-based acceleration techniques to maintain a higher interactive rate

during the simulation.

1.3 Research Objectives

It is a common scenario that when deploying volume-based operations, the involved

complex data sets are often of 10 times scale, as compared to the surface-model-only

implementations, which leads to a heavy workload of sampling and rendering

Chapter 1 Introduction

7

operations for the host computer. The major development of the computing platform

took place at the turn of the new Millennium empowered by the rapid consumer grade

computer (see Appendix B) evolution (some reckoned as a revolution) (Mark, Steven

et al., 2003). As a result of this, complex scientific simulation and visualization tasks

have started moving from expensive workstations to Personal Computers (PCs). The

current consumer grade computers can support many complicated graphical and

non-graphical modelling at a near interactive rate through larger memory storage,

broader data bus and faster data access. Volume visualization and its applications are

among the first to benefit.

Accompanied by the increasing computing power supplied by the innovative

hardware platforms, volume models and their derived manipulations are quickly

coming out of the shadow of the surface models and becoming one of the main

representation forms for special applications (Strengert, 2005; Tatarchuk, Shopf et al.,

2008). Although there were still many challenges in volume visualization and

application techniques, i.e., in the real-time interaction arena, many research designs

have been focusing on improving the efficiency of the volume-based applications,

enhancing the rendering quality, or developing the interactions with the volume

models.

In addition to directly rendering, volume models can support other processing

methods so that more intrinsic information can be acquired, e.g. clipping methods.

This project created a novel volume deformation mechanism which enabled precise

representations of the deformation behaviours, rapid interactive operations and

versatile applications. The aim and objective of this project can be summarized as

follows:

Chapter 1 Introduction

8

 To investigate the state-of-the-art of volume visualization and deformation

techniques. The evaluation criteria were summarized based on the literature

review and used to discuss the pros and cons of the implemented system. The

system performances were categorized into three terms: “Flexibility”,

“Efficiency”, and “Accuracy”, of which the evaluations were respectively

estimated through processing different volume data, counting the real-time

performance and tackling customization operations (Correa, Silver et al., 2010;

Patete, Iacono et al., 2012).

 To improve the system performance. Besides the help offered by GPU-based

acceleration designs, the solution also comprised the dedicated data processing

strategy designed for solving the problem of large volume data size (Cates,

Lefohn et al., 2004). By studying the classic Digital Image Processing (DIP)

methods, this project finished a high-dimensional DIP solution for carrying out

volumetric data classification and information extraction (Fang, 2001).

 To accomplish the physics-based deformation mechanism for manipulating

volumetric features. First of all, a mathematic model was constructed for

partitioning the resulting deformation behaviour into a set of changed characters

within the volumetric space (Bachmann, Bouissou et al., 2009). Secondly, the

assignment of these characters was based on an order which records the nested

structures inside the volume model. And the control lattices met the demands:

nonexistence of self-intersecting polygons, this “model-fitting” lattice conforming

to models’ surface features, and the adaptive meshwork structure (Sauvage,

Hahmann, et al., 2008). In addition, the data exchange between CPU and GPU

were investigated for further efficiency gain (Lefohn, Kniss, et al., 2003).

Chapter 1 Introduction

9

1.4 Contributions to Knowledge

Besides the literature review, the main research efforts discussed in this dissertation

were respectively reflected by four functional modules (as shown in Figure 1.3). As a

result, the contributions to knowledge from this project can be summarized as:

Figure 1.3 A diagram of the design system pipeline

 Volume data segmentation abstracted interesting information from the continuous

volume data; meanwhile, filtered out the inherent noise and the trivial segments,

and consequently avoided useless data computation and processing tasks. Instead

of processing the resulting images, or relying on per-frame-based operations, the

strategy of volume data segmentation created a one-off 3D data pre-processing

before progressing visualization and deformation operations. It was published in

the 17th ICAC conference paper. By rendering these segment data, the result

directly exhibited the internal structure which can offer help in choosing the

interesting data segment(s).

 In order to customize the extent of transformations, the spatial determination

process relied on two key designs. One was a lattice-based “interface” between

applied forces and underlying volume models. The outcome of the lattice

construction process can influence the results of deformation operations. One was

a tree-like framework for ascertaining whether the voxels belong to the deformed

domain. Both them were explained in the same paper.

Chapter 1 Introduction

10

 The spatial displacement response within volume models was derived from

similar surface-modelling-based deformation examples, which styled the external

force calculation. And the deformation process was “translated” into a set of

parameter computations through determining a special data structure to

standardize the transformation operations. As a result of this, the parameter

calculation and data accessing tasks can be accelerated by the GPU-based parallel

computation design, so that the interactive rate of future operations can be

optimized. The benefit from GPU-accelerated achievements was firstly

mentioned in my paper published in 16th ICAC conference.

 Similar to the conventional displacement mapping techniques for mesh-based

object deformation, the voxel displacement map was designed to record voxels’

offset distances. This project utilized the view-aligned proxy geometry for

volume data storage, therefore, the voxel displacement map was correspondingly

3D-based. This 3D texture mapping avoided the complicated interpolation

processes involving the combinations of 2D and 3D textures, and consequently

improved the system efficiency. This part is based on the work document

published in 15th ICAC conference.

 By harnessing the parallel processing capabilities of GPU, the hardware

acceleration design in this research managed data through synchronizing each

sub-tasking. Therefore, the visualization and deformation operations were

partitioned into a set of subtasks synchronized in a parallel structure for

improving the system efficiency. This design was explained in the 17th ICAC

conference paper.

Chapter 1 Introduction

11

1.5 Thesis Outlines

A comprehensive literature survey regarding contemporary volume visualization

methods is recorded in Chapter 2. Chapter 3 provides an in-depth discussion on the

strategies of manipulating volume models, as well as the state-of-the-art in volume

deformations. The actual research methodology, design approach, implementation

strategy and evaluations are respectively covered into four chapters. Chapter 4

employs image segmentation methods and improved them for classifying volume

data. The classification enables the display of internal structures of complicated

volume data and the extraction of interesting data segment(s), which in turn,

simplifies the workload of the following data processing activities. The content in

Chapter 5 explains the lattices construction’s design principles and working

mechanisms for enclosing the manipulated volume data. As a vital part of this

physics-based volume deformation system, the constructed lattices met various

pre-defined requirements, such as the “model-fitting” lattice, flexible modification

and rapid construction. Chapter 6 covers the implementation of the deformed volume

models. A mathematical model has been established to subdivide the deformation

behaviour into the displacements of voxels through a “deformation parameterization”

operation. Chapter 7 reveals the details of the Compute Unified Device Architecture

(CUDA)-based implementations of the system prototype. This programming model

was used to separate the lattice construction and deformation parameterization

processes into sub-computation tasks, and to synchronize them into a parallel

computing architecture for the acceleration purpose. Chapter 8 uses the common

evaluation criteria to access this deformation system in terms of its intermediate

results, real-time performances, rendering quality. Chapter 9 concludes the research

with achievements and future work.

Chapter 2 Review on Volume Visualization Approaches

12

Chapter 2 Review on Volume Visualization Approaches

In early 1980s, volume visualization started attracting discussions in scientific

communities, due to its potential and powerful capabilities in revealing the internal

structures of objects (Drebin, Carpenter et al., 1988). However, limited by the

computational methods and platforms at the time, volume visualization and

deformation techniques faced tough challenges in various types of practical

applications (as shown in Figure 2.1), especially in real-time operations. In the last

decade, various research and pilot projects had focused on improving the quality of

the final rendered results; meanwhile, maintained adequate performances in real-time

operations (Kruger and Westermann, 2003; Strengert, Magallon et al., 2005;

Tatarchuk, Shopf et al., 2008; Fluck, Vetter et al., 2011).

Figure 2.1 Various applications of volumetric information. Image A is for studying oil reservoirs

in underground rocks (courtesy to Paul et al.). Image B illustrates a volumetric lighting method

for gaming scenes (courtesy to Nvidia Corporation). Image C exhibits a torso model for the

medical applications.

Chapter 2 Review on Volume Visualization Approaches

13

From this review of volume visualization terms, a comprehensive introduction of

various visualization approaches can be accomplished with potential challenges in

different applications. Based on this review, the research problems can be concluded

and chosen as the objectives for developing visualization properties.

Volume visualization techniques represent the object via displaying its spatial

characters in the form of images. Between the data acquisition and visualization

stages, there exists a modelling process which fills a 3D space (as shown in Figure 2.2

(A)) with a set of 3D geometrical elements in order of the original data’s inherent

sequences. Each data can be assigned to a cubic element which is regarded as a

volumetric pixel, and therefore named as “Voxel”. All voxels (as shown in Figure 2.2

(B)) can be accessed in the form of partitions inside of the volumetric space (as shown

in Figure 2.2 (C)). Each voxel can provide two types of parameters: one is 3D

coordinates defined via its spatial location, and the other is a scalar value derived from

the raw volume data. Depending on different voxel processing approaches, volume

visualization can be categorized into direct (DVR) and indirect (IDVR) strategies.

Figure 2.2 Illustrations of volume model formations

IDVR methods use vertices to replace voxels for indirectly representing the volume

data. Marching-Cubes (MC) algorithm is a prevalent IDVR, which consists of

following operations: extracting vertices from the volume data, grouping them

Chapter 2 Review on Volume Visualization Approaches

14

according to their scalar values, and implementing the Delaunay triangulation for each

group of vertices (Lorensen and Cline, 1987) . This algorithm and output images will

be covered in Chapter 5.

On the contrary, DVR solutions carry out a series of direct operations on voxels.

These visualization algorithms require a pre-defined optical model for managing the

conditions of volumetric light emission, light scattering, light absorption and ambient

occlusion among voxels. These physical quantities are all based the voxels’ optical

properties which are notionally determined by their scalar values, and will be

numerically represented by a series of RGBA quadruplets after the sampling process.

This process of converting scalars into colours is yielded by the so called

“Classification” phase.

The next step is sampling these values by casting a set of (parallel) rays through the

volumetric space. Depending on the different directions of these rays, DVR methods

can be divided into backward-mapping and forward-mapping ones (shown in Figure

2.3) (Engel, Hadwiger et al., 2004). In forward-mapping approaches, the voxels

forward project themselves onto the image plane, to compose the final image via a

sort of pixel distribution. Backward methods regard the viewing rays as sampling

tools, which penetrate through the pixels in the image plane and detect the voxels’

parameters for the image synthesis process. Because the system introduced in this

thesis mainly relied on backward-mapping DVR in the visualization phase, the review

of volume visualization techniques only focused on the forward-mapping methods.

Consequently, without any additional explanation, the directions of DVR techniques

discussed in the following context are all backward-oriented. As an important part of

the image synthesis process, calculating the light propagation via the integrating light

Chapter 2 Review on Volume Visualization Approaches

15

interaction effect for each point within a volumetric space is based on the choice of

optical models.

Figure 2.3 Diagrams of forward-mapping and backward-mapping methods

2.1 DVR Optical Model

An optical model serves as a paradigm that composes lighting-emitting points of

uniform physical quantity. Based on different conditions of light propagation inside a

volumetric space, the optical models can be classified as:

 Absorption only. This type of optical model determines the volumetric space to

be a kind of black hole. In this region, all lights are completely absorbed, and

consequently unable to support emitting or scattering conditions (as shown in

Figure 2.4 (A)).

 Emission only. In comparison to the absorption only model, which prevents light

emission and scattering, the emission-only optical model just focuses on the light

emission condition, without any consideration of absorption or scattering (as

shown in Figure 2.4 (B)).

Chapter 2 Review on Volume Visualization Approaches

16

 Absorption plus emission. As a syntheses of the above two optical models, this

model simultaneously enables light emission and absorption. Because most

DVR-based applications always overleapt the discussion of scattering and

indirect illumination, the absorption plus emission optical model is the most

popular choice for volumetric light propagation (as shown in Figure 2.4 (C)).

 Scattering and shading. Using this optical model, the light scattering can be

treated among the particles at voxel level. The scattering condition comprises

projecting lights onto the surface of each voxel from a light source without any

impeded objects, and being generated by the occlusion states among the voxels

(as shown in Figure 2.4 (D)).

 Multiple scattering. As an extension of simulating light scattering in a volumetric

space, the multiple-scattering optical model allows performances of the

complicated mechanism of an incident light scattered by multiple voxels.

Figure 2.4 Shading results determined by different optical models

2.2 Ray-casting Theory and Practice

The ray-casting displays mechanism was summarized as sampling 3D information

(voxels) and rendering in 2D formats (pixels), which belonged to the image-order

rendering method (Ray, Pfister et al., 1999). Besides, the texture mapping approach,

Chapter 2 Review on Volume Visualization Approaches

17

which decomposes a volumetric space into the given type of slices (2D or 3D), was

classified as an object-order rendering method (covered in section 2.1.3) (Weng, Lin

et al., 2002).

As the most direct solution for evaluating the volume rendering integral along the rays

from image space to object space, ray-casting was defined as the most basic DVR

algorithm and a kind of backward-mapping approach (Levoy, 1988; Choi, Shin et al.,

2000). After sampling the voxels’ optical properties via casting (parallel) rays in the

viewing direction through pixels into the volumetric space, ray-casting accumulates

the resulting properties for each ray in the form of evaluating the volume rendering

integral and rendering the results in the manner of pixels in the final display.

2.2.1 Volume Rendering Integral Model

In every volume rendering method, the volume rendering integral was always

evaluated in a certain direction. Generally, the viewing ray was chosen for evaluating

the integral, even if it was unclearly defined. Because the sampling mode was not

continuous in practice, the related optical properties were not continuous either. In

order to approximate the evaluation of the volume rendering integral, the calculation

was digitally replaced by a Riemann sum, which performs the accumulation of the

properties along the viewing ray in terms of colour values (Levoy, 1988).

Each viewing ray will, of course, penetrate through a number of voxels in certain

statuses including through a voxel’s centre, through a voxel and on one of six tangent

planes of it. The simplest condition is traversing through a voxel’s centre so that its

scalar value can be directly used as the sampled result of the viewing ray at this voxel.

For the other two statuses, the sampled results all need to be calculated via the

tri-linear interpolation in ray-casting-based applications (or 2D interpolation for

Chapter 2 Review on Volume Visualization Approaches

18

texture-based processing).

After the sampling process, the scalar value of voxel ܵሺ పܸሬሬԦሺ݀݅ݏሻሻ can be gained for

the following calculations. The పܸሬሬԦሺ݀݅ݏሻ indicated a voxel which is sampled by the

 along this ray to a virtual viewpoint (as shown ݏ݅ ݀ viewing ray పܸሬሬԦ at a distance ݄ݐ_݅

in Figure 2.5). This vector-based parameter comprised the information for indexing

the scalar values stored in a kind of texture memory. When the most popular optical

model (absorption plus emission) is employed, the indexed scalar value is represented

via a colour value ܥ௘௠௜௦௦௜௢௡ሺܵሺ పܸሬሬԦሺ݀݅ݏሻሻሻ called emissive colour, and the absorption

coefficient ݇ is defined for describing the condition of light absorption via

௔௕௦௢௥௕ሺܵሺܥ పܸሬሬԦሺ݀݅ݏሻሻ. It can be written as (Engel, Hadwiger et al., 2004):

௔௕௦௢௥௕ሺܵሺܥ పܸሬሬԦሺ݀݅ݏሻሻ ൌ ݇ · ܵሺ పܸሬሬԦሺ݀݅ݏሻሻ (2.1)

Based on these two kinds of colour values, the volume rendering integral can carry

out the resulting composition of colour values sampled along the rays. For example, in

order to calculate the result of the viewing ray passing through a distance ݀ (shown

in Figure 2.5), the absorbed and emissive colours at different locations can be worked

out respectively.

Figure 2.5 A diagram of a viewing ray for volume rendering integral

First of all, it is assumed that there are ݊ voxels detected on this ray and no intervals

between any two neighbouring voxels. Based on the equation 2.1, for the constant

Chapter 2 Review on Volume Visualization Approaches

19

absorption coefficient ݇, the light absorption on this ray can be written as:

௔௕௦௢௥௕ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ ൌ ݇ · ܵ ቀ݆ · ௗ

௡
ቁ ݆ א ሾ0, ݊ሿ (2.2)

On the condition that ݇ is dynamic, and depending on its position, the equation 2.2

will be changed into:

௔௕௦௢௥௕ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ ൌ ݇ ቀ݆ · ௗ

௡
ቁ · ܵ ቀ݆ · ௗ

௡
ቁ ݆ א ሾ0, ݊ሿ (2.3)

In the same way, the corresponding light emission can be represented via

௘௠௜௦௦௜௢௡ܥ ൬ܵ ቀ݆ ·
ௗ

௡
ቁ൰ (݆ א ሾ0, ݊ሿ). After finding the related ܥ௔௕௦௢௥௕ and ܥ௘௠௜௦௦௜௢௡ ,

the final result of this voxel on the image plane is ܥ௣௔௥௧௜௧௜௢௡, which can be written as:

௣௔௥௜௧௜௢௡ܥ ൌ ௘௠௜௦௦௜௢௡ܥ െ ௔௕௦௢௥௕ܥ ൌൌ ܵ ቀ݆ · ௗ
௡
ቁ · ሺ1 െ ݇ ቀ݆ · ௗ

௡
ቁሻ (2.4)

2.2.2 Tri-linear Interpolation

Tri-linear interpolation was usually utilized to implement a multivariate interpolation

for generating the sampling result in a voxel whose centre cannot be penetrated

through by a viewing ray (Engel, Kraus et al., 2001). The tri-linear interpolation

locates the resulting point with its scalar value through weighting eight neighbours’

coordinates and their scalar values (Rajon and Bolch, 2003). For example, as shown

in Figure 2.6, the Viewing ray needs to gain the scalar value of the point ௜ܵ௡௧௘௥௣.

After knowing about the scalar values of ௜ܵ௡௧௘௥௣’s eight neighbours (ܵ଴଴଴ െ ଵܵଵଵ), the

first cycle of tri-linear interpolation locates the new generated points (ܵ଴଴ െ ଵܵଵ).

Based on these points, the send cycle of the interpolation locates the point ௜ܵ௡௧௘௥௣,

and returns its scalar value as the final output. Because of the capability of calculating

Chapter 2 Review on Volume Visualization Approaches

20

the interpolated values, the tri-linear interpolation is applied to “filter” ambiguous

representations, and avoid visual artefacts caused by limited inputs with intervals

between data, or inaccurate results because of discontinuous samplings.

Figure 2.6 A diagram of tri-linear interpolation

2.2.3 Alpha Blending Operation

After obtaining ܥ௣௔௥௜௧௜௢௡ in equation 2.4 and finishing the associated explanations of

interpolation processes, an integral part of volume rendering is to carry on the

composition operations in the alpha blending process, which accumulates colour

values in the back-to-front or front-to-back order. The example shown in Figure 2.5 is

a front-to-back approach, i.e., its composition starts at the voxel closest to the image

plane and ends with a given voxel.

The composition process accumulates the sampling values in an opacity-weighted

calculation, which is obtained by pre-multiplying the original value ܥ௣௔௥௜௧௜௢௡ by its

associated opacity property: alpha value. In this front-to-back method, ܥ௖௢௠௣௢௦ ,

which represents each step of the composition, starts at ܥ௖௢௠௣௢௦ ൌ 0 and

accumulates the result of multiplying the ݆_݄ݐ voxel’s value ܥ௣௔௥௧௜௧௢௡ሺ݆ሻ by the

corresponding alpha value ܣ௝ (Wittenbrink, Malzbender et al., 1998):

Chapter 2 Review on Volume Visualization Approaches

21

,௖௢௠௣௢௦ሺ݆ܥ ݆ ൅ 1ሻ ൌ ௣௔௥௜௧௜௢௡ሺ݆ሻܥ ൅ ൫1 െ ௣௔௥௜௧௜௢௡ሺ݆ܥ௝൯ܣ ൅ 1ሻ ݆ א ሾ0, ݊ሿ (2.5)

This alpha value is related to the voxel’s location and the theory can be written as

(Blinn, 1994):

௝ܣ ൌ ௝ିଵܣ ൅ ൫1 െ ݆ ௢௥௜௚௜௡௔௟௝ܣ௝ିଵ൯ܣ א ሾ0, ݊ሿ, (2.6)

which means that the alpha value ܣ௝ is determined by its previous one ܣ௝ିଵ and the

alpha value ܣ௢௥௜௚௜௡௔௟௝ of the sampled value at this point is ܥ௣௔௥௜௧௜௢௡ሺ݆ሻ. Then the

calculated ܣ௝ is loaded in the equation 2.5 for the composition calculation.

By iterating the calculation in equation 2.5, the volume rendering integral

 ray is calculated via the Riemann-sum-based composition ݄ݐ_݅ ௜௡௧௘௚௥௔௟ሺ݅ሻ on theܥ

(Engel, Hadwiger et al., 2004):

௜௡௧௘௚௥௔௟ܥ ൌ ∑൫ܥ௖௢௠௣௢௦൯ ൌ ∑൫1 െ ௣௔௥௜௧௜௢௡ሺ݆ሻ (2.7)ܥ௝൯ܣ

Playing the role of controlling the supremum in the Riemann-sum-based volume

rendering integral, alpha blending can determine the terminal of composing colour

values in the front-to-back method. The composition can define an optimal indicator

(known as early-ray-termination), which determines the progress of alpha blending.

As shown in Figure 2.7, when the cumulated alpha value ܣ௝ (yielded in equation 2.6)

is equal to 1.0, the result of the Riemann-sum-based composition will stop at the

current position.

Chapter 2 Review on Volume Visualization Approaches

22

Figure 2.7 Diagrams of colour accumulation (left image) and approximated volume rendering

integral (lined shadow area in right image)

௜௡௧௘௚௥௔௟ܥ is the final result of the ݅_݄ݐ ray after passing through the volume

rendering integral, and represented by a few pixels which are stored in the frame

buffer in the form of 2D texture. The resulting images are shown in Figure 2.8.

Figure 2.8 The results of ray-casting

However, as a number of image-order algorithms suffered from low efficiency caused

by redundant computations, every ray-casting-based application struggled against the

same challenges that the occasioned heavy sampling work on every ray and the

iterative computations of opacity composition (Ray, Pfister et al., 1999). To overcome

these drawbacks, the researchers mainly focused on developing an orientated

rendering mode (e.g. digital boundary determinations to highlight or conceal given

Chapter 2 Review on Volume Visualization Approaches

23

regions) (Leu and Chen, 1999), increasing the efficiency of sampling mechanisms

(e.g. early ray determinations to manage the progress of sampling every ray)

(Hadwiger, Sigg et al., 2005), and improving display capability with the aid of applied

hardware (e.g. high-quality performance of multiple volumes to enable realistic

displays within complicated environments) (Tatarchuk, Shopf et al., 2008). In

addition, there were a series of hybrid-based solutions that combines the image-order

and object-order algorithms together to overcome their inherent disadvantages whilst,

furthermore, maintaining their respective advantages for improving the performance

of these solutions (Westermann and Sevenich, 2001).

2.2.4 Classification Process

Classification process relies on Transfer Function (TF) for assigning optical properties

(colour, opacity, etc.) to the voxels by indexing their scalar value in a colour-based

lookup-table (Engel, Hadwiger et al., 2004). Different combinations of the

classification and the interpolation-based filtering processes will make the results of

visualizing the same model totally different. The alternate order between classification

and filtering processes respectively forms pre- and post- classification methods, and

produces two kinds of results (as shown in Figure 2.9 (B and C)). Image D is an

output of the pre-integrated classification design. Besides the visual artefacts in their

results, all visualized features can be fully represented based on the complicated

design of Nyquist frequencies in the TF design which always limited the real-time

performance of visualization applications (Arens and Domik, 2010).

Chapter 2 Review on Volume Visualization Approaches

24

Figure 2.9 Diagrams of pre-, post- and pre-integrated classifications

For overcoming these limitations, an advanced solution was proposed to use the

numerical integration to replace the complex Nyquist frequencies in the TF design

(Engel, Kraus et al., 2001). Its idea is to “linearize” the sampled volume data into a

whole segment which comprises a stat point and ends with the last sampled data. The

information of this segment needs to be integrated before the classification, so-called

pre-integrated classification. In this solution, the length of the segment will be

increased as the sampling work proceeds. The integration will keep a non-stop update

on the colour and opacity of this segment. This integration requires two simple TFs

for colouring the segment and voxels respectively.

As shown in Figure 2.9, the integration operation consists of two steps. The

integration is for calculating the opacity of a segment. The other one is for integrating

the sampled voxels’ colour values. The integrated opacity of this segment ߙ௜௡௧௘௥ can

be written as (Engel, Kraus et al., 2001):

Chapter 2 Review on Volume Visualization Approaches

25

௜௡௧௘௥ߙ ൌ 1 െ exp ሺെ׬ ߬ሺܵሺሬܸԦሺܦሻሻሻ
௡
ଵ ሻ (2.8)ܦ݀

where ܵሺሬܸԦሺܦሻሻ represents a voxel’s scalar values, ߬ሺݏሻ is a simple TF for

transforming voxels’ scalar values ݏ, and ݊ is the number of voxels covered in this

segment (the distances between voxels are assumed to be zero). The other integration

is for the colour value of the segment ܥ௜௡௧௘ can be written as:

௜௡௧௘௥ܥ ൌ ׬ ሺܶ ൬ܵ ቀሬܸԦሺܦሻቁ൰ כ exp ሺെ׬ ߬ ൬ܵ ቀሬܸԦሺܦ′ሻቁ൰
௡
ଵ ሻሻ′ܦ݀

௡
ଵ ሻ (2.9)ܦ݀

with the other TF ܶሺݏሻ for colouring the segment. Besides avoiding the complex

Nyquiest frequencies in pre- and post- classification approaches, the pre-integrated

classification can generate high quality visual results (as shown in Figure 2.9(D)).

TF had also attracted a great deal of attention on its multidimensional-based

applications. In volume-based applications, as the simplest method, 1D TF directly

maps the voxels’ scalar values to associated colours and opacities. But, it cannot

differentiate between volumetric subspaces whose voxels share the same scalar value

but belong to different regions, e.g. the skull and teeth segments in a CT-scanned

human head data. In order to solve the problem of inadequate representations in 1D

TF, more parameters were utilized as the other dimensions in the TF (Arens and

Domik, 2010). Besides the scalar value, a 2D TF can use the gradient magnitude as

the second dimension for determining the differences between these domains (Levoy,

1988; Konig and Groller, 2001). The magnitude of gradient is used to represent the

sampling statues. For example, there won’t be any change when sampling within a

volumetric subspace, and the sudden change of gradient will happen when the current

location of sampling is outside of the subspace (Kniss, Kindlmann et al., 2002).

Chapter 2 Review on Volume Visualization Approaches

26

Another 2D TF uses the curvature of volumetric subspaces as the second dimension.

Generally, the shape of each volumetric sub-space contains a unique combination of

the most and least curvatures (Hladuvka, Konig et al., 2000). Therefore, this 2D TF

can differentiate complex volumetric information. Due to its capability of shape

discrimination, this curvature-based TF usually serves as a shape-based analysis in the

surgical simulations (de Vaal, Neville et al., 2011).

Besides the above TF design, 2D TF techniques also use the other available properties

as the second dimension, such as distance-based method is based on the radiation

radius of a pre-decided point (Tappenbeck, Preim et al., 2006), size-based TF uses the

scale space for detecting the sizes of object domains (Correa and Ma, 2008),

texture-based method relies on the texture analysis which detects the change of

texture properties for mapping given specific opacities and colours to voxels (Caban

and Rheingans, 2008). With voxel’s scalar value, each of these available properties is

used to form a multivariate control which enables the 2D TF methods to reveal more

features than 1D methods (Kniss, Kindlmann et al., 2001; Kotava, Knoll et al., 2012).

Due to the increasing number of dimensions, multidimensional TF applications need

to simplify the huge workload of manual assignments. Different from the complex

trial and error tests in the multidimensional TF techniques, the automatic and

semi-automatic methods all depend on the pre-defined criteria for driving the mapping

operations (Pfister, Lorensen et al., 2001). Automatic TF designs are good at

maintaining the interactive rate to real-time applications (Petersch, Hadwiger et al.,

2005). Semi-automatic methods emphasise the importance of the user’s intuitions and

the flexibility of keeping a few manual modifications according to given conditions

(Pinto and Freitas, 2008). The criteria can be categorized as two types: image-driven

Chapter 2 Review on Volume Visualization Approaches

27

and data-driven. Image-driven TF techniques usually focused on the quality of visual

results and estimates the optimal design via a series of parameterized criteria (Pinto

and Freitas, 2006; Park and Bajaj, 2007). Data-driven methods generally concentrate

the capability of precise data displays, e.g. identifying the boundaries between

volumetric sub-spaces (Kaul, 2010).

2.3 Texture-mapping Approaches

Figure 2.10 The results of object-aligned slices

Initially, texture-mapping plays a “skinning” role in surface modelling techniques. It

serves to map visual features onto the surfaces of vertex-based frameworks, in order

to represent the appearance of surface models. Mostly, these features are stored and

processed in the form of 2D texture, so this displaying technique is named

texture-mapping. In voxel-based environments, the volume data set is represented via

a set of 2D textures, and anticipates the composition in the form of texture-based

units. Unlike the ray-casting method (which belongs to the image-order method),

texture-based volume visualization is an object-order method, and its displaying

Chapter 2 Review on Volume Visualization Approaches

28

quality is mainly dominated by the texture arrangement design (Engel, Hadwiger et

al., 2004). In primitive texture-based volume rendering applications, three stacks of

slices (textures), so-called object-aligned slices, respectively performed the view of a

volume model in X-, Y- or Z-axial directions (as shown in Figure 2.10).

In associated applications, these slices were all pre-constructed, with the intention of

determining one stack once for given conditions, such as the spatial attitudes of the

volume object with a fixed viewpoint, along with orbit orientations of the viewpoint

and complicated combinations of these two conditions. After finishing the slice-based

representation phase, the following composition phase plays a “mapping” role,

displaying the final results after implementing the integral calculations and the

blending process slice by slice. Shear-warp model is a typical example of the

object-aligned slices. Its mechanism of the composition process and operations will be

explained in the section on shear-warp model below.

Because every slice is a potential candidate in 2D texture-based applications,

producing the final display results generally requires the execution of the sampling,

filtering (interpolation) and blending process three times for a proper representation.

Besides the trebled workload, another manifestation of its disadvantages is the

complicated pre-definition of the conditions for the slice exchange. Although this

texture-based method manages to suffice for regular volume rendering applications,

the above listed inconveniences restrict its performance in high-quality display

applications.

For non-hardware accelerated techniques, texture-mapping-based volume rendering

methods have always lost in most competitions with image-order methods (Weiskopf,

Hopf, et al., 2001). By the 1980s, progressive graphics hardware techniques made a

Chapter 2 Review on Volume Visualization Approaches

29

great leap in terms of texture-based data manipulation, and consequently

texture-mapping-based techniques attracted intensive attention. Benefiting from these

advancements, texture-based applications obtained an increasing competitiveness in

visualization, in comparison to other visualization methods. Meanwhile, an advanced

texture-mapping method, so-called view-aligned slices, which constructs a one-off

texture-based representation for replacing 2D textures, was proposed to save the

predefinitions of the conditions with its developed texture representations (shown in

Figure 2.11).

Figure 2.11 Results of view-aligned slices. From Image A to Image C, the sampling rate is

gradually increased.

However, the display qualities of both 2D and 3D texture-based volume rendering are

all limited by the frequency of the slicing volume data sets. For example, both

column-II in Figure 2.10 and image B in Figure 2.11 show visibly discrete regions in

the final results because of the incorrect initialization of the slices’ properties. By

increasing the number of slices, the resulting display can minify these interruptions so

that a smooth look is produced for the naked eye (column III in Figure 2.10 and image

C in Figure 2.11). Besides these usages, texture-based representation also plays an

important part in implementing the shearing-warp model.

Chapter 2 Review on Volume Visualization Approaches

30

2.4 The Shear-warp Model

The shear-warp model makes the voxels project themselves, and consequently

replaces casting rays into the volumes. The main objective of this forward-mapping

approach is to simplify the complicated interpolations and compositions caused by

transforming 3D properties into 2D results in an arbitrary kind of transformation

(Levoy, 1994). Its basic idea is to shear and warp the volume model in the form of a

fixed stack of slices, so that a 3D composition of the voxels’ properties can be

approximated via a 2D solution. Its potential customers are the applications which

require a lower sampling accuracy and display quality than those of high-quality

approaches. Depending on the different types of viewing mode, the shear-warp model

is respectively optimized for parallel projection and for perspective projection.

2.4.1 Parallel Projection Algorithm

Figure 2.12 A diagram of the shear warp model with the parallel projection mode

As shown in Figure 2.12, the parallel viewing rays penetrate the image plane

perpendicularly. After slicing the volume data, the shearing operation manipulates

Chapter 2 Review on Volume Visualization Approaches

31

these slices perpendicular to the viewing rays. Essentially, the sheared slices can

parallel the image plane. In Figure 2.12, an intersection angle is forcedly drawn

between slices and the image plane, in order to highlight the condition that the

directions of the projecting intermediate image and the final image are not coplanar.

Because the shearing operation was along the Z-axial direction in this figure, the

z-coordinate can be kept constant. In other words, the original locations of voxels on

each slice all obtain the displacements in the (x, y)-plane. Therefore, the shearing

operation can be expressed by:

ௌைܯ ൌ ைܯ ൈܯௌ ൌ ൥
ଵݔ ଵݕ ଵݖ
ڭ ڭ ڭ
௡ݔ ௡ݕ ௡ݖ

൩ ൈ ௌܯ) ௌܯ ൌ ൥
1 0 0
0 1 0
ݔ∆ ݕ∆ 1

൩) (2.10)

where ܯை means the original coordinate matrix, ܯௌை represents the sheared result

and ܯௌ is a defined shearing matrix. The ∆ݔ and ∆ݕ respectively mean the X- and

Y-axial displacement of voxels on the ݊_݄ݐ voxel slice. Then, the sampling process

will follow the calculated ܯௌை and the sampled results are composited along the

Z-axis. Unlike the 3D composition of voxels’ optical properties in the ray-casting

method, the shear-warp model carries out the composition by taking each slice as a

unit. Therefore, the results of viewing rays intersecting the slices can be approximated

via a series of scan-lines, which consist of voxels with the same z-coordinate. In the

same way, the tri-linear interpolation in ray-casting methods can be replaced by the

bi-linear one. Therefore, the interpolated properties of voxels can be also treated as

scan-line-based (as shown in Figure 2.13), and calculated for compositions.

Chapter 2 Review on Volume Visualization Approaches

32

Figure 2.13 A diagram of interpolating scan-lines

The composition of sample results is then projected as an intermediate image.

However, this image is also sheared (shown in Figure 2.12). Before being mapped

onto the image plane, the warping operation is required to restore the sheared image.

In order to implement a reverse calculation on the intermediate image, the warped

result ܯௐௌை can be written as (Levoy, 1994):

ௐௌைܯ ൌ ௌைܯ ൈܯ௪ (ܯ௪ ൌ ൥
1 0 0
0 1 0

െ∆ݔ െ∆ݕ 1
൩) (2.11)

Through this warping operation, the stored image can be mapped onto the image

plane.

2.4.2 Perspective Projection Algorithm

Figure 2.14 A diagram of shear warp algorithm with the perspective projection mode

Chapter 2 Review on Volume Visualization Approaches

33

In order to shear the volume object for the perspective projection condition, the slices

need a combination of shearing and scaling operations to implement a similar

projection transformation to that which exists in the viewing frustum in Figure 2.14.

This shearing operation is converted into (Levoy, 1994):

ௌைܯ ൌ ைܯ ൈܯௌ ൌ ൦

ଵݔ ଵݕ ଵݖ 0
ڭ ڭ ڭ ڭ
௡ݔ ௡ݕ ௡ݖ 0
0 0 0 1

൪ ൈ ௌܯௌ ሺܯ ൌ ൦

1 0 0 0
0 1 0 0
ݔ∆ ݕ∆ 1 ݑ
0 0 0 1

൪ሻ (2.12)

In the viewing frustum, 1 ൗݑ means the distance between the camera and the origin of

the viewing space. In this shear-warp model, ݑ is designed to control scaling slices

after shearing terms, and the scale is 1 ሺ1 ൅ ሻൗݑ . In the same way, the warping

operation is (Levoy, 1994):

ௐௌைܯ ൌ ௌைܯ ൈܯ௪ (ܯ௪ ൌ

ۏ
ێ
ێ
ۍ

1 0 0 0
0 1 0 0

െ∆ݔ െ∆ݕ 1 െ ଵ

ଵା௨
0 0 0 1 ے

ۑ
ۑ
ې
) (2.13)

Therefore, the result of the shear-warp model with perspective projection can be

obtained. Because perspective and parallel projections all rely on the same

composition, interpolation and sampling mechanism, both the final images of these

two algorithms are the same.

As a complement to high-quality rendering methods, shear-warp model authentically

simplified the interpolation and composition tasks required in the volumetric

texture-mapping techniques through using one stack of slices for various conditions.

Research of shear-warp model mainly focused on the improvement of TF to improve

the efficiency of transformation properties, exploring the trade-off between online

Chapter 2 Review on Volume Visualization Approaches

34

shading management and performance penalties, and experimenting with the

feasibility of the coexistence with other object-order methods (Wu, Bhatia et al.,

2003).

2.5 The Maximum Intensity Projection

Unlike the compositing of optical properties in the ray-casting and shear-warp

approaches, Maximum Intensity Projection (MIP), which is a backward-mapping

DVR approach, keeps the maximum property value encountered along a viewing ray

as the ray’s final footprint projected on the image plane (Wallis, Miller et al., 1989).

Its most popular applications were in the field of medical imaging, with its capability

for computationally fast imaging, such as cancer screening equipment, CT scanners

and diagnoses in nuclear medicine. As shown in Figure 2.15, the MIP’s composition

work can be considered as a texture-based method. However, its differences from the

other texture-based techniques are the textures parallel the viewing ray.

Figure 2.15 A diagram of MIP

By carrying out the maximum operator along one side of each slice, the final result of

MIP can be considered as a set of projections of slices which are perpendicular to the

Chapter 2 Review on Volume Visualization Approaches

35

image plane. The projection of each slice can be written as (Wallis, Miller et al.,

1989):

,ݔሺݔܽܯ ,௡ݕ ௠ሻݖ ൌ ,௡ݕெூ௉ሺܫ ௠ሻݖ ൌ ,ሺܱ଴ݔܽ݉ ଵܱ, ܱଶ, … ܱ௡ିଵሻ (2.14)

where ݔܽܯሺݔ, ,௡ݕ ௠ሻݖ denotes the property value encountered along the ݊_݄ݐ

viewing ray through the ݉_݄ݐ slice; ܫெூ௉ሺݕ௡, ௠ሻ symbolizes the location of theݖ

associated footprint on the image plane, and ௫ܱ (ݔ א ሾ0, ݊ሻ) is the optical value of

the voxel at coordinate (ݔ, ,௡ݕ .௠). Figure 2.16 shows the result of MIP techniqueݖ

Figure 2.16 Results of MIP

The mechanism of MIP determines that each pixel value in the result is obtained by

locating a maximum optical value. This result cannot support an adequate depiction of

the spatial content of overlapping regions, because of the lack of “depth information”.

As one general solution for creating MIP-based animations (e.g. rotation), an illusion

is pre-constructed by determining the location of a set of viewpoints, and using the

slice-based transformations in shear-warp model to obtain the associated image of

Chapter 2 Review on Volume Visualization Approaches

36

MIP with every viewpoint’s location (Cai and Sakas, 1998; Fang, Wang et al., 2002).

In addition, shortening the sampling region is a direction of assigning the MIP with

the ability of representing occlusions. Technically, the idea of the solution is to

pre-define a threshold value to stop the iteration of maximum operator at the first time

the intermediate result reaches this “threshold” (Sato, Shiraga et al., 1998; Han,

Keyser et al., 2009). This solution is as named Local Maximum Intensity Projection

(LMIP), and its improved results are shown in Figure 2.17.

Figure 2.17 Illustrations of MIP-based and LMIP-based imaging methods (courtesy to Sato et al.)

2.6 Volume Shading Techniques

Playing an important part in rendering operations, volume shading methods can

increase the authenticity of simulations by performing sophisticated displays with

realistic lighting effects inside volumetric spaces (Hadwiger, Sigg et al., 2005; Rieder,

Palmer et al., 2011) (shown in Figure 2.18). In order to perform the light interactions

within a volumetric space, the most direct solution is to use dedicated optical models

to determine light emission and absorption properties for each voxel, so that the

resulting appearances can be uniformly translucent or opaque. In addition, a set of

Chapter 2 Review on Volume Visualization Approaches

37

vertices extracted from the voxels which share the same scalar value, form a surface

to display the illumination effects in surface-modelling-based strategies (Hadwiger,

P.Ljung et al., 2009).

Figure 2.18 Various shading effects. Column A exhibits transparent results. Column B contains

opaque contents. Column C comprises surface-based results. Column D represents the

sphere-mapping effects column C.

2.6.1 Monte-Carlo Techniques for Iso-surface

The Monte-Carlo techniques for the iso-surface extracted from the volume data, can

be divided into three steps: first hit approach, deferred shading approach and deferred

ambient occlusion approach (Hadwiger, P.Ljung et al., 2009)

 First hit approach

Similar to the iso-surface extraction mechanism, the first hit approach iterates a

sampling cycle successively to construct a specific surface and pre-specifies a scalar

value as the threshold value for the sampling process simultaneously. Then, this

Chapter 2 Review on Volume Visualization Approaches

38

specific surface, so-called first iso-surface is constructed by gathering the voxels

which are the first ones to obtain the given scalar value. Based on computing the

normal vectors to determine the reflection characters on the first iso-surface in the

form of a floating-point RGBA quadruplet, the outcome of first hit approach can be

represented by a frequency histogram method in Figure 2.19 (A). The result of

enabling gradient vectors in the outcome of first hit approach is illustrated in image B.

Figure 2.19 Results of first hit approach for the human head data set

 Deferred shading approach

After obtaining the results from the first hit approach, the shading of the first

iso-surface can be computed by loading the normalized gradient and evaluating local

illumination appearances (e.g. Phong shading with a point light) (Bennebroek, Ernst

et al., 1997). This section just focuses on computing the reflectance behaviours, and

the content of scattering terms will be explained in the following section. The

reflection property of each element on this iso-surface is constant and precisely

addressed by a shift invariant Bidirectional Reflectance Distribution Function (BRDF)

(Nicodemus, 1965). The result of deferred shading approach is shown in Figure 2.20.

Chapter 2 Review on Volume Visualization Approaches

39

Figure 2.20 A diagram of deferred shading approach

 Deferred ambient occlusion approach

Working on the same first iso-surface, the deferred ambient occlusion approach plays

the shading calculation on the local environment surrounding the surface, based on the

intersection condition between this surface and a series of random rays. These rays all

start from the surface and follow the reflection mechanism in a shift variant BRDF.

Unlike the invariant one in the deferred shading approach, the anisotropic specular

terms cannot be directly obtained through indexing a pre-filtered reflection map

(Zhang, Zhu et al., 2011). The local environment needs to be split into a set of

hemisphere domains around the start points of the rays on the first iso-surface to form

a sort of local orientation for orienting the specular terms. These domains come from

using Monte-Carlo integration to calculate the incident radiance over each vertex on

the iso-surface (Hadwiger, P.Ljung et al., 2009). Figure 2.21 shows the result of the

ambient occlusion approach.

Figure 2.21 A diagram of deferred ambient occlusion approach

Chapter 2 Review on Volume Visualization Approaches

40

2.6.2 Volume Scattering

After finishing the explanation of Monte-Carlo techniques for rendering iso-surface,

the rest contents will focus on volume scattering. Scattering is a physical process

which makes the light deviate from its original path. In surface-modelling-based

applications, the light interactions usually happened in an assumed vacuum and only

takes place on the surface of models. For simulating direct or indirect illuminations,

evaluation of the conditions of incident rays and specular rays will respectively rely

on the single or multiple-scattering design (Stankevich, Shkuratov et al., 2003).

Volume scattering usually took place in the form of the light deflections on the

exterior and interior of volumetric objects. Similar to the deferred ambient occlusion

approach, volume scattering also needs to define hemisphere domains as the incident

radiances for tracing anisotropic scatterings inside the volume model according to the

Monte-Carlo method (Nishita, Dobashi et al., 1996; Roy and Ahmed, 2011). The

determination of these domains will influence the display quality of the final results.

By taking advantage of multiple-scattering, the associated applications can

differentiate the displays of homogeneous regions in the final result. For example, the

eyehole region in the right image can reveal more features than the left one in Figure

2.22.

Figure 2.22 A result of volume scattering

Chapter 2 Review on Volume Visualization Approaches

41

As shown in Figure 2.23, there is a result of volume shading (for a human head data

set) which was produced by combining the above mentioned shading approaches

together and carrying out a composition of hybrid shading processes. Besides the

realistic effects, this composition also brought challenges in terms of maintaining a

applicable performance in real-time applications (Hadwiger, P.Ljung et al., 2009).

Figure 2.23 A diagram of a shading composition design

2.7 Research Objectives

Based on the above introduction of volume visualization techniques, the common

research problems of large data size, artefacts, low efficiency and poor image

qualities, were set as the research objectives of developing visualization properties:

 Large data handling. The limitations and derived problems caused by processing

large data sets can affect the whole system, throughout the displaying,

Chapter 2 Review on Volume Visualization Approaches

42

computation and manipulating processes. Because researchers still insist on

increasing data sizes to obtain more information or carry out higher level

performances, the related solutions cannot fully overcome these derived

problems. The most challenging task is to find the balance between performance

and efficiency in volume-based applications.

 Reducing visualization artefacts. As a useful data filtering tool, data interpolation

and (re-) sampling processes were usually utilized at a high frequency for

maintaining the continuity of data sets in data processing stages in primitive

solutions. However, these solutions also suffered from the limitations caused by

the largely increased proportion of estimated data to initial data. The authenticity

of estimated contents was difficult to prove, and indiscriminate estimation

operations might cause redundant features.

 Improving interactive rate. The low interactive rate was usually caused by

handling a huge workload of computations, such as processing large amounts of

data, implementing accurate representations and performing complicated

illumination distributions. Although much effort has been spent on data

compression approaches, hardware acceleration techniques and algorithm

simplifications, volume-based applications still struggled against the problem

interactive rate in order to gain enough “room” to improve the system efficiency.

 Improving image qualities. In order to achieve the desired interactive rate, a few

acceleration designs implemented rapid data processing by simplifying

intermediate or final outputs. Artefacts and fuzzy features usually derived from

decreased image qualities. According to actual demands of various applications,

most of solutions proposed a proper balance to manage the trade-off between

image resolutions and data processing times.

Chapter 3 Volume Model Manipulation Strategies

43

Chapter 3 Volume Model Manipulation Strategies

In addition to developing visualization terms, constructing a novel data manipulation

mechanism is another important research goal in this dissertation. By reviewing the

state-of-the-art in the field of volume model manipulation, the pros and cons of each

method will be analysed and evaluated. Afterwards, the problems and derived

limitations insides deforming volume models will be concluded and treated as the

corresponding research objectives of data manipulation.

3.1 Volume Clipping

As one of the simplest manipulation methods, the volume clipping technique can

provide effective assistances in understanding volumetric contents, by enabling

ichnography-like results according to the positions of “cutting points” (Weiskopf,

Engel et al., 2003). In most of volume-based applications, it was considered as a

complement to the TF, e.g. the cutting plan in medical imaging (Maruya, Nishimaki et

al., 2010).

Most volume clipping methods are geometry-based methods, which determine the

visibility of each voxel according to its position in the volume model. Depending on

different ways of presenting clipping information, volume clipping techniques can be

classified as clipping via tagged volumes, and depth-based clipping (Engel, Hadwiger

et al., 2004).

The fist method is based on pre-defining a clipping region (as shown in Figure 3.1).

This method supports arbitrary clip geometries. However, it requires a series of

accessorial operations for optimizing clipped results, e.g. using the tri-linear

Chapter 3 Volume Model Manipulation Strategies

44

interpolation or nearest-neighbour sampling for “smoothing” the clipping region for

improving the display quality (Weiskopf, Engel et al., 2003). These operations

generally cost extra processing time on interpolation computations.

Figure 3.1 A diagram of the clipping method via tagged volumes

The second method relies on the stencil test (Westermann and Ertl, 1998).

Technically, the depth-based clipping methods focus on partitioning the model into

several fragments by using a stencil test to determine the distance of each portion

from the image plane (shown in Figure 3.2). After labelling these fragments as visible

and invisible, the volume data is respectively mapped to these partitions. As a result,

these segments and included data sets can be correctly located, manipulated and

visualized. The depth-based clipping method enables a flexible clipping geometry

through taking advantage of its capability of managing the resolution of results at

voxel level.

Chapter 3 Volume Model Manipulation Strategies

45

Figure 3.2 A diagram of the depth-based volume clipping method

3.2 Volume Deformation

Similar to the deformation approaches in surface-modelling-based applications (as

shown in Figure 3.3), volume deformation techniques perform the shape changes on

the volumetric objects so that the movements of the internal structures can react to the

surface changes. For manipulating the volumetric structures, the deformation

techniques need to build up a dedicated framework for connecting voxels and

consequently synchronize the displacements of interior and exterior voxels properly

according to specific applications. In this thesis, based on different types of the

deformation behaviours, the volume deformation techniques were categorized into

two types: non-physics-based and physics-based deformations.

Figure 3.3 Illustrations of surface deformation models

3.2.1 Non-physics-based Deformation

Non-physics-based deformation means that the mechanism of generating deformation

is not explicit, i.e. lacks the ability of performing physical characters in the deformed

results. When applying these deformation techniques to manipulate the volume

models, the most popular solution is to treat the volumetric information as a

nesting-doll-like arrangement of surfaces or a stack of cross sections, and make a set

Chapter 3 Volume Model Manipulation Strategies

46

of linear deformation copies on these elements roughly. Basically, these deformation

methods can be regarded as repeating a mesh deformation method in several times.

This strategy can uniform the manipulations of all voxel so that the process of

creating the connections between voxels can be overleapt. As a result, their associated

applications can be implemented conveniently and output the deformed results

rapidly. Due to these advantages, many researchers carried out different

non-physics-based volume deformation approaches: ray-deflection volume

deformation (Kurzion and Yagel, 1997), spatial TF method (Chen, Silver et al., 2003),

and warping-based volumetric representation (Correa, Silver et al., 2010).

 Ray-deflection volume deformation

By employing the properties of voxels and specific visualization methods, this

deformation manipulates the volume model in the manner of rendering. By changing

the regular trajectories of sampling rays during the sampling phase, this deformation

method can changed the resulting property values encountered on every ray. The

deformation can present regional changes via four types of deflector (Kurzion and

Yagel, 1997). The first one is a discontinuous deflector, which suffices for exhibiting

interval-based clipping effects (in Figure 3.4 (A)). Image B shows the result of

combining rotate and scale deflectors. Both deflectors are based on matrix

multiplication or inversion to generate the deformed features on the corners of the

enlarged mouth. Translate deflectors are used to assign certain displacements to

voxels via a series of matrix algebra operations (as shown in image C).

Chapter 3 Volume Model Manipulation Strategies

47

Figure 3.4 Illustrations of the ray-deflector volume deformation method (courtesy to Yail et al.)

 Spatial transfer function

The spatial TF serves as a “noise map”, which is constrained to anticipate into the

regular conversion phase of translating scalar values into optical properties. This

deformation method can perform the clipping result by defining a given parameter,

which is used to indicate a (symmetrical) partition of “references” for the translating

process (as shown in Figure 3.5 (A)). By accomplishing a many-to-many data

mapping process, the spatial TF relies on a sweeping method for carrying out the

stretching effects in image B (Chen, Silver et al., 2003). However, the spatial TF

cannot independently achieve resizing operations via a self-change of several

parameters. Therefore, this method demands guidance from the control lattice

construed for presenting shape changes, e.g. the results of a squeezing action in image

C.

Figure 3.5 Results of the spatial TF method (courtesy to Chen et al.)

 Warping-based volumetric representation

Chapter 3 Volume Model Manipulation Strategies

48

These deformation methods transform the volume object by treating it as a

homogeneous solid, which can perform uniform behaviours with respect to the given

degrees of smoothness and partitioned organization. Technically, this deformation

process is also based on the matrix manipulations, and all behaviours are determined

by a warping-based matrix. However, because the lack of determining control lattices

in the continuous volume data, the texture-based lattices were used to enclose the

entire volume data including useless parts. As show in Figure 3.6, the idea of this

deformation method didn’t consider the connections between voxels (or groups of

voxels). In this deformation, the “clone” operations were implemented through

manipulating the texture-based lattices, and transforming their stored voxels (Correa,

Silver et al., 2010). The shortcoming of this deformation process is the lack of

differences between transforming soft tissues and shinbones to perform elastic

behaviours shown in column A. The associated solution was realising a so-called

sub-dividable deformation based on a series of constrained processes: offline data

segmentation and accessorial restoring operations (as shown in column C and D)

(Lewis, Cordner et al., 2000; Correa, Silver et al., 2010).

Chapter 3 Volume Model Manipulation Strategies

49

Figure 3.6 Illustrations of the warping-based volumetric representation method (courtesy to Carlos

et al.)

3.2.2 Physics-based Deformation

Figure 3.7 A diagram of a physics-based deformation method for medical simulations (courtesy to

Kobayashi et al.)

As an interdisciplinary field, physics-based deformation techniques can involve

Newtonian dynamics; continuum mechanics; numerical computation; differential

geometry; vector calculus; approximation theory, and computer graphics. Because of

their capability of presenting physical characters, such as gradient changes and

realistic deformed features (as shown in Figure 3.7), these deformation methods were

usually adapted for implementing Computational Fluid Dynamics (CFD) simulation

(e.g. fluid-structure interactions) (Bathe and Zhang, 2009), representing irregular

behaviours in soft tissues (e.g. operation training) (Kobayashi, Onishi et al., 2010),

and transforming rigid bodies (e.g. bridge columns’ responses to shaking events)

(Baydaa, Ling et al., 2011).

For achieving Free-Form-Deformation (FFD), most of physics-based deformation

applications required various control lattices for enveloping the models partially or

Chapter 3 Volume Model Manipulation Strategies

50

completely. These lattices were defined to orient the deforming forces and represent

them on the underlying surfaces of objects to perform arbitrary and nonlinear

deformation results. Physics-based volume deformation applications also relied on

this principle and required the volumetric displacement mapping design for

manipulating voxels. After the mapping process between control lattices and

underlying voxels, the embedded volume needs to be converted into various

deformable solids for determining the irregular grades of synchronizations of voxels’

movements. These deformable solids are all constructed via choosing proper

mathematical models as their stencils, and consequently enable a series of

standardized connections between voxels. Based on these connections, the

mathematical model can manage the spatial distribution of voxels within the

volumetric space, so that the displacement for every voxel in the deformation area can

be worked out. The review of physics-based deformation techniques was classified

based on prevalent mathematical models, such as Mass-spring system (Provot, 1995),

Finite Element Method (FEM) (Keeve, Girod et al., 1996), and Chain-Mail algorithm

(Gibson, 1997).

 Chain-Mail algorithm

Chain-Mail algorithm is mainly used to simulate the spring and damping actions

among large partitions by separating the object model into several blocks and

computing their elastic changes during the deformation (Gibson, 1997). In

volume-based applications, each block comprises a certain number of voxels (chain

elements), which are surrounded by interspaces (chain regions) (as shown in Figure

3.8 (A)). The intersectional domains, which are assumed to exist between every two

closest groups of voxels (chain elements), serve as the “air spring” regions and have

three components along X-, Y- and Z- axial directions respectively (Li and Brodlie,

Chapter 3 Volume Model Manipulation Strategies

51

2003). According to predefined limitations of compressing and stretching the air

spring region, the maximally compressed and maximally stretched conditions can be

implemented respectively (as shown in Figure 3.8 (B and D)).

Figure 3.8 A diagram of Chain-Mail algorithm

During this deformation, applying a force on one chain element will cause a series of

chain reactions in the form of a combination of magnified and minified “air spring”

regions for simulating the results of the stretching (or compressing) operation. The

closer the distance between the chain element and the centre of deformation area is,

the clearer the changes of surrounding air spring regions are. Figure 3.9 shows

different gradient distributions of deformable contents on a soft tissue in a virtual

endoscopy application (Drager, 2005).

Figure 3.9 Results of Chain-Mail-based deformation (courtesy to Drager, C.)

 Finite Element Method

In order to perform perfectly continuous volume deformation, FEM utilizes the Partial

Chapter 3 Volume Model Manipulation Strategies

52

Differential Equation (PDE) to calculate the elastic behaviours’ properties (Keeve,

Girod et al., 1996). In volume-based applications, the FEM treated the volume as a

continuously connected content with a random control lattice, and utilized simple

equations to approximate the effect of running PDE on this lattice (Nienhuys and

Stappen, 2000) (shown in Figure 3.10). This design usually focuses on the precise

representation of the details of shape changes in training environments (e.g. surgical

operation simulation (Nakao and Minato, 2010)), medical imaging (e.g. image-guided

neurosurgery (Vigneron, Boman et al., 2008)), and engineering simulations (e.g.

simulations of seismic pile-supported bridge structure (Baydaa, Ling et al., 2011)).

Figure 3.10 Diagrams of FEM-based approximate representation

For example, in order to perform the deformed features on the irregular grids

intersected by the cut path (as shown in Figure 3.11 (a)), the FEM-based volume

deformation subdivided the initial control lattices which surrounds the region of

interesting segment (cut path), and approximated an intermediate representation in the

form of divided grids (cut surface) (as shown in image b) (Nakao and Minato, 2010).

Afterwards, the resulting elastic behaviours along the cut path can be approximated by

the displacements of divided grids (as shown in image c and d). After filtering the

subdivided lattice and mapping the vertices’ properties to associated voxels, the

preserved result and elastic performances of the cut region are respectively revealed in

Figure 3.11 (A and B)

Chapter 3 Volume Model Manipulation Strategies

53

Figure 3.11 Illustrations of FEM-based volume deformation (courtesy to Nakao et al.)

 Mass-spring system

With the helps from the developing hardware accelerations (Tejada and Ertl, 2005;

Courtecuisse, Jung et al., 2010) and optimization designs (Azar, Metaxas et al., 2002;

Natsupakpong and Cavusoglu, 2010), the volume deformation techniques based on

Mass-spring system had been improved representing deformations precisely and

efficiently. Instead of approximating continuous deformation works and dynamic

subdivision tasks in FEM-based volume deformations, the preparations for the

construction of Mass-spring system involve partitioning the volumetric object into a

set of voxel-based masses, and embedding a series of standardized spring-linking

mechanisms (Natsupakpong and Cavusoglu, 2010) (shown in Figure 3.12).

Figure 3.12 A diagram of Mass-spring system

Based on these spring-linking mechanisms, the deformed contents can be evaluated

Chapter 3 Volume Model Manipulation Strategies

54

by the movements of fixed masses (without subdivisions) (as shown in Figure 3.13 (A

and B)). For example, in a breast survey application, the solution was proposed to

convert the whole volume model into quite a few vertices. The devised Mass-spring

system was built up based on these vertices, and consequently relied on a huge

computation work and complicated transformations between vertices and voxels to

produce the deformation and visualization results precisely (as shown in Figure 3.13

(C and D)) (Patete, Iacono et al., 2012).

Figure 3.13 Illustrations of a volume deformation based on Mass-spring system (courtesy to Patete

et al.)

3.3 Constructive Volume Geometry

For representing the complicated scenes consisting of multiple volume models, many

researches utilized the surface modelling-based strategies as the solution. For

example, a voxel-based version of so-called Constructive Solid Geometry (CSG),

Constructive Volume Geometry (CVG) was devised to carries out voxel-based

Boolean operations to represent the combination of multiple volume models (shown

in Figure 3.14) (Chen and Tucker, 2000).

Chapter 3 Volume Model Manipulation Strategies

55

Figure 3.14 Diagrams of CVG-based Boolean operations (courtesy to Chen et al.)

This novel modelling method offers an algebraic framework for facilitating the

combination operations on volumetric objects. CVG implemented a series of

volumetric CSG models based on the union, intersection and difference operations

which were built upon voxel-based manipulations with their scalar fields. For

implementing various operations, there exist differently standardized classes which

respectively indicate a set of computing methods for amending voxels’ properties. As

a result, both the opacity and colour properties of each voxel inside the crossed area

were recomputed for performing the correct occlusions and the resulting colour

overlays.

Figure 3.15 Results of CVG-based Boolean operations (courtesy to Chen et al.)

Based on this volumetric Boolean operation design, CVG-based operations could

handle the complicated manipulations of multiple volumetric objects (as shown in

Chapter 3 Volume Model Manipulation Strategies

56

Figure 3.15). Constructing tree-like structures, managing memory requirements and

designing hardware-based accelerations had been chosen as further solutions to the

problems derived from the low processing efficiency caused by huge size of multiple

volume data (Chen, Clayton et al., 2003).

3.4 Volume Animations

Like integrating polygon-based deformation methods with time lines to achieve

animation efforts, some volume animation techniques also use time parameters to

direct the execution sequence of volume deformation processes. In the past decade,

research in volumetric animation has mainly focused on medical or hydro-mechanical

applications (Binotto, Comba et al., 2003; Carmona and Froehlich, 2011). Figure 3.16

shows three snapshots of CT baby data.

Figure 3.16 Illustrations of a dynamic CT baby data

Besides dedicated volume animation applications, the volume model was regarded as

a special “agent” which delineates the polydirectional light interactions within

volumetric spaces; e.g. the volumetric particle system consisting of a set of

vertex-based elements (as shown in Figure 3.17). This particle system has shown its

significant potential for performing visual effects in games and other entertainment

industries. It was widely used to simulate smoke, explosions and fires (Green, 2005).

Chapter 3 Volume Model Manipulation Strategies

57

With the assistance of advanced hardware-based acceleration techniques, the

volumetric particle system can enable high-quality particle simulation and maintain

interactive displays with an increasing number of particles.

Figure 3.17 Illustrations of a volumetric particle system (courtesy to Green)

Since the 1990s, volume animation techniques have been used to load scalar CFD

data, and improving photo-realistic images and animations with limited illumination

effects for CFD simulations (as shown Figure 3.18 (A and B)) (Jaganathan, Tafreshi

et al., 2008). Through benefiting from hardware-assisted acceleration supports, the

volume animation techniques have been implemented and integrated with advanced

illumination calculations to improve the authenticity and applicability of CFD

simulations (as shown in Figure 3.18 (C and D)) (Corrigan, Camelli et al., 2011).

Figure 3.18 Illustrations of CFD simulations based on volume animation techniques (courtesy to

Jaganathan et al. and Corrigan et al.)

Chapter 3 Volume Model Manipulation Strategies

58

3.5 Analysis on Current Challenges

By enabling non-physics-based deformation methods to accomplish complex

deformation effects, many researchers have been trying to blur the line between

non-physics-based and physics-based volume deformation methods, meanwhile,

emphasizing the feasibility of using hardware-based acceleration techniques for

maintaining the performance of improved non-physics-based methods. However, the

performance of physics-based methods can also benefit from the hardware-based

accelerations.

The human visual system can react to each frame individually when the frame rate is

10 to 12 frames per second (Reader and Meyer, 2000). And 14 to 24 frames per

second (fps) can offer an impression of animation. If the frame rate is over 46 fps, the

human visual system cannot react to this displaying speed (Elsaesser and Barker,

1990). In other words, when displaying the same object, the human visual system

cannot detect any differences between 47 fps and 77 fps. Therefore, the naked-eye

observations cannot perceive the differences between both hardware-accelerated

non-physics-based and physics-based deformation methods whose displaying speeds

are all over 46 fps.

Besides the decreasing difference between the real-time performances of

non-physics-based and physics-based caused by the developing hardware techniques,

the physics-based deformation has been becoming more popular than

non-physics-based one because it has the advantage of performing the physical

behaviours precisely (Choi, Lee et al., 2004; Bachmann, Bouissou et al., 2009;

Kobayashi, Onishi et al., 2010).

Chapter 3 Volume Model Manipulation Strategies

59

In this thesis, the criteria for evaluating the designed deformation system won’t

contain the definite demands in realistic applications, such as calculating the precision

attributes in millimetres and predetermining the error rate of simulation works (Patete,

Iacono et al., 2012). As shown in Figure 3.19, the comparison table just uses four

general criteria for the performance analysis of the above mentioned physics-based

volume deformation techniques: Chain-Mail algorithm (represented by CMA), FEM

method and Mass-spring system (represented by MSS).

Figure 3.19 The comparison table of Chain-Mail algorithm, FEM and Mass-spring system’s

performances

As the greatest advantage of FEM-based volume deformation approaches, their

applications are good at dividing the resulting deformed behaviours into tiny

characters enough (even subdividing voxels), meanwhile only manipulate the

interesting segment in volume data. Therefore, they are much popular in simulating

rigid objects efficiently (Baydaa, Ling et al., 2011). Unless defining each voxel as a

mass (or a chain element) in the MSS (or CMA) approaches and isolating the

interesting data segment from the others, the resulting deformed behaviours cannot

achieve the same precision as the FEM’s results. The constrained construction of

chain regions and limited movements of chain nodes makes CMA approaches only

support the “coarse” motion of volumetric objects (Gibson and Mirtich, 1997). As a

Chapter 3 Volume Model Manipulation Strategies

60

result, CMA gets the lowest scores of “accurate simulation” and “flexible

manipulation”.

However, the FEM-based deformation always suffered from the complicated

subdivision mechanism which brings more complex computation works than the other

two approaches. As a result, the low processing speeds make the real-time operations

extremely difficult, and quite a few divided nodes badly restrict the flexibility of

manipulations. Therefore, in both “rapid implementation” and “interactive operation”

terms, FEM all gets the lowest scores. Because the simple node partition, CMA-based

deformation applications can be rapidly implemented. And the CMA can only enable

three statuses of the “air spring” region change. Therefore, CMA-based applications

can support higher interactive rate of real-time operations than the other two

approaches.

As a powerful and comprehensive deformation tool, MSS-based deformation methods

have been extensively used for dynamic simulations, e.g. animation systems (Gibson

and Mirtich, 1997). MSS is well-known for its plenty of connections which can form

flexible frameworks and support multiform node partitions. As a result, MSS can

perform more flexible results than FEM and CMA. Based on this evaluation, the

devised volume deformation pipeline explained in the flowing chapters was

constructed based on choosing the mass-spring system as the deformable solid, and

comprised a series of solutions of improving the system performance of this design.

3.6 Design Criteria

Based on the comprehensive review on the volume visualization techniques and

manipulation strategies, the following design criteria for this research have been

Chapter 3 Volume Model Manipulation Strategies

61

adapted:

 First of all, the data processing stage should provide a visible analysis of any

volume data set. The feasibility of the visible analysis should be demonstrated via

the comparisons between automatically generated images and the results of

offline manual modifications. Besides, the data processing stage also needs to

provide the isolated data segments for simplifying the further processing works,

e.g. enclosing the interesting data segment for reducing the lattice construction

work and increasing the efficiency of the deformation system.

 The designed volume deformation method should manipulate volume objects to

present deformed behaviours in a flexible and parameterized manner. By passing

through an improved physics-based volume deformation approach, the resulting

deformed volume models should reveal the gradient changes on their surfaces. As

another outcome of this approach, the associated clipping planes should visually

prove the existence of deformed interior contents and the stated coherences

between exterior and interior changes. The feasibility of this deformation method

should be experimented by loading different volume data sets.

 The devised volume deformation method in this project should support interactive

manipulations of volume models during the real-time simulation. The gains from

carrying out GPU-based implementations should be tabled in the form of given

data arrays (comprising data sizes, associated parameters and frame rates). The

image-based benefits of the parallel processing structure should be gathered

together.

The following chapters all concentrated on improving the devised volume

deformation system to meet the above criteria through overcoming corresponding

Chapter 3 Volume Model Manipulation Strategies

62

problems. As the output of the explained function module in chapter4, the extracted

volume data structure and isolated data segments can enable the capability of

automatic volume data analysis and flexible feature extraction. Based on these

intermediate results, chapter 5 introduced a famous mesh extraction technique with

associated refinement solutions to overcome the problems of control lattice

construction in traditional volume deformation methods. These two chapters’

achievements can help the system meet the first criterion. The second criterion of

free-form volume deformation was achieved by the hybrid displacement mapping

design (in chapter 6) which synchronizes the transformation for different elements.

The deformation fixing function serves as the key complement of physics-based

deformation process which can perform the deformation with physical properties. The

third criterion requires the acceleration for achieving real-time performance. As a

result, based on the GPU-accelerated designs in Chapter 7, the experimental results

listed in Chapter 8 can quantify the speedup which claims the advantage of

hardware-based acceleration, and exhibit final results of the devised volume

deformation system to verify the feasibility of interactive operation of deformation

behaviours.

Chapter 4 Volumetric Data Processing

63

Chapter 4 Volumetric Data Processing

The volumetric data processing work introduced in this chapter aims to analyse the

volume data and filter out its inherent noise by gaining the volume data structure and

indicating the useless segments. As a pre-processing function module, this processing

design relied on using volume segmentation methods to assist with the

decision-making stage involved in manipulating volume models. In order to

customize deformation behaviours, knowing about the framework of a volume model

can instruct the partition and manipulation of volumetric contents. In addition, the

“blank” voxels which serve as meaningless information and surround the interesting

data segment(s), can be filtered out in this module and excluded from the subsequent

operations to prevent processing time from being wasted on them.

Depending on the type of data processing, volume segmentation methods can be

categorized into 2D (texture-based) and 3D (voxel-based) solutions. Basically, they

all try to assign each voxel to a certain data segment labelled with a given mask

(known as the segmentation mask). There were two types of segmentation mask. One

was used to label each segment inside volume data in the form of an “ID” number.

According to this ID number, the visualization process can accurately display the

segment(s) with the associated optical properties in a specific TF module. The other

segmentation mask was defined to make a clear spatial “nested relationship” from the

volume data. The mask(s) determined whether voxels lie inside of the object

Chapter 4 Volumetric Data Processing

64

segment(s) in the manner of a binary representation. By utilizing these two masks, the

volumetric data processing module can display an understandable result for analysing

volume data (as shown in Figure 4.1(B)), and isolate the contents of interest

selectively (as shown in Figure 4.1 (C)).

Figure 4.1 Display of a CT-scanned human head data. (Image A results from the basic DVR

method. Image B simultaneously renders all parts of the head model. Image C uses the mask as a

binary representation to delineate the “bony” and “boneless” parts)

The following content will cover the generation principles of these two segmentation

masks with the associated usages of them.

4.1 Applying Clustering Methods for Classifying Volume Data

At the beginning of this devised volumetric data processing function module, the first

step was to group “similar” voxels together and used the grouped result as the first

kind of segmentation mask to guide the ensuing operations. Due to the fact that

clustering algorithms are good at sorting pixels according to the predefined spectra,

classifying voxels in volume segmentation process was implemented by extending all

classical 2D clustering methods into 3D scenes. The original idea of clustering

Chapter 4 Volumetric Data Processing

65

algorithms is to group pixels by treating their coordinates and colour values as a

feature space. The most popular feature space is of a 6D nature ሺݔ, ,ݕ ,ݎ ݃, ܾ, ሻ, inߙ

which ሺݔ, ,ݎሻ denotes the planar coordinates and ሺݕ ݃, ܾ, ሻ represents the pixel’sߙ

optical properties. In order to partition a volume data set in this process, the feature

space became a 7D one, defined as ሺݔ, ,ݕ ,ݖ ,ݎ ݃, ܾ, .ሻߙ

In the field of clustering algorithms, there are three most prominent algorithms:

connective-based algorithm (e.g. Hierarchical clustering), distribution-based

algorithm (e.g. Expectation-maximization algorithm), and centroid-based algorithm

(e.g. K-means clustering) (Rui and Wunsch, 2005). This section respectively

implemented these typical clustering methods for classifying the same data set, and

discussed the pros and cons based on their performance in volume segmentation

process.

4.1.1 Hierarchical Clustering-based Volume Segmentation (HVS)

As the most frequently used method for connectivity-based clustering applications,

the hierarchical clustering method can be summarized as a binary tree during data

clustering processes. Its leaves represent the data point and its internal nodes are the

nested clusters of different sizes. Depending on the choice of data processing

sequence, hierarchical clustering can be categorized into two types. One is called

agglomerative hierarchical clustering, which observes the leaves firstly, and moves up

to the nested clusters. Divisive hierarchical clustering method is the other type, which

works in the opposite direction.

Chapter 4 Volumetric Data Processing

66

This research chose the agglomerative approach, which is more popular than the

divisive one because of the traceability, as the basis of the HVS design (Cimiano,

Hotho, et al., 2001). The clustering algorithm started from the voxel level. For a

random voxel ௩ܲ௢௫௘௟_௜ belonging to a volume data set (௩ܲ௢௫௘௟_௜ and ݅ א ܰ), there was

a nearest voxel ௩ܲ௢௫௘௟_௡௘௔௥ which was paired with ௩ܲ௢௫௘௟_௜ . The mechanism of

pairing can be written as (Szekely and Rizzo, 2005):

ฮ ௩ܲ௢௫௘௟_ప ௩ܲ௢௫௘௟_௡௘௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൌ min൛ฮ ௩ܲ௢௫௘௟_ప ௩ܲ௢௫௘௟_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮൟ ሺ݆׊, ݆ א ܰ ܽ݊݀ ݆ ് ݅ሻ (4.1)

The next step was merging ௩ܲ௢௫௘௟_௜ and its ௩ܲ௢௫௘௟_௡௘௔௥ into a new “voxel”, i.e.

obtaining the new voxel’s properties in the form of calculated ௩ܲ௢௫௘௟_ప ௩ܲ௢௫௘௟_௡௘௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ. As

a result, this generated “voxel” represented the nested cluster for both ௩ܲ௢௫௘௟_௜ and

௩ܲ௢௫௘௟_௡௘௔௥, and joined in the next pairing operation with the other clusters. Because

there was no fixed limit on the number of the first merged clusters, several voxels

might miss the first pairing stage and be paired with generated clusters. By iterating

the pairing and merging steps, HVS continuously generated cluster-based results, and

the final result approximated to two or three clusters. As a derived result of the

hierarchical clustering method, a kind of binary tree was produced to record the

nested relationship of clusters (as shown in Figure 4.2 (A)). This clustering sequence

led to a series of intermediate outputs (as shown in image b to f)), which represented

the clustering results from Level 0 to 4. These images represented the progress of

clustering volume data. Its mechanism can be written as shown in Table 4.1.

Chapter 4 Volumetric Data Processing

67

Figure 4.2 The results of HVS.

Table 4.1 Mechanism of HVS

4.1.2 Expectation-Maximization Algorithm-based Volume Segmentation

(EMVS)

Among all distribution-based clustering algorithms, the expectation-maximization

Defining the object voxel ௩ܲ௢௫௘௟_௢௕௝, and neighbouring voxels ൛ ௩ܲ௢௫௘௟_௜ൟ ሺ݅׊, ݅ א

ܰ ܽ݊݀ ݅ ് ሻ݆ܾ݋

Defining the number clustering cycle ܰ, and 1D array ܫሾ݆ሿ ሺ݆ א ሾ0, ܰሿሻ

Defining the minimum distance for recording ݐݏ݅ܦ௠௜௡

If ܰ ൐ 1 //the starting point of HVS is not the whole volume model

ሾܰሿܫ ൌ recording the clustering sequences// ݆ܾ݋_݈݁ݔ݋ݒ

Calculate ݐݏ݅ܦ௠௜௡ in equation 4.1 //seeking the closest ௩ܲ௢௫௘௟_௡௘௜

௩ܲ௢௫௘௟_௢௕௝ ൌ ௩ܲ௢௫௘௟_௢௕ఫ ௩ܲ௢௫௘௟_௡௘ప ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ //pairing and merging the object voxel

with this neighbour

 ܰ ൌ ܰ െ 1

Return ܫሾܰሿ //Output the sequence of clustering

Else Ending the clustering loop

Chapter 4 Volumetric Data Processing

68

(EM) algorithm is the most prominent one; it treats the object data as a statistical

model and searches the given parameters (called maximum likelihood parameters) to

estimate the resulting clusters. This statistical model is initialized as empty in the

beginning of each clustering loop and used to contain the sampled data constantly.

The resulting representation is a series of discrete distribution of corresponding

points. After finishing a cluster, besides the emptied statistical model, the reset data

can be divided into un-sampled data (available for one of the others clusters) and

latent variable (undetectable parts in sampling process). As the information loss in

EM clustering algorithm, the latent variables won’t belong to any cluster. In addition

to the latent variables, the rest data will anticipate in the calculation of maximum

likelihood parameters.

Similar to the strategy of analysing 2D data sets in EM algorithm, EMVS also

regarded the volume data as a statistical model. The number of distributions (or

clusters) was predefined as ܰ. The volume data was mathematically described by a

set of voxel coordinates ܸ݋ܿ_݋ሺݔ, ,ݕ ሻݖ with their scalar values ܸܿݏ_݋ which

formed a probability distribution function together:

,௜݋ܿ_݋ሺܸ݌ ௜|߲ሻܿݏ_݋ܸ ൌ ,௜ܿݏ_݋ܸ|௜݋ܿ_݋ሺܸ݌ ߲ሻ݌ሺܸܿݏ_݋௜|߲ሻ (4.2)

where ܸ݋ܿ_݋௜ and ܸܿݏ_݋௜ respectively represent partial coordinates and a scalar

value of a random voxel belonging to the ݅_݄ݐ distribution, and ߲ is initialized to a

nonzero parameter.

In order to extract the maximum likelihood parameters from the distributions, EMVS

Chapter 4 Volumetric Data Processing

69

relied on two alternating steps: expectation step and maximization step. The first step

calculated an expected value ܯ௜ of the log likelihood function of the ݅_݄ݐ

distribution with respect to ߲. The corresponding log likelihood function can be

written as (Dempster, Laird et al., 1977):

௜ܯ ൌ log ,௜݋ܿ_݋ሺܸ݌ ௜|߲ሻܿݏ_݋ܸ ൌ ,௜ܿݏ_݋ܸ|௜݋ܿ_݋ሺܸ݌∑ ߲ሻ݌ሺܸܿݏ_݋௜|߲ሻ (4.3)

After calculating the results of the log likelihood function (ܯଵ,ܯଶ ே) for allܯ…

distributions, the second step was to select the maximum one as a new ߲, which was

loaded in equation 4.3 for generating new expected values. This iteration of these two

steps in the designed EMVS can be represented in Table 4.2.

Table 4.2 Mechanism of EMVS

After testing this EMVS on a volume data set (human head data), the resulting

clustered information can be shown in Figure 4.3. Image A is the original data. Image

Defining the number of clusters ܰ, voxel coordinates ܸ݋ܿ_݋, voxel’s scalar
values ܸܿݏ_݋, a random parameter ߙ ് 0, and a set of parameters ܯଵ ൌ ଶܯ ൌ
ேܯڮ ൌ 0

For i =1 to ܰ

Calculate ܯ௜ in equation 4.3

Return {ܯଵ,ܯଶ {ேܯ…

If ሺߙ െ݉ܽݔሼܯଵ,ܯଶ ேሽሻܯ… ് 0

ߙ ൌ ଶܯ,ଵܯሼݔܽ݉ ேሽܯ…

Recalculate ܯ௜ with new ߙ

Else

Return (ܸ݋ܿ_݋௜, ௜) //output the clustered resultܿݏ_݋ܸ

Chapter 4 Volumetric Data Processing

70

B, C and D are the clustered results when the number of distributions equal 3, 4 and 5

respectively.

Figure 4.3 The results of EMVS.

4.1.3 K-means Clustering-based Volume Segmentation (KMVS)

In order to segment a volumetric data set into to a set of clusters, KMVS delineated

purposely shaped clusters by locating their centroids based on the famous K-mean

clustering algorithm (Kanungo, Mout, et al., 2002; MacKay, 2003). Similar to the

demands in the EM algorithms, there was a predefined cluster number, which is

usually represented by a ܭ . KMVS assigned all voxels to ܭ clusters through

implementing a frequentative calculation of two important distances: distance for

assignment and distance for update.

 Distance for assignment

In the beginning, KMVS acquired the predefined cluster number ܭ, so that there was

several randomly initialized centroids, ௖ܲ௘௡௧_௝ ሺ݆ א ሻ. After obtaining the distancesܭ

ฮ ௩ܲ௢௫௘௟_ప ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ from each voxel ௩ܲ௢௫௘௟_௜ to all centroids ௖ܲ௘௡௧_௝, the next step

Chapter 4 Volumetric Data Processing

71

was keeping the minimum distance ฮ ௩ܲ௢௫௘௟_ప ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ for guiding the assignments of

voxels to the related cluster of which the centroid is ௖ܲ௘௡௧_௝ . Based on the Kanungo’s

idea of judging the minimum pixel-based values, the similar operation was created to

judge the shortest distance between the object voxel and each cluster’s centroid. It can

be written as:

ฮ ௩ܲ௢௫௘௟_ప ௖ܲ௘௡௧_ఫ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൌ min ሼฮ ௩ܲ௢௫௘௟ ௖ܲ௘௡௧_ଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ,ڮ ฮ ௩ܲ௢௫௘௟ ௖ܲ௘௡௧_௄ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮሽ (4.4)

 Distance for update

After this, the next process was to create a “breakpoint” to check whether the current

clustered result was the final result or still unstable output. The breakpoint was based

on the distance which connected the centroid ௖ܲ௘௡௧_௝ and the mean point ௠ܲ௘௔௡_௝ of

the cluster, assuming the number of voxels belonging to the cluster was ܯ. After the

initial assignment stage, the mean point can be calculated as in equation 4.5.

௠ܲ௘௔௡_௝ ൌ
ଵ

ெ
∑ ௩ܲ௢௫௘௟_௜
ெ
ଵ (4.5)

The calculated ฮ ௖ܲ௘௡௧_ఫ ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ was regarded as the distance for update. In

2D-based KM clustering applications, there usually exists a kind of mechanism which

switches off the cycle as soon as the distance for update equals to a predefined value.

The cycle of updating centroids in KMVS was controlled by the judgement of

whether the ฮ ௖ܲ௘௡௧_ఫ ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ equals zero. The mechanism of KMVS can be written

as follows:

Chapter 4 Volumetric Data Processing

72

Table 4.3 Mechanism of KMVS

By increasing the K value from 3 to 5, the clustered result will contain more features

by detecting new clusters, be respectively shown in Figure 4.4 (B, C and D).

Figure 4.4 The results of KMVS.

Defining the voxel ௩ܲ௢௫௘௟_௜, the centroid of a cluster ௖ܲ௘௡௧_௝, the mean poin

௠ܲ௘௔௡_௝, the number of clusters ܭ

Initializing the distance between voxel and centroid ݐݏ݅ܦ௩௢௫௘௟_௖௘௡௧

Defining a fixed distance ݐݏ݅ܦ଴

If ฮ ௖ܲ௘௡௧_ఫ ௠ܲ௘௔௡_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ൐ ଴ //defining the breakpointݐݏ݅ܦ

 ௖ܲ௘௡௧_௝ ൌ ௠ܲ௘௔௡_௝ //regarding the mean point as the new centroid

If ฮ ௩ܲ௢௫௘௟_ప ௖ܲ௘௡௧_ఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറฮ ് 0 //sampling at the centroid

Locate ௖ܲ௘௡௧_௝ in equation 4.4 //calculating the distance for
assignment

Assign ௩ܲ௢௫௘௟_௜ with the located ௖ܲ௘௡௧_௝

Calculate ௠ܲ௘௔௡_௝ in equation 4.5 after assignments

Update ௠ܲ௘௔௡_௝ in the breakpoint

Else

Return ௖ܲ௘௡௧_௝ // output the latest centroids

Chapter 4 Volumetric Data Processing

73

4.1.4 Evaluations of Segmentation Approaches

As volumetric applications of clustering algorithms, HVS, EMVS and KMVS

successfully divided the volume data into segments, and the resulting snapshots were

respectively shown in Figures 4.2, 4.3 and 4.4, also demonstrated the feasibility of

developing 2D algorithms for analysing 3D datasets. In order to choose the optimal

volumetric clustering method, the criteria for comparing the performance of the above

three segmentation designs were based on the traditional evaluation strategies (Rui

and Wunsch, 2005), and summarized as below:

 Efficiency

When classifying the same data set, all processing times were recorded in Table 4.4,

according to different cluster numbers. As a pre-processing function, any processing

time cost by the volume segmentation design can be acceptable. No matter how the ܭ

may be changed, HVS will cost more processing time than the others.

Cluster

Number (ܭ)

Processing Time (s)

HVS EMVS KMVS

3 179 152 144

4 316 271 264

5 571 447 438

Table 4.4 Comparison between processing times

Chapter 4 Volumetric Data Processing

74

 Applicability

Based on the Wunsch’s survey, the applicability of clustering method is estimated via

timing the classification of different data sets with the same clustering property.

Analysing the below tabled processing time can draw a corresponding conclusion that

HVS is the slowest clustering function, i.e. HVS owns the lowest applicability among

these three segmentation designs.

Volume Data (KB)

Processing Time (s) and ܭ ൌ 5

HVS EMVS KMVS

Human Head Data (27.1k) 571 447 438

Engine Data (7.0k) 217 129 114

Teddy Bear Data (0.9k) 53 31 27

Table 4.5 Comparison among performances of processing different data

 Functionality

Based on the Kanungo’s research work, the evidence of functionality is based on the

resulting clusters for different applications. In order to generate the visible analysis of

volume data, the result should offer a straightforward image, not an indistinct one.

As shown in Table 4.6, increasing ܭ can improve the fuzzy results of HVS.

However, this operation will bring a geometric rate of growth of calculation works.

Although the nested relationships derived from the HVS process can be used for

information retrieval applications, its clustered results are not suitable for displaying a

Chapter 4 Volumetric Data Processing

75

visible framework of the volume data, and the time-consuming processing will restrict

the system performance. As a result, HVS was discarded in this volume data

processing stage.

Cluster

Number (ܭ)

Clustering-based Volume Segmentation

HVS EMVS KMVS

3

4

5

Table 4.6 Comparison among three kinds of clustered results.

In this volumetric data processing function module, the clustering-based segmentation

designs are all expected to not only extract the volume data structure, but protect the

processed results against artefacts and information loss.

Even though both EMVS and KMVS can obtain similar performances (such as

clustered results and processing time), there are several differences between these two

methods. Table 4.7 shows the results of using EMVS and KMVE to analyse different

data sets with the same cluster number.

Chapter 4 Volumetric Data Processing

76

Clustering

Method

ܭ ൌ 5

Human Head Data

Engine Data

Teddy Bear Data

EMVS

KMVS

Table 4.7 Comparison between the results of EMVS and KMVS

When segmenting the human head data, as shown in the highlighted regions, the

result of EMVS contained a segment which was obtained by subdividing the

background information (not contained in KMVS). More precisely, one of the clusters

in EMVS was used to gather useless segment without any information regarding the

head model. It can be observed that EMVS was more sensitive to noise than KMVS.

When segmenting the engine data, the EMVS result contained a large amount of

Chapter 4 Volumetric Data Processing

77

fuzzy information in each cluster which will influence the display qualities of

visualizing results.

In addition, similar problems can be found in the processing of the teddy bear data. In

the associated results, a few pieces of meaningful information inside the nose area

were missed by EMVS. By comparing the highlighted features in the results for

clustering the engine data, it can be found that KMVS is more suitable for generating

the segmentation mask because its outputs can be directly rendered for labelling the

clustered volume data segments.

After completing the above comparisons, KMVS was chosen as the volumetric

clustering method in volume data processing stage. However, a series of problems

derived from this choice. Firstly, KMVS relied on manual inputs of the cluster

number ܭ. This manual input operation led to unavoidable breaks during real-time

applications. Secondly, incorrect inputs brought insufficient segmentation. More

precisely, the clustered results contained segment(s) due to the incorrectly defined

cluster numbers. Besides these two problems, there existed an issue of the greyscale

representation of the results of KMVS, which was similar to the greyscale definition

of images in 2D space, and only used shades of grey to render clustered results in the

multidimensional space. The greyscale volume led to insufficient representation of

complicated information with the increase of the cluster number.

Chapter 4 Volumetric Data Processing

78

4.2 Segmentation Improvement and Cluster Representation

4.2.1 Mean-Shift Clustering-based Volume Segmentation (MSVS)

In order to overcome the above mentioned problems of using KMVS, an automatic

volumetric clustering method was proposed, which served as a self-driven extraction

of cluster numbers for classifying the volume data, based on the idea of Mean-Shift

(MS) clustering algorithm (Comaniciu and Meer, 2002). As a non-parametric

technique, MS algorithm was used to analyse complicated data sets and draw the

clusters automatically. “Non-parametric” means that the initialization of the MS

clustering method is “one-off”, i.e. there is no need to define the cluster number

before every clustering cycle.

In order to create MSVS, the first step was defining a kernel density estimator, which

served as the boundaries of every iteration cycle whilst traversing through the volume

data set (voxel୧, i א ሾ0, nሻ). Similar to partial initialization designs in KMVS, there

existed a multi-dimensional space, R଺ consisting of coordinates and inherent scalar

value. Therefore, the kernel density estimator fመሺVoxelሻ was multivariate and relied

on a radially symmetric kernel KሺVoxelሻ (defined as a spherical domain in MSVS).

Based on studying the mechanism in classic 2D approach developed by Comaniciu,

MSVS was built up through imitating the every process in MS algorithm and

designing the 3D approach to access and calculate voxels’ properties for

volume-based applications. Therefore, the volumetric computation model can be

written as:

Chapter 4 Volumetric Data Processing

79

 መ݂ሺܸ݈݁ݔ݋ሻ ൌ ଵ

௡ோల
 ∑ ሺ௏௢௫௘௟ି௩௢௫௘௟೔ܭ

ோ
ሻ௡

௜ୀଵ (4.6)

where ܴ is the radius of the kernel. The kernel ܭሺܸ݈݁ݔ݋ሻ can be written as:

ሻ݈݁ݔ݋ሺܸܭ ൌ ଵ

√ଶగల
݇ሺԡܸ݈݁ݔ݋ԡଶሻ ൌ ଵ

√ଶగల
݁ሺି

భ
మ
ԡ௏௢௫௘௟ԡమሻ (4.7)

where
ଵ

√ଶగల
 is the normalized constant of ܭሺܸ݈݁ݔ݋ሻ. Employing the kernel

 :ሻ, the equation 4.6 can be written as݈݁ݔ݋ሺܸܭ

 መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ൌ
଺

√ଶగల௡ோల
 ∑ ݇ሺቛ௏௢௫௘௟ି௩௢௫௘௟೔

ோ
ቛ
ଶ
ሻ௡

௜ୀଵ (4.8)

The gradient of the kernel density estimator can be written as:

ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ൌ
ଵଶ

√ଶగల௡ோఴ
 ∑ ሺܸ݈݁ݔ݋ െ ௜ሻ݇Ԣሺቛ݈݁ݔ݋ݒ

௏௢௫௘௟ି௩௢௫௘௟೔
ோ

ቛ
ଶ
ሻ௡

௜ୀଵ (4.9)

which yields:

׏ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ

ൌ ଵଶ

√ଶగల௡ோఴ
 ൤∑ െ݇Ԣሺቛ௏௢௫௘௟ି௩௢௫௘௟೔

ோ
ቛ
ଶ
ሻ௡

௜ୀଵ ൨ ൥
∑ ି௩௢௫௘௟೔௞ᇱሺቛ

ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔
ೃ

ቛ
మ
ሻ೙

೔సభ

∑ ି௞ᇱሺቛ
ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔

ೃ
ቛ
మ
ሻ೙

೔సభ

െ ൩݈݁ݔ݋ܸ

(4.10)

The function ൥
∑ ି௩௢௫௘௟೔௞ᇱሺቛ

ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔
ೃ

ቛ
మ
ሻ೙

೔సభ

∑ ି௞ᇱሺቛ
ೇ೚ೣ೐೗షೡ೚ೣ೐೗೔

ೃ
ቛ
మ
ሻ೙

೔సభ

െ ܯ ൩ determined the shift vector݈݁ݔ݋ܸ

of kernel density function, i.e. represented the change of mean values of voxels inside

the kernel. The mechanism of moving the kernel density estimator MSVS can be

written as:

Chapter 4 Volumetric Data Processing

80

Table 4.8 Mechanism of MSVS

With the movement of the kernel density estimator, the mean value of voxels inside

the kernel was calculated as the centroid of a cluster after every shift stage. The

results of MSVS are shown below:

Figure 4.5 The results of MSVS.

Defining the voxel ݈݁ݔ݋ݒ௜, the radius of kernel ܴ, the location of the kernel

density estimator ܮ௄, the gradient of the kernel density estimator ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ

Calculate ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ with respect to ܮ௄ in equation 4.10

If ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ ് 0

 Gain the shift vector ܯ in equation 4.10 //calculating the displacement of
kernel density estimator

௄ܮ ൌ ௄ܮ ൅ܯ //moving kernel density estimator

 Return ܮ௄ to the calculation of ߘ መ݂ோ,௄ሺܸ݈݁ݔ݋ሻ

Else //finishing the convergence work for every cluster

 End

Chapter 4 Volumetric Data Processing

81

Image A is the original data set. Image B, C and D are the results when the radius of

kernel R equals 28, 14 and 7 respectively. As shown in the labelled regions in Figure

4.5 (E, F and G), minimizing the radius of spherical kernel density estimators in

MSVS led to the subdivision processes. These subdivision processes brought in a sort

of measurement error which was known as over-segmentation, and occurred by

dividing one cell into two (or more) segments.

As mentioned at the end of section 4.1, KMVS also suffered from a kind of

measurement error – under-segmentation – which meant one segment covers two (or

more) cells. For example, in Figure 4.4 (B, C and D), the clustered result will show

more clusters with the increase of the cluster number.

In many segmentation applications, over-segmentation was regarded as a much

simpler problem than under-segmentation because it can be easily solved through

“merging” operations in future processes (e.g. the displaying stage). However, in

order to fix the under-segmentation, the algorithm needed a series of modifications

and calculations for subdividing the current result. In addition, over-segmentation was

good at generating the abundantly clustered information, so that incomplete volume

data analysis in KMVS can be fixed in MSVS. Therefore, in this volumetric data

processing module, MSVS served as a previewer which can automatically execute a

rough analysis in the manner of producing an excess cluster number, and this number

was directly used as the input of ܭ in KMVS. This strategy is using the KMVS’s

low sensibility for noise to merge the over-segmented parts. Meanwhile, this design

Chapter 4 Volumetric Data Processing

82

also prevented the segmentation process from the dependence of manual operations

(e.g. merging the over-segmented parts manually).

4.2.2 Design of Automatic Transfer Function (ATF)

As mentioned in section 2.1.2, the survey of TF design in DVR-based applications

claimed that multidimensional TF designs can improve the ability to isolate regions of

interest, or to represent differences between features. Therefore, the volumetric data

process module chose the multidimensional TF for rendering the clustering results.

Besides this, the survey also emphasized the overwhelming task of configuring the

multidimensional TF, and the demands for automatic or semiautomatic design. In

order to facilitate the visualization of large volume data, this module employed the

ATF design to automatically configure the flexible rendering mechanism. This ATF

design was a kind of data-driven technique which treated the final outputs of KMVS

as the parameters prepared for constructing a multidimensional TF.

First of all, the initial relationship between the scalar value and the opacity value in

the TF can be shown in Figure 4.6 (A). In the results of clustering-based

segmentation, the final cluster number ܭ was used to divide this continuous

information into ܭ partitions randomly, and form a histogram (as shown in Figure

4.6 (B)). Afterwards, the next step was configuring the proportion of each partition in

this diagram.

Besides the cluster number, the scalar value of a cluster centroid was used to

determine the height of the corresponding rectangle. For example, both regions of the

Chapter 4 Volumetric Data Processing

83

skull and teeth obtain the same intensity value, which is recorded as the scalar value

in the data acquisition period. Therefore, their clusters share the same scalar value.

Without considering their coordinates, these two clusters can be assigned with the

same rectangle, and rendered in the same way. In order to avoid this inefficient

rendering, the coordinates of centroids were utilized to distinguish clusters which

share the same scalar value. In addition, the amount of voxels in each cluster was

converted into the width of rectangle.

After finishing the above mentioned data-driven configurations, the resulting

histogram can be shown in Figure 4.6 (C). By accomplishing these data-driven

configurations, this ATF design can render original volume data as one of important

results of the volumetric data processing module (shown in Figure 4.6 (D)).

Figure 4.6 Diagrams of ATF design and the result of analysing a CT-scanned human head data

4.3 Designs of Boundary Extraction

After finishing the automatic visualization process which extracted the segmentation

Chapter 4 Volumetric Data Processing

84

mask to label internal structure of the volume data, the boundary extraction design,

which served as a complement to the data segmentation process in this module, was

constructed to detect the boundaries of interesting segment(s).

4.3.1 Active Contour Algorithm

Active Contour (otherwise known as Snake) is a method that delineates the outline of

features in image space. According to the different types of the outline mode, this

algorithm can be categorized into edge-based (Xu and Prince, 1998) and region-based

(Du and Bui, 2008) methods. In order to enclose the features, all these methods rely

on a deformable spline which is characterized and transformed by these two

constraints: interiors and exteriors. The interior constraints are determined by the

material properties of the spline, such as the mass distribution parameter and the

viscosity of the neighbouring medium. The exterior ones represent a sort of state that

the spline is constrainedly transformed according to the calculation of external factors.

For example, after exerting a force on the spline, the resulting constraints (interior and

exterior) will determine the change of sampled region based on an energy function.

This function is calculated by following the equation for Energy Minimization (Kass,

Witkin et al., 1988):

ሺܸሻܧ ൌ ׬ ሺܧ௜௡௧௘௥௡௔௟ሺܸሻ
ଵ
଴ ൅ ௘௫௧௘௥௡௔௟ሺܸሻሻܧ ܸ݀ (4.11)

where ܧ௜௡௧௘௥௡௔௟ is the internal energy of the transformed spline and ܧ௘௫௧௘௥௡௔௟ serves

as external energy acting on the spline.

For example, in order to detect the cavity segment from the human celiac slice, the

Chapter 4 Volumetric Data Processing

85

active contour function firstly initialises the spline and continuously compares the

resulting energies. The relation between this spline and its surrounding pixels is

parameterised as the exterior constraint. In equation 4.11, the corresponding external

energy ܧ௘௫௧௘௥௡௔௟ is replaced by the gradient of pixel scalar value for simplifying the

calculation work. Similarly, the ܧ௜௡௧௘௥௡௔௟ represents the internal constraint and

equals the number of pixels inside the spline divided by ten thousand. This

configuration way is to increase the proportion of exterior constraint.

Figure 4.7 Energy ࡱሾ࢞, .ሿ in active contour algorithm versus the number of iteration࢟

As a result, before iterating this function, the current energy value is the largest one

(as shown in Figure 4.7) because the pixels covered by the current spline own

different scalar value. In other words, the data segment inside the initial spline (as

shown in Figure 4.8 (a)) is mixture. By modifying the spline (as shown in Figure 4.8

(b-d)), the number of contained pixels and the composition of pixel value will be

changed and the energy function can output new results. The active contour-based

function also need to follow the proposed energy minimization strategy in traditional

2D boundary detection applications, consequently the minimum result of equation

4.11 will be kept during the iteration of modifying the spline and the energy will

approach to zero as shown in Figure 4.7. Correspondingly, in the Figure 4.8 (e), the

Chapter 4 Volumetric Data Processing

86

final detected result is a homogenous part.

Figure 4.8 Illustrations of active contour algorithm

4.3.2 Region-based Active Surface Method

For processing the volume data, the boundary extraction design was implemented

based on the region-based strategy of active contour method which had attracted

increasing attention in analysing medical information (Du and Bui, 2008; Mille, 2009;

Mohan, Sundaramoorthi et al., 2010). When using this active surface algorithm to

process volume data, the linear spline will be changed into a customised cubic one (as

shown in Figure 4.9).

Figure 4.9 Illustrations of a domain of interest initialized in active surface algorithm. Image (a)

Chapter 4 Volumetric Data Processing

87

and (b) respectively represent the views of the cubic spline in axial and sagittal cross sections

As a result, its mathematical model was based on the change of a parameterized

surface ॺ: ܵ א Թ଺ which outlined voxels in this boundary extraction function. By

using the smoothness to represent the exterior constraint, the calculation of minimal

energy inside this region-based method was represented by the equation:

ሾॺሿܧ ൌ ௦௠௢௢௧௛ܧ߮ ൅ ሺ1 െ ߮ሻܧ௥௘௚௜௢௡ (4.12)

where ߮ is a pre-input parameter that weights the significance of the smoothness

terms. Kass et al. proposed the mathematical description of a smoothness term by a

first-order derivative of the object region. Based on this idea, the active surface

function in this volume deformation system defines the smooth energy to describe the

content underlying the spline in X, Y and Z-axial directions:

௦௠௢௢௧௛ሾॺሿܧ ൌ ׮ ቛడௌ
డ௑
ቛ
ଶ
൅ ቛడௌ

డ௒
ቛ
ଶ
൅ ቛడௌ

డ௓
ቛ
ଶ

ॺ ݀ܺ ܻ݀ ܼ݀ (4.13)

Surface ॺ can separate the volume data into the interiors and exteriors. μ୧୬ and

μ୭୳୲ respectively represent the sum of corresponding voxels’ scalar values, and

anticipate the evaluation of the changed region energy in the manner of dynamic

parameter. By using the Chan-Vese model, the energy of the 3D domain can be

calculated by:

௥௘௚௜௢௡ሾॺሿܧ ൌ ׮௜௡ߛ ௜௡ॺߤ ݀ܺ ܻ݀ ܼ݀ െ ׮௢௨௧ߛ ௢௨௧ॺߤ ݀ܺ ܻ݀ ܼ݀ (4.14)

where γ୧୬ and γ୭୳୲ are pre-defined constants for managing the proportions of

interiors and exteriors respectively. The mechanism of this region-based active

Chapter 4 Volumetric Data Processing

88

surface transformation can be written in Table 4.9; its results are shown in Figure 4.10

in slices.

Table 4.9 Mechanism of active surface algorithm.

When using the active surface function to process the volume data sets, the resulting

boundary information is a layer of detected voxels. In Figure 4.10, image A1-A5 are

the 5 random cross sections of detecting the throat data segment via the initialized

spline (image A0). Similarly, the detected skull data and the associated spline are

respectively shown in B1- B5 and B0. They will be converted into vertices in Chapter

5.

Initialize a surface ॺ with constants ߛ௜௡, ߛ௢௨௧, ߮

If (ܧሾॺሿ െ ሾॺሿ௙௢௥௠௘௥ܧ ൏ 0)

Calculate ܧ௦௠௢௢௧௛ሾॺሿ in equation 4.13

Calculate ܧ௥௘௚௜௢௡ሾॺሿ in equation 4.14

 Update ߤ௜௡ and ߤ௢௨௧

 Calculate the energy values in equation 4.12

Else

Break

Return ॺ

Chapter 4 Volumetric Data Processing

89

Figure 4.10 Results of active surface algorithm in volume segmentation

4.4 Summary

 As illustrated in Figure 4.2, 4.3, 4.4 and 4.5, the feasibility of applying

clustering algorithms to volume segmentation has been demonstrated by

testing HVS, EMVS, KMVS, and MSVS clustering on different volume data

sets. In Table 4.4, 4.5, 4.6, and 4.7, the evaluation of clustering method-based

volume segmentation claimed the advantages of KMVS and the requirement

of solutions to the segmentation errors.

 As illustrated in section 4.2, the integration of MSVS and KMVS was

implemented to overcome the segmentation errors. And the clustered regions

can be identified and highlighted by the ATF design. Based on this design,

various operations and further analysis can be implemented.

 The region-based boundary extraction function has also been accomplished,

and the extracted results demonstrated the feasibility of isolating interesting

segment(s) from volume data.

The work on extracting volume control lattice introduced in the next chapter builds

Chapter 4 Volumetric Data Processing

90

upon the output from the volumetric data processing operations.

Chapter 5 Lattice Construction and Refinement

91

Chapter 5 Lattice Construction and Refinement

In order to find a solution to improve the performance of the lattice construction

process, the work document in this chapter focuses on developing a novel mechanism

for defining control lattices and associated optimization designs prepared for the

volume model manipulation stage. Most of the traditional methods, which involve

manually defining the lattices and spending extra computation time on processing

meaningless data, would be replaced by an automatic approach for improving the

efficiency of this process.

Figure 5.1 Results of constructed lattices based on the segmented information

Based on the isolated information provided by the segmentation operation described

in Chapter 4, the constructed lattices can be much “closer” to the interesting

segment(s) than those in manual definition methods. In other words, the usage of

designed volumetric data processing function module can not only filter out

meaningless parts (as shown in Figure 5.1(A and C)), but can also guide the accurate

construction of lattices (as shown in images B and D). This novel lattice construction

process relied on an iso-surface extraction technique – MC algorithm – to achieve the

Chapter 5 Lattice Construction and Refinement

92

construction of “model-fitting” lattices.

5.1 Marching Cubes Algorithm

As a well-known technique, Marching Cubes algorithm serves an important indirect

volume visualization approach which can represent the volume data via polygonal

features, e.g. the resulting iso-surfaces can enable the volume model to support

rendering methods in the field of surface modelling. However, using the iso-surface as

the control lattice in volume deformation is an innovation design. The potential

problem and limitation of using iso-surfaces as the control lattices for implementing a

physic-based volume deformation had been mentioned in chapter 3, section 3.5. This

algorithm is usually divided into two parts: extraction of vertices corresponding to a

user-defined value, and calculation of the ‘normals’ at each of the vertices to

accomplish triangulation tasks (Lorensen and Cline, 1987).

5.1.1 Sampling and Vertex Extraction Process

By following a sort of divide-and-conquer-based sampling strategy, the MC-based

lattice construction defined a cubic sampling window and makes it travel through the

whole volume data. The statuses of intersections between the sampling window and

sampled voxels determined the number of extracted vertices. Because each voxel’s

scalar value can be converted into the values of its eight corners (as shown in Figure

5.2 (A)), the criterion for evaluating the results of various intersections was based on

the comparison between each corner value and the user-defined one.

Chapter 5 Lattice Construction and Refinement

93

Figure 5.2 Diagram of sampling process in MC algorithm

Since the resulting iso-surface consists of extracted vertices, it can be imagined that

this extracted surface intersects with associated voxels at sampling positions (1) and

(4) (as shown in Figure 5.2 (B)). These voxels must comprise at least one corner

which has the user-defined value. The other voxels, which are not sampled, lie on

either position (2) or (3).

5.1.2 Triangulation Process

After ensuring that the corners fulfil the criterion, the following step is to triangulize

this sampling result. Because there are eight corners in each voxel and two states, and

the corner(s) is (or are) outside and inside surfaces, the triangulation process will

comprise 2଼ ൌ 256 types of intersections. There was a look-up table which was used

as a way of indexing the associated triangulation of facets according to various

surface-edge insertions (as shown in Figure 5.3 (A)) (Lorensen and Cline, 1987).

These 256 types of intersection have been represented via different combinations of

15 basic configurations (as shown in Figure 5.3 (B)).

Chapter 5 Lattice Construction and Refinement

94

Figure 5.3 Diagram of the look-up table for surface-edge intersection

As the final process in the MC algorithm, the calculations of the unit ‘normal’ for

each vertex guided the combinations of these triangular facets to form the resulting

surfaces (as shown in Figure 5.4).

Figure 5.4 Results of extracted iso-surfaces. Images (A to C) are the results of extracting surfaces

with different user-defined values. Images (D to F) gradually show the details of a

wire-frame-based iso-surface.

5.1.3 Automatic Construction and Model-fitting Lattices

First of all, the clustering-based volume segmentation approach can freely locate each

cluster and rapidly output the properties of each cluster’s controid. This analysed

information was directly used as the inputs in this MC-based surface extraction

Chapter 5 Lattice Construction and Refinement

95

process to replace the manually defined value, and the criterion for evaluating the

statuses of intersections between the extracted surface and sampled voxels. As a

result, this usage of clustered information can improve the efficiency of the lattice

construction module.

Due to MC’s sampling mechanism, the extracted vertices were all inside the sampled

voxels. In other words, the volume of spaces between the extracted iso-surface and

the underlying volumetric object was smaller than a voxel, which was usually

measured at the micron level, i.e., these gaps were too small to calculate. As a result,

this extracted surface can be the “model-fitting” lattice, which is the closest lattice

than any manual defined one. In addition, as the outcome of Active Surface-based

boundary extraction design inside the volumetric data processing module, the isolated

features can be detected, to enable the efficient manipulations on the interesting

segment(s). Meanwhile, the corresponding relationships between extracted vertices

and sampled voxels were exported into a sort of indexing explained in Chapter 6,

section 6.2.

5.2 Lattice Refinement

For constructing control lattices, the key of using MC algorithm is extracting vertices

from the exterior voxels in the object region. However, as the control lattice in the

following deformation operations, the extracted iso-surface will increase the

computation workload in deformation process because the MC algorithm’s high

Chapter 5 Lattice Construction and Refinement

96

frequency sampling mechanism can make the control lattice contain a complicated

framework and a large number of vertices. In order to maintain the system’s real-time

performance, the lattice refinement design follows the classical simplification

strategies which originally modify the surface models for saving the storage,

encoding/decoding for enhancing display effects or reconstructing for specific control.

Their simplification methods will be tested and evaluated according to the criterion of

efficiency in chapter 3, section 3.6. For example, as shown in Figure 5.4 (A), the total

number of extracted vertices was 830K. Because, in order to keep a complete

vertex-representation of the volume data, the sampling rates for the implementation of

the MC algorithm was maintained at a high frequency so that at least one vertex can

be extracted from the associated voxels. This complex representation can prepare

abundant connections between the control lattice and the underlying volumetric object

for the volume deformation operations.

Figure 5.5 Results of extracted iso-surfaces. From left to right, the associated number of extracted

vertices are 1.9k, 58K, 41k, and 950K respectively

However, because these vertices serve as the control points during the deformation

process, the huge amount of control points would increase the computation workload

Chapter 5 Lattice Construction and Refinement

97

and reduce the interactive rate of real-time manipulations. Therefore, polygonal

simplification methods were investigated to simplify the automatically constructed

lattices (as shown in Figure 5.5).

As an intermediate result, only the framework of extracted iso-surfaces is considered

in the following deformation process. In other words, the solution of refinement can

ignore the surface features. Therefore, the additional evaluation criteria of

simplification approaches will be modified when processing the extracted iso-surface

in this project. As an application of mesh simplification, the refinement design will be

determined based on the result of experimenting with classic approaches. According

to the acknowledged review of mesh simplification methods, the extracted lattice is

respectively processed by testing four prevalent methods: varying sampling rates,

adaptive subdivision scheme, vertex decimation and merging approach (Luebke,

2001).

5.2.1 Varying Sampling Rates

As the most direct and simplest simplification solution, varying the sampling rate can

decrease the size of sampled data proportionally. However, there were several

disadvantages in terms of carrying out the simplified results correctly, and

manipulating the simplification freely. As shown in Figure 5.6, images B and D

respectively show the simplified results of the extracted iso-surfaces in images A and

C. By decreasing the sampling rate, the simplified results contained a number of

losses in the features (the unacceptable gaps in images B and D) which certainly cause

Chapter 5 Lattice Construction and Refinement

98

the incorrect representations in deformation stage and reduce the accuracy of

associated simulations. Besides, this proportional vertex management suffered from

the familiar problems in traditional simplification approaches: limited simplified

lattices because a few sampling frequencies available for the extraction process

(Luebke, 2001).

Figure 5.6 Results of decreasing sampling rate

5.2.2 Adaptive Subdivision Scheme

The Loop Subdivision scheme originally focused on converting arbitrary polygonal

surfaces into smooth triangle-based ones by calculating new vertices. Its scheme

includes adding edge-vertices and refining the changed mesh, and mainly relies on the

second process, following triangular spline, in triangle-based simplifications

(Faramarz, Colin et al., 2007). The lattice refinement process tested its inverse scheme

for decreasing the number of rhombus within the surface from simplification level 1

to level 3 (as shown in Figure 5.7)

Chapter 5 Lattice Construction and Refinement

99

Figure 5.7 Illustrations of adaptive subdivision method

This simplification scheme was mainly used for compaction of complicated

geometries or reverse engineering applications. In this project, a reverse “refinement”

of constructed lattices was implemented by orienting the “former” vertex according to

the current vertex and its neighbour, i.e. reversing the loop subdivision process. Then,

the oriented former vertices were filtered by a subtraction process, which is an affine

operation of adding points in a regular loop subdivision scheme. In the regular

refinement process in loop subdivision and inverse schemes, the surface needs to be

restored, so that the valence of each vertex can be changed into 6. However, in order

to maintain the relationships between vertices and voxels, the surface restoring

operations were disabled in the refinement process.

5.2.3 Vertex Decimation Approach

The vertex decimation approach iteratively located several “omissible” points,

removed them and re-triangulated the result until the simplified mesh meets a

user-defined criterion (as shown in Figure 5.8). As a classical simplification solution

tested in this project, this method consisted of two steps: decimating vertices and

preventing the local topology of the mesh from being affected by the changes caused

Chapter 5 Lattice Construction and Refinement

100

by the vertex movements (Schroeder, Zarge et al., 1992).

Figure 5.8 Illustrations of vertex decimation method

Before simplifying a mesh, the decimation algorithm firstly represented the local

geometry and topology via a given mark. This mark may be: a simple vertex

surrounded by a fixed number of neighbouring vertices; a complex vertex connected

with a constant facet and a set of neighbours; a boundary vertex located on a

determined fixed side within a rigid framework; an interior edge line shared by given

triangles, or a corner whose structure must be protected through the simplification

stage. In this vertex decimation approach, this mark served as an indicator of the

simplification process, which will switch this process off if the associated local

geometry and topology are changed.

5.2.4 Vertex Merging Method

The vertex merging method operated the simplification process by iterating the cycle

of merging two or more vertices into a single vertex (Oh & Park, 1995). As a control

point inside the lattice adopted in the deformation process, every extracted vertex was

addressed by a voxel for accomplishing a sort of mapping operation in Chapter 6. If

several vertices are decimated, the deformation will run as usual with this incomplete

Chapter 5 Lattice Construction and Refinement

101

lattice. However, the merging-based simplification method led to quite a few new

generated vertices which destroy the indexable relationship between extracted vertices

and associated voxels. Therefore, the vertex merging method was not used as the

solution for simplifying constructed lattices.

Figure 5.9 Illustrations of vertex merging method

5.2.5 Tests and Evaluations

In Table 5.1, the comparisons between the results of simplification using the adaptive

subdivision scheme and vertex decimation method illustrated that the decimation

method is more adept at capturing the exact geometry of the surface model, especially

in the preservation of sharp features, than the adaptive scheme (as shown in the

highlighted rectangles). As a result, simplified lattices generated by the vertex

decimation method can provide more available and recognizable features. In addition,

these simplified results also demonstrate the capability of these two methods for

simplifying the same mesh model.

Chapter 5 Lattice Construction and Refinement

102

Vertex Decimation

Approach

Adaptive Subdivision

Scheme

200-150

150-90

80-60

Table 5.1 Comparisons between results of decimation and subdivision solutions

Table 5.2 compared the flexibilities of these two simplification solutions by testing

them to process the same complicated mesh model and listing the numbers of vertices

according to different simplification levels. Due to the constraint that the given

geometry and topology cannot be changed, the limit for the number of vertices in

decimation-based simplification solution was about 300, and it cannot provide further

simplification as the subdivision-based method can. This disadvantage can restrict the

flexibility of the lattices refinement process.

Method

Num of Vert

Chapter 5 Lattice Construction and Refinement

103

Vertex Decimation Adaptive Subdivision

700-600

600-500

500-300

300-150 Null

150-100 Null

Table 5.2 Comparison between results of decimation and subdivision solutions

As a result of this comparison, the subdivision-based method was chosen to simplify

Solution

Num of Vert

Chapter 5 Lattice Construction and Refinement

104

the extracted iso-surfaces. The simplified lattices are shown in Figure 5.10 (A to G)

with their wire-frame-based structures (a to g). According to different simplification

levels, Figure 5.11 shows the corresponding representations of deformed lattices

which will be discussed in the following chapter.

Figure 5.10 Illustrations of vertex adaptive subdivision solution

Figure 5.11 Illustrations of deformed control lattices

Chapter 5 Lattice Construction and Refinement

105

5.3 Summary

 The idea of using MC algorithm to construct the so-called “model-fitting”

control lattice is based on its sampling capability which makes the extracted

iso-surface perform the closest cover for the underlying object. This idea can

solve the low accuracy problem inside the manually defining lattice

operations.

 Derived from the active surface function design in Chapter 4, the detected

information can be directly converted into the dedicated control lattice to

envelop the interesting data segment(s). This data segmentation design can

efficiently simplify the volume data size, and consequently reduce the

workload of associated computation and data access operations. Besides, the

lattice refinement function cannot only control the complexity of control

lattices, but maintain the relationship which determines the correspondences

between the control vertices and exterior voxels in the deformation process.”

Both of these simplifications can save the processing time spent on

processing the useless data and inefficient (or offline) operations, e.g.

constrained deformation (Correa, Silver et al., 2010).

 There are existing hardware-driven tessellation examples, which can be

adopted for square-based simplifications, e.g. the GPU-based Catmull-Clark

subdivision. In this research, the basic element inside the extracted lattices

was the triangle, so that the adaptive subdivision scheme was implemented in

Chapter 5 Lattice Construction and Refinement

106

the form of hardware-driven processes for enabling the management of

triangles via an “on-the-fly” style (explained in Chapter 7, section 7.3.3).

 By following this process, the extracted surface was successfully unified and

simplified, and enabled logical and mathematical relationships between the

initial and final vertices for mapping operations in following deformation

process.

Chapter 6 Volume Deformation

107

Chapter 6 Volume Deformation

In the terms of point-set topology, a solid object indicates a perfect closure of interiors

by its surface. Technically, deforming a solid object - a volume model - should

transform its internal structures along with the surface changes. In some simulations,

the focus is only on the “shape” changes of the simulated objects to provide the

desired visual effects.

In true volume deformation applications, the internal structure of a volume model

needs to be defined explicitly through characteristics, e.g. the varied distribution

gradients of voxels, to simulate the deformation behaviours often induced by

physics-based forces. Therefore, the deformation process deployed in this research

aimed to generate a new distribution map for voxels “under strains”, so that the final

visualization could show realistic material behaviours.

Figure 6.1 Pipeline of deformation module

The pipeline of the deformation process is shown in Figure 6.1. The following three

sections will detail the principles for constructing the deformable solids, the address

assignments for the participant voxels and the operation of “displacement mapping”.

Chapter 6 Volume Deformation

108

The participant was used to distinguish the voxels from the others lying outside the

deformation radiation. An indexing function was designed to determine the

participant voxels in a deformation cycle, based on the well-known traversal

mechanism in an octree data structure.

6.1 Constructing Deformable Solids

Based on the resulting iso-surfaces extracted in the lattice construction process, the

interesting segment in volume data can be completely enclosed. Therefore,

Deformation of Geometric Models Editor (DOGME), which uses an enclosed lattice

to represent the deformation and then passes the deformation characters to the

underlying models, can be directly used as the manipulation strategy in this

deformation design. However, in most DOGME-based deformation applications, the

manual construction of control lattices can exacerbate the problem of time-consuming

process, and consequently restrict the performance of real-time operations. Besides

inefficient operations, the constrained assumption that the lattices are perfectly close

to the underlying objects, will lead to the artefacts in the resulting deformation

behaviours.

As explained in the Chapter 5, the sampling mechanism and the extraction mode in

MC-based lattice construction process successfully made the extracted iso-surface

serve as a “model-fitting” lattice which instinctively matches the surface features of

the volumetric object. As a result, an improved DOGME (I-DOGME) was devised to

Chapter 6 Volume Deformation

109

be integrated with the designed lattice construction for enveloping the only interesting

data segment in the continuous volume data, and consequently prevented the extra

computation time from being cost on the useless parts. In this I-DOGME method, the

deformation operations were firstly implemented on the control lattice through a

section concentrating on the lattice deformation. This deformation was constructed by

embedding a mass-spring framework to represent the resistance force.

6.1.1 Lattice Deformation

By freely moving the control vertices to given positions, or optionally interpolating

new vertices for restoring the surface structures, as shown in Figure 6.2 (A), the

lattice can be manipulated to present the desired results without any meaning. Figure

6.2 (B) shows the 3D results of the corresponding 2D lattice deformations.

Figure 6.2 Random shape changes on the extracted lattice (in 2D and 3D)

In order to meet the requirements of complicated simulations (physics-based

Chapter 6 Volume Deformation

110

deformation), the lattice was converted into deformable solids using specific

mathematical models. In this volume deformation method, the constructed lattices

were all triangle-based meshes and the extracted polygons were all coplanar.

Therefore, the mathematical model which requires special lattices were not suitable

for this applied lattices, such as the FEM model demands tetrahedral frameworks, and

the Chain-Mail approach requires intersected components. In addition, applying those

models will lead to the separation of volume models into a number of partitions,

which often consumes substantial computational time to establish regional

relationships between groups of voxels, and essential matrix calculations in the

displacement mapping stage. The deformation model in this programme adopted the

mass-spring model for manipulating the deformable lattices.

6.1.2 Embedding Mass-spring Mechanism-based Framework

Embedding the mass-spring mechanism was a process that transformed the control

lattice from a “place-holder” to a non-rigid deformable one. In order to represent

elastic behaviours in the manner of mesh dynamics, the mass-spring model

established a set of link-based relationships between masses in the manner of lines

between vertices. Similar to the links between neighbouring vertices, a voxel-based

system was carried out on the layer of exterior voxels after the displacement mapping

process (as shown in Figure 6.3) (Provot, 1995):

 Links between voxels (a, b) and (a+1, b), and voxels (a, b) and (a, b+1) were

referred to as “structural springs” and were coloured in red. This can simulate

Chapter 6 Volume Deformation

111

the pulling force applied on the voxels.

 Links between voxels (a, b) and (a+1, b+1) were referred to as “shear springs”

and were coloured in blue; this is to simulate the transition on the cross section

of the lattice. It can simulate the shear stress running in parallel to the cross

section, and the transformation of forces when tensional or compression stress

is applied perpendicularly.

 Links between voxels (a, b) and (a+2, b), and voxels (a, b) and (a, b+2), were

referred to as “flexion springs” and are coloured in green. This can simulate

the flexion stress (i.e. bending force) inside a layer of voxels.

Figure 6.3 Mesh-based mass-spring system

In order to simulate the effects of different forces, the mass-spring system relied on

various combinations of these links. For example, for performing elastic effects and

damper frameworks caused by stretching forces, the mass-spring relationship will be

limited to a single type of the 3 spring links defined above.

For simplifying the relevant calculations for the deformation process, the employed

mass-spring mechanism only relied on the structural spring link, each vertex in this

system was treated as one unit in mass, and the force was always applied on one

control point (or vertex). In order to distinguish it from the other vertices, this control

Chapter 6 Volume Deformation

112

point was named as the target vertex. For example, the target vertex ௫ܲ,௬,௭ could

obtain acceleration ߙ௫,௬,௭ through the applied force ܨ௫,௬,௭ on it. After defining the

start time T and duration t, the displacement was computed as the distance between

the vertex’s starting position ௫ܲ,௬,௭ሺܶሻ and the end position ௫ܲ,௬,௭ሺܶ ൅ ሻ, which wasݐ

equal to the scalar of vector ቛ ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅ ሻሬሬሬԦቛ. Taking into consideration thatݐ

the applied forces are not constant, the resulting distance ቛ ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅ ሻሬሬሬԦቛݐ

cannot be obtained by calculating a simple quadratic equation with one known. As a

result, the varying acceleration ߙ௫,௬,௭ and a series of varying velocities ௫ܸ,௬,௭ was

approximately worked out during the duration ݐ in equation 6.1, where the

displacement of the vertex was calculated (Nealen, Müller et al., 2006).

௫,௬,௭ሺܶߙ ൅ ሻݐ ൌ
௫,௬,௭ሺܶܨ ൅ ሻݐ

1

௫ܸ,௬,௭ሺܶ ൅ ሻݐ ൌ ௫ܸ,௬,௭ሺܶሻ ൅ ௫,௬,௭ሺܶߙݐ ൅ ሻ (6.1)ݐ

௫ܲ,௬,௭ሺܶ ൅ ሻݐ ൌ ௫ܲ,௬,௭ሺݐሻ ൅ ݐ ௫ܸ,௬,௭ሺܶ ൅ ሻݐ

After defining the movement of the target vertex, the next step was to build an

iteration to decompose the applied force on the other ends of the structural springs. As

shown in Figure 6.4 (A), all the decomposed forces were constrained to obtain equal

scalars at the same level. The iteration continuously carried on the decomposed forces

applied in the order of the RedOrangeGreenBlack, as shown in Figure 6.4 (B),

where the hollow ones represent the vertices lying outside the deformation radiation.

Chapter 6 Volume Deformation

113

Figure 6.4 Diagrams of decomposing the applied force in mass-spring system

For example, Figure 6.4 (C) shows a component force ܨ௨,௩,௪ on the associated vertex

௨ܲ,௩,௪ (the orange point) that is connected with the target vertex ௫ܲ,௬,௭ (the red one).

After locating the position of the moved target vertex ௫ܲ,௬,௭ሺܶ ൅ ሻ, the componentݐ

force ܨ௨,௩,௪ was calculated as in equation 6.2. In the Euclidean plane, the angle αଵ

(dot product) between vectors ௫ܲ,௬,௭ሺܶሻ ௫ܲ,௬,௭ሺܶ ൅ ሻሬሬሬԦ and ௨ܲ,௩,௪ሺܶሻݐ ௫ܲ,௬,௭ሺܶ ൅ ሻሬሬԦ canݐ

be calculated by the equation 6.3.

௨,௩,௪ܨ ൌ ௫,௬,௭ܨ cos ଵ (6.2)ߙ

ଵߙ ൌ cosିଵ ቆ
௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬԦ·௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬԦ

ቛ௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬԦቛቛ௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬԦቛ
ቇ (6.3)

And the component force ܨ௨,௩,௪ on vertex ௨ܲ,௩,௪ can be written as:

௨,௩,௪ܨ ൌ ௫,௬,௭ܨ cos ቆ
௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬԦ·௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬԦ

ቛ௉ೣ ,೤,೥ሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬሬԦቛቛ௉ೠ,ೡ,ೢሺ்ሻ௉ೣ ,೤,೥ሺ்ା௧ሻሬሬԦቛ
ቇ (6.4)

Chapter 6 Volume Deformation

114

Via iterating this formula calculation, all component forces on ௨ܲ,௩,௪’s neighbours

can be worked out. When the angle between two vectors approximates to zero, the

iteration will stop processing the branches of this vertex (the green one in Figure 6.4

(A)). In other words, its branches (coloured in black) can still receive the component

forces, but not anticipates in the further computations. Based on the calculated

components of the applied forces, the associated displacements of the surrounding

vertices can be calculated in equation 6.1.

6.1.3 Implementing Resistance Force Mechanism

The lattice deformation introduced in the above sections often suffered from a lack of

realism in runtime (Provot, 1995). For example, Figure 6.5 (B) exhibits a

“super-elastic” effect that occurred in dragging a flap of skin on a normal human head

(as show in image A).

Figure 6.5 Results of lattice deformation with mass-spring system

In order to simulate the realistic and physics-based behaviours of human tissues, the

deformation employed a stiffness term to “buffer” the current linear effects, as shown

in Figure 6.5 (C). In reality, the stiffness term - ܨ௦௧௜௙௙௡௘௦௦ - will increase rapidly if

Chapter 6 Volume Deformation

115

the deformation extent decreases, so that the results can support limited shape

changes. In the simulation of the radial force distribution, the equation of ܨ௦௧௜௙௙௡௘௦௦

can be written as (Provot, 1995):

௦௧௜௙௙௡௘௦௦൫ܨ ௨ܲ,௩,௪൯ ൌ െ∑ܭ௫,௬,௭,௨,௩,௪ ൤ ௫ܲ,௬,௭ ௨ܲ,௩,௪ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ െ ௫,௬,௭,௨,௩,௪଴ܮ ௉ೣ ,೤,೥௉ೠ,ೡ,ೢሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ

ฮ௉ೣ ,೤,೥௉ೠ,ೡ,ೢሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦฮ
൨ (6.5)

where ܭ௫,௬,௭,௨,௩,௪ is a predefined stiffness coefficient of the structural spring between

௫ܲ,௬,௭ and ௨ܲ,௩,௪ , and will vary according the length of this link. ܮ௫,௬,௭,௨,௩,௪଴

represents the original status of the spring link. Because all the stiffness forces

 ௦௧௜௙௙௡௘௦௦ surrounding ௫ܲ,௬,௭ and the component forces on its neighbouring verticesܨ

are opposite and collinear in pairs. Therefore, the displacements of the target vertex

and its neighbours ௫ܲ,௬,௭ ௨ܲ,௩,௪ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ can be calculated after integrating the ܨ௦௧௜௙௙௡௘௦௦ and

the calculated component force ܨ௨,௩,௪ in the above section. By defining different

stiffness coefficients ܭ on the structured spring links, the resulting stiffness forces

will make the deformed lattice present varied shape changes as shown in Figure 6.6.

When the applied force, duration and the target vertex are all fixed, the change of

stiffness parameters can determine the extent of deformation with the increase of ܭ

value, which leads to more deformation effects.

Chapter 6 Volume Deformation

116

Figure 6.6 Results of lattice deformation with different stiffness coefficients

Based on this mechanism, the calculations of the radial force distribution in the lattice

deformation process were determined by whether both the composition of the

components of applied force and the current stiffness force all equal to zero or not. In

this lattice deformation process, each vertex which lies in the distribution region were

assigned with a component force, and the resulting displacement can be calculated in

the following process, explained in Table 6.1.

Define the position of target vertex ௫ܲ,௬,௭; the position of random vertex ௨ܲ,௩,௪

Define the component force ܨ௨,௩,௪ and a value ܨ଴

If ቛ ௫ܲ,௬,௭ሺܶሻ ௨ܲ,௩,௪ሺܶሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቛ equals zero //pointing at the target vertex

 Calculate ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅ ሻሬሬሬԦ for target vertex in equation 6.1ݐ

Else //pointing at the neighbouring vertex

Calculate the component force ܨ௨,௩,௪ in equation 6.4

 Calculate the stiffness force ܨ௦௧௜௙௙௡௘௦௦൫ ௨ܲ,௩,௪൯ in equation 6.5

 Calculate the integrated force ܨ௨,௩,௪=ܨ௨,௩,௪ െ ௦௧௜௙௙௡௘௦௦൫ܨ ௨ܲ,௩,௪൯

Calculate ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅ ௨,௩,௪ in equation 6.1ܨ ሻሬሬሬԦ with calculatedݐ

Return ௨ܲ,௩,௪ሺܶሻ ௨ܲ,௩,௪ሺܶ ൅ ሻሬሬሬԦݐ

Repeat

Until ܨ௨,௩,௪ ൑ ଴ܨ

Chapter 6 Volume Deformation

117

Table 6.1 Mechanism of vertex displacement calculation

6.2 Displacement Mapping

6.2.1 Mapping Process Design

In this mapping process, the mapping matrix ݏ݊ܽݎܶ_ܯ௠ൈ௡ served as a translator for

the data mapping operation between ݊ and ݉ dimensional spaces, which

respectively represent the lattice and the underlying volume model. The principle of

the mapping process in traditional DOGME approaches is shown in Figure 6.7.

Figure 6.7 Diagram of mapping process deployed in the DOGME

Chapter 6 Volume Deformation

118

Figure 6.8 Diagram of I-DOGME

Since the deformation method described in this thesis only comprised two types of 3D

elements, vertices and voxels, the mapping matrix was denoted as ݏ݊ܽݎܶ_ܯଷൈଷ.

Figure 6.8 illustrates the vertices’ displacements, named displacement constraints, in

vertex space and the related results of volume deformation.

In traditional DOGME methods, after finishing the lattice deformation, the

displacement constraints, registered in the form of control lattices, will be

“super-imposed” onto the given area by following a set of manually defined

connections between control vertices and voxels (Bechmann and Gerber, 2003). In

I-DOGME, this constrained relationship was replaced by an inherent relationship

which was automatically derived from the MC-based lattice construction process;

meanwhile its “off-line” region description mode was improved.

6.2.2 Designs of Indexable Inherent Relationship (IIR)

All vertices on the control lattice were all extracted by the MC process. In order to

link these vertices with corresponding voxels, the IIR design utilized this inherent

relationship to order the displacement mapping operations between voxels and

vertices. Because each extracted vertex can be located on a voxel’s edge (explained in

Chapter 4), this voxel’s coordinates was directly regarded as the vertex’s. Table 6.2

shows the mechanism of indexing the voxel based on the vertices’ parameters. In

order to simplify the explanation of this design, the volume of the voxel and the space

of the shifting sample grid were all assumed to be a uniform size.

Chapter 6 Volume Deformation

119

Table 6.2 Mechanism for locating voxel’s sequence number

This usage of inherent relationship between vertices and voxel played an important

role in this displacement mapping process, which solved the problem of complexity

caused by the manual region description in off-line mode. In addition, this usage

made a further demonstration that maintaining and encapsulating the inherent

relationship should be a criterion of analysing the pros and cons of four surface

simplification methods in section 5.2. With the IIR design, the principle of the

improved mapping process in I-DOGME method is shown in Figure 6.9

ቀ ௦ܶೣ, ௦ܶ೤, ௦ܶ೥ቁ ൌ ݐ݊݅ ቆ
,ܪ,ܹ ܦ

ܵ௪௜ௗ௧௛଴, ܵ௛௘௜௚௛௧଴, ܵௗ௘௣௧௛଴
ቇ ൅ ሺ1,1,1ሻ

Define the space of shifting sampling grid, the volume of a voxel, and the volume

of a sampling grid ሺܵ௪௜ௗ௧௛଴ ൈ ܵ௛௘௜௚௛௧଴ ൈ ܵௗ௘௣௧௛଴ሻ.

Initialize the position of random vertex ௨ܲ,௩,௪ሺݑ, ,ݒ ሻݓ

Initialize integer ሺ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሻ

Define the size of volume model (W, H, D).

Define the sequence number of each voxel ܦܫ௩௢௫௘௟

Define the voxel array vol_data[x,y,z]

Calculating the times ௦ܶ_௫, ௦ܶ_௬ and ௦ܶ_௭ of shifting grade in ܺ-, ܻ- and

ܼ-axial respectively in

Using ሺ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሻ in fetching the voxel’s sequence number

௩௢௫௘௟ܦܫ ൌ ሾܽݐܽ݀_݈݋ݒ ௦ܶ_௫, ௦ܶ_௬, ௦ܶ_௭ሿ

Return ܦܫ௩௢௫௘௟

Chapter 6 Volume Deformation

120

Figure 6.9 Diagram of improved mapping process deployed in the I-DOGME

After implementing the IIR design to guide the displacement mapping between

control vertices and corresponding exterior voxels, the resulting deformation

behaviour can be shown as the leftmost image in Figure 6.10. Modifying the stiffness

coefficient can lead to different deformation results as shown in the rest images.

Figure 6.10 Results of volume deformation with different stiffness values

However, after applying the clipping planes to these deformation results (as shown in

Figure 6.11), it was clearly visible that only a single layer of voxels in the volume

model were affected.

Chapter 6 Volume Deformation

121

Figure 6.11 Results of clipped results after the mapping process

This is because the mapping process can only utilize the relationship between

extracted vertices and exterior voxels, but cannot suffice the interiors due to the lack

of connections between the exterior and interior voxels. As the extension of Figure

6.2 (A), Figure 6.12 establishes a relationship among the extracted vertices

(highlighted points), the exterior voxels (red cubes) and interiors voxels (black cubes).

In order to accomplish this relationship, the most direct solution is connecting all

interior voxels with the displacement constraints.

Figure 6.12 Diagram of relationships between the control vertices and underlying voxels

However, this idea will certainly cause excessive amounts of computational time in

every deformation loop. For solving this problem, this design created new associated

indexing operations relied on a sort of relationship-building mechanisms, to link

exterior voxels (or displacement constraints) with interior voxels in the volumetric

mapping stage.

Chapter 6 Volume Deformation

122

6.3 Octree-based Lookup Function

In order to assign the displacement to more voxels (especially the interior ones), an

internal relationship between exterior and interior voxels was established. Similar to

the distribution of seismic wave phenomena which occurs in earthquakes, the volume

deformation process was expected to perform the gradient distribution of different

deformation levels in the final result. Its principle is shown in Figure 6.13.

Figure 6.13 Diagram of creating the octree-based lookup function

Figure 6.14 Diagram of using the octree-based lookup function

For example, as shown in Figure 6.14 (A), a layer of voxels (exteriors) obtained the

displacement offsets based on the IIR design. In order to determine the internal

relationship between exterior and interior voxels, an octree data structure was applied

Chapter 6 Volume Deformation

123

to achieve a hierarchical management of all voxels in the form of branches and leaves.

Following the lookup direction (as shown in image D), the internal voxels (green and

orange ones) can be gradually located (as shown in images B and C).

In order to implement the octree data structure, the volumetric space needed to divide

itself into 8௡௨௠_௦௨௕ௗ partitions according to the given amount of subdivision

operations ሺܾ݊݀ݑݏ_݉ݑሻ (as shown in Figure 6.15). To simplify the explanation of

the process, the volume space and all its partitions were all defined as cubic. The

portioned cubes at the same depth in the structure acquired the same size.

Figure 6.15 Diagram of the arrangement of 8 partitions

As a result, the subdividing process in the Figure 6.14 (D) can be represented via a

kind of nested relationship between leaf nodes (shown in Figure 6.16)

Figure 6.16 Diagram of an digital nested relationship to present the octree structure

To convert the volumetric space into an octree-based framework, an 8-bit RGBA 3D

Chapter 6 Volume Deformation

124

texture called ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ was used to store this octree. As the basic component

of these 3D textures, the Texel was used to record the distribution of nodes and the

pointer-based relationships in the form of ሺܴ, ,ܩ ,ܤ .ሻ݄ܽ݌݈ܣ

6.3.1 Implementing Octree Data Structure

To store this octree structure, the ܴ, ,ܩ triples were used to store the location of ܤ

nodes as the texture coordinates in the octree-based lookup function. ݄ܽ݌݈ܣ channel

served as an indicator which determines the content stored in ܴܤܩ triples (݄ܽ݌݈ܣ ൌ

1 means storing a leaf; ݄ܽ݌݈ܣ ൌ 0.5 means recording the indices; ݄ܽ݌݈ܣ ൌ 0

means an empty leaf). In order to simplify the explanation, all nodes in the octree had

two coordinates: one for the volumetric space and another one for the texture space.

The root node was located at (0, 0, 0) in ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ. This texture consisted of a

number of grids (called ݎ݁ݐ݊݅_݀݅ݎܩ). For example, at depth ܦ௅, the ݎ݁ݐ݊݅_݀݅ݎܩ

was a cubic space consisting of 2஽ಽ ൈ 2஽ಽ ൈ 2஽ಽ leaves. In like manner, ݎ݁ݐ݊݅_݀݅ݎܩ

was only a cube of 2 ൈ 2 ൈ 2 leaves at the bottom level. After knowing the amount

of voxels ݉ݑ݊_݈݁ݔ݋ݒ, the number of ݎ݁ݐ݊݅_݀݅ݎܩ, denoted as ݉ݑ݊_݀݅ݎܩ, will be

different at each level in the data structures

6.3.2 Constructing Octree-based Lookup Mechanism

In texture processing stage, the octree-based lookup function was used to obtain a

leaf’s texture coordinates ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ (exterior voxels) at the depth ܦ௅, and

locate its coordinates. As a result, the leaf’s texture coordinates can be calculated

(Lefebvre, Hornus et al., 2003)

Chapter 6 Volume Deformation

125

ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ ൌ
ሺ௘ሺವಽషభሻ,௙ሺವಽషభሻ,௚ሺವಽషభሻሻା௙௥௔௖൫ሺ௘ಽ೐ೌ೑,௙ಽ೐ೌ೑,௚ಽ೐ೌ೑ሻൈଶ

ವಽ൯

ሺீ௥௜ௗ_௡௨௠ሻ
 (6.6)

where ሺ݁ሺ஽ಽିଵሻ, ሺ݂஽ಽିଵሻ, ݃ሺ஽ಽିଵሻሻ is the texture coordinates of the leaf’s father node at

the depth ሺܦ௅ െ 1ሻ, and the ݂ܿܽݎ function takes charge of keeping the fractional

part of the parameter. The iteration of calculating texture coordinates was

implemented in the process described by the pseudo code in Table 6.3.

Table 6.3 Mechanism for locating grid nodes

6.3.3 Accomplishing Volumetric Deformation

After finishing the octree-based lookup mechanism, ݀ݎ݋݋ܿ_݀݅ݎܩ can provide the

coordinates of the voxel based on its texture coordinates ൫݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙൯ and

Define the root node ሺ݁଴, ଴݂, ݃଴ሻ and a random leaf ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ

Define the number of grids ݉ݑ݊_݀݅ݎܩ

Define the 3D textures ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ

Define the depth ܦ௅ and the alpha value ݄ܽ݌݈ܣ஽ಽ

If (݄ܽ݌݈ܣௗ௘௣௧௛ ൏ 0.9) //not sampling the root node

Calculating ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ at depth ܦ௅ in equation 6.6

Fetching ݄ܽ݌݈ܣ஽ಽ from ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ with ሺ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙ሻ

If (݄ܽ݌݈ܣௗ௘௣௧௛ ൏ 0.1) // empty node

 Break

Return ݀ݎ݋݋ܿ_݀݅ݎܩሾ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙, ஽ಽሿ݄ܽ݌݈ܣ

Else

 Break

Return ݀ݎ݋݋ܿ_݀݅ݎܩሾ݁௅௘௔௙, ௅݂௘௔௙, ݃௅௘௔௙, ஽ಽሿ݄ܽ݌݈ܣ

Chapter 6 Volume Deformation

126

depth parameter ݄ܽ݌݈ܣ஽ಽ in ܶ݁ݎ݁ݐ݊݅_݁ݎݑݐݔ. Its principle of generating the internal

relationship is shown in Figure 6.17.

Figure 6.17 Diagram of generating internal relationship for indexing operations

The internal relationship was implemented via obtaining the interior voxels’

coordinates by the octree-based lookup function. As a result, after obtaining the

exterior voxels’ displacements in the I-DOGME process, the interiors were assigned

to calculated displacements by following the mechanism of vertex displacement

calculation (explained in Table 6.1). Based on the I-DOGME and octree-based lookup

function designs, the volume deformation successfully assigned computational

deformations to the both exterior and interior voxels, and used a series of parameter

settings to result different deformation extents (as shown in 6.18).

Figure 6.18 Results of volume deformation with different parameter settings

Chapter 6 Volume Deformation

127

6.4 Fixing Deformation

As shown in Figure 6.18, the highlighted region represents the skull data belonging to

rigid parts which should not perform “super-elastic” deformations. In order to fix the

unrealistic features, the rigid part was firstly isolated before the deformation process,

and independently manipulated with the dedicated lattices. In this solution, the

connections between the rigid part and its surrounding regions are all vertices-based.

As the most prominent example, the result of bending a neck region contains rigid and

soft parts simultaneously, and the distribution of every part is clear (as shown in

Figure 6.19 (B)).

Figure 6.19 Results of fixed volume deformation

Therefore, this solution was tested on this example via implementing the isolation

operations and iterating the deformation mechanism for manipulating the “cervical

vertebra” data and its surrounding soft tissues respectively. As the rigid part, the

“cervical vertebra” data was firstly deformed to represent the rigidly bended features.

Then, its deformed control lattice between the rigid and soft parts served as an

embedded lattice of the soft tissues. In other words, the vertices’ displacements in

deforming rigid part were also mapped onto the soft part in the opposite direction.

Chapter 6 Volume Deformation

128

After accomplish the deformation of the soft part, the results can be shown in Figure

6.19 (A and C).

6.5 Summary

This chapter has presented the principle of I-DOGME deformation method, and an

index mechanism for simplifying the calculation operations in displacement mapping

phases. This deformation method can provide a unified approach to the specification

of physics-based volume deformation in the searching interior voxels, and facilitate

manipulations of volume models for showing complicated deformation behaviours.

The capability of this deformation method can be demonstrated through comparisons

of the results of phased improvements in constructing deformable lattices,

accomplishing realistic deformation behaviours, constructing relationships between

extracted vertices and voxels and determining voxels of interest.

The resulting deformation behaviours demonstrated the feasibility of utilizing this

method to achieve FFD. Its advantages and versatility can be summarized as follows:

 This novel volume deformation function followed the idea of traditional

DOGME method to connect the control lattice and its underlying deforming

object. Based on this idea, the I-DOGME method was proposed to overcome

the inherent problems insides the DOGME-based applications, and

simultaneously preserve the displacement mapping operations inside

volumetric space with the assistances of volumetric octree-based lookup

Chapter 6 Volume Deformation

129

function. Consequently, this I-DOGME can solve the problems of manual

lattice construction, and maintain the precision of transferring displacement

information between the control vertices and corresponding voxels.

 This volume deformation function can perform applying forces on the

volume object locally or globally. Different from the continuous and

constrained deformation in the current achievements mentioned in chapter 3,

this function can successfully enable partial deformation, i.e. discontinuous

deformation. Besides the clustered data segments provided by the volumetric

data processing function, the customisable control lattice in I-DOGME can

also simplify the size of interesting data segment in deformation process for

improving its efficiency. In addition, this function can also enrich more types

of deformation behaviours than continuous deformation-based methods’

work.

 This method can provide windows which allow real-time modification of the

properties of control lattices and deformable solids. During the simulation,

modifying the stiffness coefficient can enable the real-time customizations of

the deformation behaviours. In addition, the lattice simplification process

allows real-time management of constructed lattices, and consequently

achieves variety of deformation results.

 Through performing the deformation behaviours via both vertex-based and

voxel-based mass-spring systems, the progress of transformation between

different elements can be technically represented in the manner of defined

Chapter 6 Volume Deformation

130

deformation parameters and calculated displacements in this deformation

function. As the result of this design, the whole deformation process can be

restored the GPU-accelerated programme, and consequently maintain the

efficiency of volume deformation function.

 This method can perform the physically precise representation of elastic and

homogeneous solids. Unlike the limited deformation behaviours and

unrealistic deformation results achieved by the constrained modelling

strategies in non-physics-based deformation approaches, this designed

volume deformation method can represent the results with free-form

deformation extents by constructing lattices to partition the continuous data

and customizing the deformation parameter settings for avoiding uniform

transformations.

Chapter 7 System Integration and Acceleration Strategies

131

Chapter 7 System Integration and Acceleration

This chapter listed the details of efficient volume deformation through constructions

of GPU-parallel computing architectures. More precisely, a Single Instruction,

Multiple Data streams (SIMD) architecture was constructed to solve the following

problems: time-consuming iteration of mesh simplification loops in the lattice

construction process, complicated indexing mechanism in running the octree-based

lookup function, and huge data accessing workload in displacement mapping process.

This project aimed to accomplish this design by utilizing an Nvidia graphics card and

its parallel computing model (CUDA) (see Appendix A).

In the past ten years, a lot of CUDA-based inventions have been proposed for various

applications. This project took advantage of several robust ideas to implement the

goal of program accelerations. The design for adaptive lattice control in this project

was derived from the idea of tessellation management for surface deformation

(Bunnell, 2005). Besides, Bunnell also proposed the displacement mapping strategy

which is a texture-based method for managing geometric transformation between

surfaces. The texture mapping technique is widely used to “cause” an assembly of

detailed and complex features on the surfaces of objects or 2D image planes. By

developing this texture-based mapping technique for volume deformation, the spatial

arrangement of voxels can be efficiently manipulated in the form of 3D textures. The

efficiency of lattice modification in this project benefited from the investigation of

Chapter 7 System Integration and Acceleration Strategies

132

adaptive control of meshes. The use of octree textures to render complicated features

in surface modelling applications provided a method of constructing a hierarchical

structure to manage the spatial distribution of polygons (Lefebvre, Hornus et al.,

2003). By applying this developed data structure to the volumetric space, each voxel

can be exactly located, and consequently reacts to the deformations.

7.1 Preparations of CUDA-based Programming

In CUDA-based programming, the SIMD architecture is named Single Instruction,

Multiple Threads (SIMT). A thread is the smallest execution unit in this programming

model, and enables direct access to data arrays according to given indexes by means

of texture coordinates. In other words, the whole data set can be accessed in order by

an assembly of threads, and the entire data processing operation can be executed by

parallelizing the computation tasks in groups of threads. A block is an assembly of

threads, and uses the unique coordinates of the threads to construct the execution

sequence in various ways, such as in concurrent, serial or other particular orders.

Utilizing the shared memory, each block can implement the cooperation of its

included threads by using the ݏ݀ܽ݁ݎ݄ݐ_݄ܿ݊ݕݏ function. In addition to the concurrent

execution sequence, a block can schedule various routes of progress for each thread,

in order to achieve the anticipated execution sequences, such as the serial order and

complicated combinations of multiple orders. As a group of blocks, a grid is the

largest unit and takes charge of executing kernel functions. Apart from the

cooperation operations of threads within the same block, there is no synchronization

Chapter 7 System Integration and Acceleration Strategies

133

between blocks because the shared memory is “exclusive”, i.e. every shared memory

is just for one block. As a result, there cannot be any synchronization operations at

block level. Figure 7.1 shows the hierarchical structure of the CUDA parallel

computing model. In this project, the grids labelled with serial numbers were used to

signify the usage of the GPU at different processing stages.

According to different purposes of acceleration design, there will present different

sketch maps of block and thread arrangements in the CUDA programming structure.

For example, in order to maintain the sequence of original sampling process inside

CPU, the CUDA-based accumulation of voxels’ properties requires the arrangement

of block and thread in the manner of grid 0 during the parallel processing work in

GPU. Different from grid 0, the alternative arrangements for block and thread in grid

3 are respectively prepared for subdividing and simplifying operations in lattice

refinement process.

Figure 7.1 Diagram of hierarchical structure in CUDA programming model

The three investigated CUDA-based-applications mentioned in the above paragraphs

Chapter 7 System Integration and Acceleration Strategies

134

all follow the idea of constructing SIMT architecture to index partitioned data

segments and synchronize the cycles of data processing by executing a kernel

function. The following subsections will detail the CUDA-based procedural

programming operations in the C++ programming environment, with related pseudo

codes, diagrams and results.

7.2 CUDA-based Volume Visualization

In order to carry out a sequence of data registration, transmission, addressing and

computation operations between a CPU and a GPU, this project treated the

texture-based volume visualization technique as the basis in terms of system

prototyping. The CUDA-based visualization pipeline is shown in Figure 7.2.

Figure 7.2 Diagram of CUDA-based volume rendering pipeline

In order to avoid complicated interpolation works and derived configuration

processes, the choice of proxy geometry in this system was view-aligned textures. In

this visualization process, data transfer between the CPU and GPU was implemented

by parameter copying operations; for example, ܿ݁ܿ݅ݒ݁ܦ_݋ݐ_ݐݏ݋ܪ_ݕ݌ܿ_݉݁ܯ_ܽ݀ݑ

Chapter 7 System Integration and Acceleration Strategies

135

denoted the direction of transfer operations, ܿݎݐ݄ܲ݀݁ܿݐ݅ܲ_ܽ݀ݑ managed the

properties (data source, data type and sizes of allocated memories), and various

declarations of texture parameters (judgements on data normalization, filtering and

addressing modes). By executing these parameter copying instructions, the volume

data set could be successfully stored in the device memory in the form of 3D textures.

After loading the data from the CPU, the visualization process can be divided into

four stages: determining the geometric attributes of 3D textures in the geometric

modelling function; configuring a rapid addressing mode in the kernel sampling

function; creating a texture-based LUT in the kernel TF to “render” voxels, and

constructing the kernel function to calculate the accumulation of optical properties.

After executing these kernel functions, this visualization process would end by

producing 2D results and uploading them to fragment operations in the CPU. In the

following subsections, the four data processing stages will be detailed with their

corresponding pseudo-codes.

7.2.1 Geometric Modelling Function

In function, there were two kinds of size which need to be declared in advanced. One

is the size of the data partitioning and the other is the size of the sampling region.

Data partitioning takes charge of the ܾ݈݁ݖ݅ݏ݇ܿ݋ function to create a thread-based

presentation of the volume data. For example, when using ܾ݈݁ݖ݅ݏ݇ܿ݋ ሺܽ, ܾሻ to

represent a ݄ݐ݀݅ݓ݁ݖ݅ݏ כ ݄ݐ݈݃݊݁݁ݖ݅ݏ כ data set, each block can contain ݄ݐ݌݁݀݁ݖ݅ݏ

ܽ כ ܾ threads. Consequently, the gridsize could be obtained from a calculation

process which is simplified in terms of pseudo codes in example 7-1.

Chapter 7 System Integration and Acceleration Strategies

136

Example 7-1. Example of calculating gridsize

7.2.2 Kernel Sampling Function

As another important parameter in this function, the size of the sampling region was

determined through setting a series of boundaries. In this visualization diagram, six

imagined planes served as limitations of the sampling field (shown in Figure 7.3).

Figure 7.3 Illustrations of cubic sampling region

After finishing the data partitioning, and determining the sampling regions, the

Define sampling times (n,m);

Define data size blocksize(c,d);

Define sampling grid size gridsize(a,b);

Define division function iDivUp(x,y);

 If (x%y്0)

 return iDivUp(x,y) = (x/(y+1));

 else

 return iDivUp(x,y) = (x/y);

//Calculate gridsize

gridsize(a,b) = iDivUp (blocksize(c,d), (n,m));

Return gridsize(a,b);

Chapter 7 System Integration and Acceleration Strategies

137

single-channel-based sampling process in traditional texture-based volume

visualization can be replaced by a multiple-channel-based sampling method. Because

of the constructed SIMT architecture, the sampling operations can be divided and

assigned to blocks. The sub-sampling operations in each block can be accomplished

by parallelizing the executions of the kernel sampling function at thread level. In this

sampling function, the ܦ3݁ݎݑݐݔ݁ݐ_ܣܦܷܥ function was used as the basic functional

unit to retrieve the voxels directly from groups of threads.

7.2.3 Kernel TF

In kernel TF, the look-up-table was stored in a 1D texture. By defining

 the frequency of retrieval operations in 1D ,݈݁ܽܿݏ_ݎ݂݁ݏ݊ܽݎݐ and ݐݏ݂݂݁݋_ݎ݂݁ݏ݊ܽݎݐ

texture-based LUT can be determined. Therefore, the voxels extracted by the

sampling process can be assigned with the retrieved values from LUT. These values

were represented in terms of four dimensional float arrays (ܿݎݑ݋݈݋ ሺݎ, ݃, ܾ, ሻ), inݓ

which ܿݎݑ݋݈݋. ݎ .ݎݑ݋݈݋ܿ , ݃ .ݎݑ݋݈݋ܿ , ܾ and ܿݎݑ݋݈݋. ݓ respectively mean the

ܴ, ,ܩ .value ݄ܽ݌݈ܣ and ܤ

7.2.4 Kernel Accumulation Function

As the complement of the kernel function and the preparation for fragment operations

in the CPU, the kernel accumulation function accumulated the optical values,

converted the results into desired formats, and implemented self-labelling for

rendering the results in the final display. The kernel accumulation function can be

classified by means of the following pseudo codes:

Chapter 7 System Integration and Acceleration Strategies

138

Example 7-2. Example of kernel accumulation function

By using the serial numbers of the associated blocks and enveloped threads, the

self-labelling tool “painted” each thread by following the thread’s numbers in blocks.

In order to avoid the inaccurate computations caused by the various parameter values

(such as 256 microns, 3 microns per 1 sampling shift distance, and 2048 units), there

was a “clump”-like data normalization process, which constrains these values to be

indexed using a special thresholding, ሾ0, 1ሿ.

Define colour value Color(r,g,b,a);

Define accumulated colour value Sum(R,G,B,A);

Define the maximum number of circle max_circle;

Define the upper limit for blending process Opaci;

Define the block ID BlockIdx(x,y);

Define the block dimension BlockDim(x,y);

Define the Thread ID ThreadIdx(x,y);

Define index number index_number_(x,y);

//real-time calculation of index number

index_number_(x,y) = BlockIdx(x,y)*BlockDim(x,y) + ThreadIdx(x,y);

for (i = 0, i<max_circle; i++) //execute the accumulation circle

{

Color(r,g,b) = Color(r,g,b) * Color.a; //multiply with alpha value

/Sum(R,G,B,A) = Sum(R,G,B,A) + Colour(r,g,b,a) * (1 – Sum.A);

 if (Sum.A > Opaci)

 break;

}

Return Sum(R,G,B,A);

Chapter 7 System Integration and Acceleration Strategies

139

7.3 CUDA-based Lattices Construction

In I-DOGME design, an advanced lattice construction method can help to increase the

efficiency of the whole deformation system. The combination of a mesh subdivision

scheme and MC-based iso-surface construction can improve the accuracy and

configurability of the lattices consecution process, and the CUDA-based combination

can further improve the system in terms of meeting the requirement of a high

interactive rate.

The pipeline of CUDA-based lattices construction is shown in Figure 7.4. Besides the

common data transfer and volume data storage, this lattices construction process

carried out an adaptive control of tessellation in extracted iso-surface, by designing

three kernel functions. In the following subsections, the implementations of these

kernel functions will be explained respectively.

Figure 7.4 Diagram of CUDA-based lattice construction

7.3.1 Kernel MC Function

After accomplishing the regular thread and block operations described in section

Chapter 7 System Integration and Acceleration Strategies

140

7.2.1, the serial sampling sequence in CPU-based MC process was converted into a

set of synchronized executions of sampling windows. In other words, the

CUDA-based MC process can simultaneously enable the vertices extraction processes

on threads inside each block. The mechanism of parallelized vertices extraction in the

kernel MC function is shown in example 7-3.

Example 7-3. Example of kernel MC function

As common properties in the MC process, a series of parameters need to be

predefined, e.g. the size of the sampling window ݁ݖ݅ݏܹ݈݊݅݁݌݉ܽݏሺܣ, ,ܤ ሻܥ .

According to the determined sampling frequency, the MC process treated a given

Define the extracted vertex ver_pos(x,y,z);

Define the sampling window sampleWindsize(A,B,C);

Define the “leg” among sampling windows sampleWinShiftsize(a,b,c);

Define the location of the sampling window sampleWinPos(e,f,g);

Define the size of memory for a sampling window in manner of mask
 sampleWindSizeMask(h,i,j);

Define voxel size unit3 voxelsize(1,1,1);

Define index number for classifying vertices unit index_I;

//calculate current position of sampling windows

sampleWindPos.e = index_I & sampleWinSizeMask.h;

sampleWindPos(f.g) =

(index_I >> sampleWinShiftsize(b,c)) & sampleWinSizeMask(i,j);

//locating vertices via calculating their coordinates

ver_pos(x,y,z) = (-1.0,-1.0,-1.0) + (sampleWinPos(e,f,g) * voxelsize(1,1,1));

Return ver_pos(x,y,z);

Chapter 7 System Integration and Acceleration Strategies

141

number of voxels as a standard volume. Based on this setting, all size parameters in

MC process were all defined in terms of multiple standard volumes. In this project,

MC was used to generate lattices because of its capability of passing though every

voxel. Therefore, the standard volume in this kernel MC function was defined as a

voxel size.

The volume of the one-off sampling space was written as a

2ଷ כ ܣሺ݁ݖ݅ݏܹ݈݊݅݁݌݉ܽݏ െ 1, ܤ െ 1, ܥ െ 1ሻ which was designed for avoiding

sampling starting point twice. In the same way, the ݁ݖ݅ݏݐ݂݄ܹ݈݅ܵ݊݅݁݌݉ܽݏ ሺܽ, ܾ, ܿሻ

represented the shift control of the sampling window, i.e. the uniform space between

each two neighbouring sampling spaces was 2ଷ כ ሺܽ݁ݖ݅ݏݐ݂݄ܹ݈݅ܵ݊݅݁݌݉ܽݏ െ 1, ܾ െ

1, ܿ െ 1ሻ. ݁ݖ݅ݏ݈݁ݔ݋ݒሺݑ, ,ݒ ሻ meant that each voxel occupied a 2ଷݓ כ ݑሺ݁ݖ݅ݏ݈݁ݔ݋ݒ െ

1, ݒ െ ݓ,1 െ 1ሻ. For simplifying the calculation workload, the ݁ݖ݅ݏ݈݁ݔ݋ݒሺݑ, ,ݒ ሻݓ

was initialized to ݁ݖ݅ݏ݈݁ݔ݋ݒሺ1,1,1ሻ.

7.3.2 Kernel Triangulation Function

After finishing the sampling process, this kernel function served as a vertex shader to

triangulize numerous polygons based on the extracted vertices. All polygonization

modes (named cube configuration in MC-based applications) were indexed in the

 .texture ݔ݁ܶ_ݎ݁ݒ

Before the triangulation process, the extracted vertices were classified into a number

of assemblies according to the different exterior voxels. The mechanism of locating

these voxels is shown in Example 7-4.

Chapter 7 System Integration and Acceleration Strategies

142

Example 7-4. Example of kernel triangulation function (I)

Example 7-5. Example of kernel triangulation function (II)

After locating voxels, the inherent relationship between vertices and voxels in IIR

design could be constructed, i.e. the number of vertices extracted from each exterior

voxel could be obtained. The combination of vertices could be determined precisely,

meanwhile, the cube configuration could be determined correctly. As a result, a mesh

Define the value for iso-surface extraction iso_value;

Define the sampling array sampleWin;

Define the sampling status sample_field;

Define the cube configurations index_cube;

For (i=0, i<8, i++)

{

sample_field [i] = sampleWin (volume_data, sampleWinPos, sampleWinsize);

index_cube= uint (field[i]< iso-value)*2^i; //256 cube configurations

}

Return ܾ݁ݑܿ_ݔ݁݀݊ܫ;

Define index number for accessing voxels index_inter_I;

Define voxel position position (x,y,z);

//judging the state of intersection between sampling windows and voxels

position(x,y,z) = min(position(x,y,z), size(x,y,z)-1);

//calculate an index number

index_inter_I = (position.z*size.x*size.y) + (position.y*size.x) + position.x;

//fetch the voxel from the volume data

Return texture index_inter_I;

Chapter 7 System Integration and Acceleration Strategies

143

surface could be accurately constructed through the triangulation process. The

mechanism is shown in Example 7-5.

7.3.3 Kernel Subdivision Function

Based on the idea of tetrahedral-based subdivision scheme in CUDA-based

Catmall-Clark application, the triangle-based application was devised and

implemented to serve as the kernel subdivision function for achieving flexible lattice

refinement operations. Before being stored into textures, the object mesh needs to be

separated into triangle-based units through step_1 in Figure 7.5. Then, these separated

units will be treated as individual object in the following subdividing and

simplification operations.

Figure 7.5 Diagram of triangulizing polygons

Afterwards, in step_2, each unit was stored in the manner of texture units by indexing

its vertices and surrounding points. Consequently, the results of associated

subdividing and simplification operations on the each unit will be represented by the

Chapter 7 System Integration and Acceleration Strategies

144

modification of the above mentioned points. Besides, step_3 revealed the state of

sorting a unit in a 2D array which records the points’ coordinates within the plane of

this unit. The mechanism of kernel subdivision function is shown in Example 7-6.

Example 7-6. Example of kernel subdivision function

Define the initial vertices vertex(x,y.z), index number index_ver (x,y) and modified
vertices sub_vertex(x,y,z);

Define weight parameters for subdivision α(1/8,6/8,1/8), β(3/8,5/8,0);

Define two data array for storing initial coordinates ver_co and fetching
coordinates ver_in_co;

if (indicate = 0) //regular scheme

{ vertex(x,y,z) = (ver_co, index_ver.x,0);

sub_vertex(x,y,z) = vertex(x,y,z) + text3D (ver_inte_co, index_ver.x, 0, 0) +

text3D(ver_inte_co, 0, index_ver.y, 0) + text3D(ver_inte_co, index_ver (x,y), 0);

}

Return sub_vertex(x,y,z) * ߙ;

else //reverse scheme

{ Sub_vertex(x,y,z) = (ver_co, index_ver.x, 0);

vertex.x = sub_vertex.x + text3D (ver_inte_co, index_ver.x, 0, 0).x

+text3D(ver_inte_co, 0, index_ver.y, 0).x

+ text3D(ver_inte_co, index_ver (x,y), 0).x;

Vertex(y,z) = sub_vertex.z + text3D (ver_inte_co, index_ver.x, 0, 0).z

+ text3D(ver_inte_co, 0, index_ver.y, 0).z

+ text3D(ver_inte_co, index_ver (x,y), 0).z; }

Return vertex(x,y,z) * β;

Chapter 7 System Integration and Acceleration Strategies

145

7.4 CUDA-based Displacement Mapping

In this system, displacement mapping process existed between extracted vertices and

exterior voxels, and between exterior and interior voxels. The mechanism of

displacement mapping process is shown in Figure 7.6. This design can solve the

problem of time-consuming mechanisms of recursive octree transversal, and the

associated indexing operations were all implemented on a CUDA-based octree data

structure to achieve the goal of acceleration.

Figure 7.6 Diagram of octree data structure and the displacement mapping design

7.4.1 Kernel Octree-based Lookup Function

In this constructed hierarchical data structure, the voxels were represented in a part of

the octree in the form of a terminal or non-terminal octant, and the nested

relationships between different nodes determined the assignments of displacements to

corresponding voxels. In the I-DOMGE process, the number of exterior voxels was

determined by the status of modified lattices, e.g. the higher simplification level will

cause less voxels to be influenced because the decreased amount vertices in the

Chapter 7 System Integration and Acceleration Strategies

146

lattices or vice versa. In the same way, the depth in the octree data structure

determined the number of voxels which can be located by the lookup function. Figure

7.7 shows different results of tree lookup function with different depths (represented

via levels). By changing the depth attributes in the lookup function, the final results of

the tracking process will perform various statuses in the form of the numbers of

voxels.

Figure 7.7 Results of octree-based lookup function

In this octree-based lookup functions, there was an indirection “pool” which is for

retrieving the newest lookup results. If the results denote an index, the lookup

function will carry on to a deeper level. Otherwise, the latest result in the indirection

pool will be treated as the final output. In the volume deformation process, the

indirection pool was designed to enable a real-time data storage record the latest

voxels’ sequence number. These sequence numbers can form a “connection” between

the exterior voxel and its underlying interiors, and represented it in the form of a

group of leaf nodes at different depth levels in octree data structure. In other words,

the “connection” recorded a set of nested relationships (as shown in Figure 7.7). The

mechanism of the kernel tree lookup function is shown in Example 7-7.

Chapter 7 System Integration and Acceleration Strategies

147

Example 7-7. Example of kernel tree lookup function

7.4.2 Kernel Mapping Function

Example 7-8 shows the mechanism of the kernel mapping function.

Define the location of object node(s) node_co (x,y,z);

Define the location of object node(s) in indirection pool node_inte_co (x,y,z);

Define a texture for storing intermediate coordinates texture co_inte_tex;

Define a texture for storing initial coordinates texture co_tex;

Pointer to a data array for storing coordinates coord;

Pointer to a data array for storing coordinates on the connection conne_co;

Define the size of volumetric objects volsize (w,l,d);

Define the upper limitation for lookup function lookup_max_depth;

Define index number for accessing coordinates index_co (x,y);

Creating octree-based lookup (node_co, node_inte_co, coord);

{

node_inte_co = make_float3 (0.0, 0.0, 0.0); //initialize indirection pool

node_co = make_float4 (node_co (x,y,z), 0.0);

for (i = 0, i < lookup_max_depth; i ++)

{

 node_co = texture1D (co_tex, volsize.d * index_co.x * index_co.y);

node_inte_co= make_float3 (node_co (x,y,z));

Comparing node_co.w with 0.9 and 0.1;

}

Return conne_co[index_ co(x,y)] =

(node_inte_coord(x,y,z), (volsize.d * index_co.x * index_co.y

+ volsize.l * index_co.y + volsize.w));

}

Chapter 7 System Integration and Acceleration Strategies

148

Example 7-8. Example of kernel mapping function

disp_inte_co(x,y,z) =

 texture1D (dis_tex, (volsize.d * index_co.x * index_co.y

+ volsize.l *index_co.y + volsize.w);

//attach a displacement map to the original coordinates recorded in pool

 disp_inte_co(x,y,z) = disp_inte_co(x,y,z) + disp_co(x,y,z);

}

Return voxel_co [index_label(x,y)] = make_float4 (node_inte_co (x,y,z),

(volsize.d * index_co.x * index_co.y

+ volsize.l * index_co.y + volsize.w));

}

Pointer to a data array for storing voxels’ displacements voxel_co;

Pointer to a data array for storing displaced coordinates disp_tex;

Define the upper limitation for indexing index_label_max;

Define the location of object node(s) disp_co (x,y,z);

Define the changed location of object node(s) disp_inte_co (x,y,z);

Define the texture coordinates index_co (x,y,z);

Pointer to a data array for storing coordinates conne_co;

Define the size of volumetric objects volsize (w,l,d);

//displacement mapping function

Creating disp_tex (disp_co, disp_inte_co, conne_co);

{

for (i = 0, i < index_label_max; i ++)

{

 index_co (x,y,z) = texture3D(connec_co);

//indexing displacement values

Chapter 7 System Integration and Acceleration Strategies

149

Based on the implementation of the kernel octree-based lookup function, the related

regions surrounding the control point can be efficiently located and the connections

can be recorded in ܿ݋ܿ_݁݊݊݋ texture with their coordinates. Consequently, the new

coordinates calculated by manipulating the mass-spring system can avoid being

assigned to other meaningless regions. For example, the ܿ݋ܿ_݁݊݊݋ ሺݔ, ሻ can index aݕ

cluster of nodes processed in the ሺݔ, an efficient ,݋ܿ_݁݊݊݋ܿ ሻ block. By usingݕ

carrier can be designed to transfer the coordinates between nodes and corresponding

voxels in the form of 3D displacement mapping mode.

7.5 Summary

7.5.1 SIMT Architecture

As described in this chapter, all volume-based processes were parallelized and

synchronized in the SIMT architecture. By determining the properties of thread and

block, volumetric content were averagely partitioned and assigned to blocks and

underlying threads. As a necessary preparation for various parallelization designs,

SIMT architecture labelled every block and associated threads with a unique

indexable serial number, which serves as recording the sampling sequence in

synchronization process.

7.5.2 Synchronizing Kernel Functions

By taking advantage of GPU programming, single-channel-based processes were

converted into multiple-channel-based ones by means of simultaneous executions of

Chapter 7 System Integration and Acceleration Strategies

150

multiple kernel functions. Compared with corresponding CPU-based

implementations, the CUDA-based acceleration designs in this system did help with

achieving high efficiencies, supporting complicated processes and improving the

trade-offs between effect and speed.

In the next chapter, the system will be tested by experimenting on each processing

stage. The increased efficiency, improved visual effects, configurable operations and

derived benefits of the purposive designs will be listed, in order to testify to the

feasibility of this designed volume deformation system. The contribution to

knowledge will be evaluated by a series of comparisons with similar research

achievements.

Chapter 8 Test and Evaluation

151

Chapter 8 Test and Evaluation

After completing the functional module designs and accelerated implementations, a

series of tests were conducted to evaluate the performances of three key processes:

volume data segmentation, lattice construction, and interactive deformation, which

were presented in this chapter. The results of the experiments can be used to assess

the validity and effectiveness of this interactive volume deformation (IVD) designs.

8.1 Efficiency Evaluation on Volume Segmentation

The segmentation designs in the volume data processing module tried to extract two

kinds of segmentation masks from the volume data. One mask was used to number all

classified segments inside the volumetric space. The other one was used to isolate the

interesting segment(s) from the same space. Section 4.1 mainly focused on the usage

of the first mask. With the context of segmentation improvement and representing

clusters, the performances of the second mask were covered in the subsequent

sections, as the key information in the other two experiments.

Although clipping techniques can provide a rapid presentation of the volume models’

interiors, a greyscale visualization of volume data cannot fully describe the

differences between data segments which share the same scalar value, i.e. the regions

rendered with the same intensity information (e.g. the highlighted regions in Figure

8.1 (A)). Therefore, the multidimensional TF was devised to implement a further

Chapter 8 Test and Evaluation

152

segmentation process visually (as shown in image C). However, in using different

colours to emphasize the differences between these two regions, the associated trial

and error tests in modifying TF manually (as shown in image B) cost too much time,

because of the lack of a standardized colouring plate.

By designing an automatic clustering-based segmentation method, the clustered

results can be used to automatically generate a standardized colour combination (as

shown in image D) to replace the manual configurations. This devised function not

only achieved a data-driven analysis of the volume data, but output similar effects to

the traditional multidimensional TF’s results. Both TF function designs illustrated in

Figure 8.1 can separate the same volume data sets into five parts with rendering them

in corresponding colour properties.

Figure 8.1 Results of DVR with a 2D TF and the ATF design

Table 8.1 records the performance of testing the volume data processing module with

Chapter 8 Test and Evaluation

153

different volume data. By comparing the ܭ values generated by MSVS and KMVS,

it can be observed that this module filtered the over-segmentation generated in MSVS

via using KMVS’s low sensitivity to tiny features, and avoided the extra computations

for fixing under-segmentation in KMVS. With an increase in volume data size, the

reduced cluster number can demonstrate the advantage of the integration of MSVS

and KMVS, and the visualized results are shown in Figure 8.2.

 Data

Size

(KB)

MSVS

Processing

Time (s)

Generated

K in

MSVS

KMVS

Processing

Time (s)

Output

K in

KMVS

Inner Ear 0.48k 430 7 24 4

Teddy Bear 0.9k 541 16 61 4

Engine Data 7.0k 1k 9 109 3

MRI Human Head 16.0k 3k 31 222 5

CT Human Head 27.1k 4k 65 438 6

Celiac Data 237.0k 10k 112 600 9

Table 8.1 Results of using KMVS and MSVS to process different data sets

As a pre-processing operation, the automatic data analysis just served as a one-off

guide for enabling a comprehensive display of the volume data, and was not iterated

in the subsequent operations. Therefore, the performance of future deformation

processes will not be restricted by a lengthy processing time.

Chapter 8 Test and Evaluation

154

After accomplishing this volumetric data processing function, different volume data

sets were tested and their processing results were shown in Figure 8.2. The coloured

features in different data sets can verify that the uniform configuration of rendering

properties in ATF function can enable all elastic parts (such as the cartilage

appendage in ear data, the twistable fastener in the nose area of teddy bear data, the

stratum corneum in MRI human head data, the gum in CT-scanned human head data,

and the soft tissue in human celiac data) to be rendered in yellow. In the same way,

the high density parts (the auditory canal part, the teddy bear’s crust, the engine’s

framework, the soft tissue canned by MRI, the mixed osseous features in CT data, and

the human backbone) were highlighted in green. And the intermediate data was

fulfilled with blue features.

Figure 8.2 Results of the volume data processing module

Chapter 8 Test and Evaluation

155

8.2 Effectiveness Test on Lattice Construction

Because the visualized results can only trace the boundaries of clusters visually,

specific operations were required to parameterize the interesting segment(s) for

further operations. In other words, the visualization process cannot prevent

unnecessary parts from joining all the subsequent computations. Therefore, the second

segmentation mask for isolating interesting data segment(s) from the continuous

volume was iterated for localizing the related voxels spatially. In addition, the size of

the processing data was decreased by using this mask to filter out the unnecessary

parts. The associated computation workloads was reduced and the system efficiency

was improved as well as.

In the lattice construction process, this mask shortened the sampling range before

executing the MC algorithm. As shown in Figure 8.3, these isolated part (delineated

by blue lines in image A, C, E and G) were respectively represented via

corresponding iso-surfaces (revealed in image B, D, F and H). The numbers of

extracted vertices inside the isolated results are 13K, 2K, 21K and 109K, different

from the previous ones 114M, 371M, 220M and 1200M. The associated frame rates

will be listed in the section 8.4. As a result, the constructed lattices for volume

deformation can be the “model-fitting” one which closely envelops the deformation

object.

Chapter 8 Test and Evaluation

156

Figure 8.3 Results of extracting lattices from the isolated segments

8.3 Flexibility Assessment on Interactive Deformation

In this thesis, the principle of the devised FVD method consisted of three concept

designs. The first design, I-DOGME, parameterized the applied forces through

implementing a general mesh deformation solution onto the constructed lattice.

For indexing the displacement mapping operations between the vertices on the control

lattice and the exterior voxels, the second design used the IIR derived from the

MC-based lattice construction process to form a dedicated LUT. In order to address

each vertex in a unique index, no new vertices are permitted to be generated after the

lattice refinement process.

The third design involved the construction of a volumetric displacement diagram to

characterize the interior voxels’ movements. If there is no further “depth” calculation,

Chapter 8 Test and Evaluation

157

its mechanism will be partly similar to the latest non-physics-based volume

deformation approach, whose crucial achievements are illustrated in Figure 8.4 (A to

D). Correspondingly, images F to D show the similar outputs implemented by the

third design without the “depth” calculation.

Figure 8.4 Results of non-physics-based deformation. Images B to D respectively represent the

results of axis-aligned linear transformation, feature-aligned isolation operation, and constrained

interpolation design (courtesy of Correa et al.)

As shown in Figure 8.4 (F to H), the highlighted behaviours, namely the axis-aligned

results, exhibit a series of unnatural shape changes which merge the skin data and

skull data together. Different from the manually constrained operations in this latest

non-physics-based volume deformation approach, the third design utilized an

octree-based lookup mechanism to provide a set of internal relationships for

connecting exterior and interior voxels, and treats the relative distances between

vertices and voxels as the “depth” parameters to implement a gradient distribution of

displacements (as shown in Figure 8.5). In other words, the calculated depth values

Chapter 8 Test and Evaluation

158

were regarded as the specific factors which parameterize the gradient changes in the

distances.

Figure 8.5 Results of the IVD method

After implementing these three concept designs, the above deformation behaviours

can demonstrate the feasibility, applicability and efficiency of the devised IVD

method system.

8.4 System Run-time Performance Evaluations

The run-time evaluation work was based on performances obtained on a consumer

grade desktop which was mainly equipped with an Intel Core 2 Quad Q9400 CPU, 4G

RAM and a Nvidia GeForce GTX 260 graphics card. This section divides the

evaluation work into four parts.

 Volume data analysis

Chapter 8 Test and Evaluation

159

Figure 8.6 Comparative results of different TF designs. Images B to D are the results of latest TF

designs (courtesy to Liang et al.)

In Figure 8.6, images F to H respectively show the visual results of automatic volume

data analysis generated in the volumetric data analysing process. Images (B to D)

show the results of different chains of multiple TFs (e.g. 2D ൅ 1D ൅ 1D ൅ … or

2D ൅ 2D ൅ 1D ൅ 1D … or even 2D ൅ 2D ൅ 2D ൅ …) decided in the latest TF

design (Zhou, Schott et al., 2012). The results all highlight the specificities inside

volume data. The automatic TF design described in this thesis can efficiently output

similar results to those designs which need to rely on expensive trial and error

operations for evaluating the chain of multiple TFs in the TF combination approaches.

 GPU-acceleration design

Figure 8.7 delineates a speed distribution plot which records different performances of

using IDV to deform different volume data sets on different platforms. From this

figure, the advantage of GPU-based volume deformation system over the CPU-based

Chapter 8 Test and Evaluation

160

can be clearly represented even processing simple data sets. With the increase of

volume data size, the benefit from implementing GPU platform is gradually

decreased, but the real-time record of frame rates of GPU-based acceleration designs

is still higher than the corresponding programs in CPU. More precisely, the GPU

platform can enable more volume deformation program to run at a “responsive” speed

(framer rate is between 14 and 24 fps) than CPU works.

Figure 8.7 Comparative results of different implementations

Figure 8.8 illustrates the comparison between the devised IVD method and the latest

volume deformation solution (named constrained illustrative volume deformation

(Correa, Silver et al., 2010)) in processing volume data sizes (less than 40MB). It can

be seen that the performance data for the IVD meet the criteria for interactive

deformation, alongside which the constrained illustrative volume deformation also

followed in its system performance evaluations.

Chapter 8 Test and Evaluation

161

Figure 8.8 Comparative results of different deformation solutions

 Adaptive lattice simplification

The lattice simplification served as an optimization of the lattice construction process,

which reduces the number of extracted vertices in order to generate different levels of

resolution, as illustrated in Figure 8.6. Since the voxels’ displacements derive from

these vertices’ properties, the simplified lattices can enable the result to represent

different deformation extents (as shown in Figure 8.6 (A to D)).

Figure 8.9 Results of deformed behaviours resulting from different lattice simplification levels

Chapter 8 Test and Evaluation

162

Furthermore, the simplified lattices can accelerate the deformation process. Figure

8.10 shows the interactive rates of testing different levels of resolution. The lattice

refinement will overleap several vertices during the reverse subdivision process.

Consequentially, the simplified control lattice might loss a few overleapt vertices’

displacements and lead to a tiny influence of resulting deformation behaviours.

However, as shown in Figure 8.10, the higher simplification level number will lead to

higher frame rates, especially work on processing the large volume data set, e.g.

maintaining the deformation of human celiac data at 19.36 fps on the simplification

level 4.

Figure 8.10 Comparative results of different lattice simplification levels

 Freeform deformation behaviours

Figure 8.11 illustrates a number of deformation results of the IVD method. In images

(A to H), the results of non-physics-based deformation were generated by

implementing a series of linear transformation on the extracted lattices. As shown in

image I to L, the deformation approach enabled the representation of gradient changes

Chapter 8 Test and Evaluation

163

in the deformed areas.

Figure 8.11 Various results of IVD method

In addition, by configuring the simplification level of the lattices, the variables of the

mass-spring mechanism and the properties of the volumetric displacement diagram,

the deformation mechanism can be modified to output various customized

Chapter 8 Test and Evaluation

164

deformation results (shown in image M to T).

8.5 Summary

This chapter has described the system test operations which were implemented from a

quantitative perspective. Firstly, the important concept designs were summarized with

presenting their test results. Then, the performance evaluation began to quantify the

achievements of the IVD system through a series of contrasts in interactive rates.

Simultaneously, a number of deformation results were listed to demonstrate the

capabilities of the system in terms of freeform deformations and customized

manipulations. At the end of this chapter, this section aims to claim the advantages of

the IVD approach by comparison with the latest physics-based and non-physics-based

volume deformation approaches (assisted breast survey (Patete, Iacono et al., 2012)

and constrained illustrative volume deformation (Correa, Silver et al., 2010)).

Figure 8.12 Comparison table showing performances of IVD, assisted breast survey (ABS) and

constrained illustrative volume deformation (CIVD)

As shown in Figure 8.12, the IVD approach represents the highest efficiency because

Chapter 8 Test and Evaluation

165

its automatic visualization diagram and accurate data deformation. It is more

convenient than the constrained off-line interpolation operations in CIVD and the

semi-automatic procedures in ABS. As a dedicated clinical analysis application, ABS

gives the highest accuracy because it studies the deformation behaviours in microns.

However, the specific requirements of clinical simulations restrict the usage of the

ABS approach. In addition, the non-physics-based deformation cannot assist CIVD in

implementing true flexible deformations as well as the physics-based approach’s

results. Due to the constructed mass-spring system in both the IVD and ABS

approaches, their deformation behaviours are more accurate than the manually

constrained results in CIVD. The biggest advantage of CIVD is enabling volume

shading terms in rendering deformation results. The other two approaches just focus

on the deformation extents and leave the associated rendering designs to future

operations.

By summarizing this comparison table, this chapter has managed to demonstrate the

feasibility of the IVD design and the test results have given enough evidence of the

applicability of this design in real-time manipulation applications.

Chapter 9 Conclusions and Future Work

166

Chapter 9 Conclusions and Future Work

This thesis presented a novel physics-based volume deformation approach that

enables real-time manipulations of volume data. A new notion of displacement

mapping was devised for processing the voxels’ displacement parameters, so that the

presented approach could perform a series of flexible and interactive volumetric

deformation behaviours. The implementation of this deformation approach was

accomplished in 4 key phases, volume data processing, lattice manipulation,

deformation control and GPU-accelerated implementation.

The construction of volumetric data processing function can perfectly solve the

limitations of complicated volume data analysis and successfully make the visual

results meet the pre-defined criteria of visualization term. Besides, this function

simultaneously prepares the isolation of interesting data segment(s) for the following

lattice and deformation operation. About the associated rendering of deformed

features is left to in the future work plan.

As an intermediate process in this deformation system, the lattice manipulation

succeeds in building up model-fitting lattice, mapping the vertices displacements onto

voxels and maintaining the system performance via its lattice refinement function.

However, its shortage in preserving the integrity of displacement information during

the lattice simplification phase can lead to a few artefacts. For example, according to

the mesh deformation tested by Patete, the influence of displacement will lead to the

Chapter 9 Conclusions and Future Work

167

0.01%-1.0% difference to the real result (Patete, Iacono et al., 2012). With the idea of

further rendering, the loss of displacement will be mentioned in the future work plan.

In addition to the visualization improvements, the novel physics-based volume

deformation design is another important part in this project. First of all, this

deformation function can not only accomplish both physics-based and

non-physics-based volume deformation behaviours, but support customisable and

localisable manipulation of interesting data segment(s).

The GPU-based acceleration designed had sufficiently exhibited its power of

maintaining the designed volume deformation system to enable the real-time

customisation operations at an interactive rate (over 14 fps).

9.1 Conclusions

9.1.1 Efficient Volume Data Processing

Chapter 3 described a solution which analyses the volume data structure and enables a

volumetric features extraction function by using two kinds of segmentation masks. By

developing the image segmentation algorithms to classify the volume data, an

automatic volume segmentation process was constructed to generate one kind of

segmentation mask which records the properties of the volumetric data segments. This

mask was rendered by a set of visual information which was generated by an online

LUT in the ATF design, which was designed to paint the associated data segments in

the final display in the data-driven mode. This visual information can describe the

Chapter 9 Conclusions and Future Work

168

volume data structure, based on which the other kind of segmentation mask was used

to isolate the interesting segment(s) from the volumetric space.

As a data pre-processing approach, the volume data processing was designed to

complete the information extraction before starting any further processing operations.

Therefore, its processing time was not considered in the evaluations of the

performance of the deformation processes.

9.1.2 Adaptive Lattice Manipulation

The construction of control lattices played an important part in the deformation

preparation stage. Chapter 4 explained a solution for constructing lattices to enclose

the volume data. The feasibility of the solution was proven by the fact that its

MC-based lattice construction successfully generated “model-fitting” control lattices

which could completely enclose the deformation object and precisely match its

outlines. It could avoid the manually determined boundaries which usually cover a

number of unnecessary parts, and result in constrained assumptions.

Due to the high sampling frequency of the method, the extracted lattices comprised

overabundant control points. Therefore, a number of mesh simplification methods

were tested to solve the problem of oversampling successfully. Besides the criteria for

different simplification mechanisms, the mesh simplification design explained in

Chapter 4 laid down a new one, which stated that both the generation of new vertices

and the merging of several vertices into a new one were not permitted. This criterion

was intended to ensure a relationship by which each extracted vertex could be

Chapter 9 Conclusions and Future Work

169

addressed to a voxel by indexing it in the IIR design.

9.1.3 Flexible Deformation Control

After finishing the lattice construction, the deformation preparation was continued by

executing the other important part: displacement mapping. In Chapter 5, the

framework presented for a new displacement mapping method consisted of two

conversions. The first conversion used the vertices’ displacements to parameterize the

deformation on the control lattices, and mapping them to exterior voxels. This

conversion relied on the IIR between the extract vertices and a layer of exterior

voxels. The second conversion was between the exterior voxels and the underlying

volumetric space. In order to implement a resulting distribution of movements inside

this space, the notion of a volumetric displacement diagram was implemented by

devising an octree-based lookup function to locate the interior voxels, and assigning

the computed displacements to them. Based on these two conversions, the volume

deformation could be successfully implemented, so that the deformation operations

could be parameterized within the associated variables.

9.1.4 GPU-accelerated System Integration

Chapter 7 encoded a series of GPU-accelerated implementations. The time-consuming

data access and computation operations were separated into a set of sub-tasks. By

describing the associated principle of constructing kernel function and iterating it on

all subtasks simultaneously in the CUDA-based parallel processing framework, the

large vertex extraction workload and the complicated conversions design in

Chapter 9 Conclusions and Future Work

170

deformation preparation could be accomplished efficiently. Based on the results of the

system evaluation described in Chapter 8, it has been proven that GPU-based

implementations can enable rapid deformation representations and interactive

manipulations of volume data.

9.2 Future Work

The novel physics-based volume deformation pipeline presented in this thesis can

manipulate the voxels’ displacements to achieve complicated simulations and

freeform deformations.

There are a number of imminent steps that once realized could further improve the

IVD system. First of all, the volume data processing can be implemented on GPU, so

that its accelerated performance can enable a rapid display of analysis results. In order

to highlight the given features in deformation results, the volume data processing

should allow a series of real-time (or near real-time) modifications for customizing

them. Its GPU-accelerated implementations will rapidly provide direct feedback of

the modifications of volumetric data analysis module. Secondly, a new approach to

local mesh simplification, which divides the control lattice into useful and useless

meshes, can be implemented to reduce the number of vertices in the simplification

process. Meanwhile, the mesh simplification design can be assisted by a dedicated

function which serves to preserve sharp features during the simplification period.

Thirdly, the deformation behaviours can be enriched by implementing discontinuous

Chapter 9 Conclusions and Future Work

171

operations and results, both of which can be used to simulate ruptures in manipulating

rigid materials.

In addition, the GPU-based visualization pipeline has shown potential for adding

advanced rendering terms to the final results. The envisaged future works can extend

the current system to comprise a comprehensive set of latest illumination terms

through enabling layer-based or voxel-based rendering mode. For example, the

rendering effects will be generated by the approximate Monte-Carlo light transports

on the layers of voxels. For high-precision applications, e.g. clinical simulations, the

computed deformation results should not only manipulate the large volume data

accurately, but also shade correct illumination effects corresponding to different tissue

substances through implementing the lighting scattering methods.

References

172

References

Arens, S. and G. Domik (2010). "A survey of transfer functions suitable for

volume rendering." Volume Graphics 2010: 77-83.

Aykanat, C., B. B. Cambazoglu, et al. (2007). "Adaptive decomposition and

remapping algorithms for object-space-parallel direct volume rendering of

unstructured grids." Journal of Parallel and Distributed Computing, 67(1): 77-99.

Azar, F. S., D. N. Metaxas, et al. (2002). "Methods for modeling and predicting

mechanical deformations of the breast uder external perturbations." Medical Image

Analysis, 6(1): 1-27.

Bachmann, D., S. Bouissou, et al. (2009). "Analysis of massif fracturing during

Deep-Seated Gravitational Slope Deformation by physical and numerical modeling."

Geomorphology, 103(1): 130-135.

Bathe, K. J. and H. Zhang (2009). "A mesh adaptivity procedure for CFD and

fluid-structure interactions." Computers & Structures, 87(11-12): 604-617.

Baydaa, H. M., X. Ling, et al. (2011). "3D FEM numerical simulation of seismic

pile-supported bridge structure." Applied Sciences, Engineering and Technology,

3(4): 344-355.

Bechmann, D. and D. Gerber (2003). "Arbitrary shaped deformation with

DOGME." The Visual Computer, 19(2-3): 175-186.

Bennebroek, K., I. Ernst, et al. (1997). "Design principles of hardware-based

phong shading and bump-mapping." Computers & Graphics, 21(2): 143-149.

Binotto, B., J. L. D. Comba, et al. (2003). "Real-time volume rendering of

time-varying data using a fragment-shader compression approach." Proceedings of the

References

173

2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics, IEEE

Computer Society: 10.

Blinn, J. F. (1994). "Compositing, part 1: theory." IEEE Comput. Graph. Appl.,

14(5): 83-87.

Bordemann, M. (2008). "Deformation quantization: a survey." Journal of

Physics: Conference Series, 103(1): 012002.

Britz, D., J. Strutwolf, et al. (2011). "Digital simulation of thermal reactions."

Applied Mathematics and Computation, 218(4): 1280-1290.

Bunnel, M. (2005). "Adaptive tessellation of subdivision surfaces with

displacement mapping." In GPU Gems2: 109-122

Caban, J. J. and P. Rheingans (2008). "Texture-based transfer functions for direct

volume rendering." Visualization and Computer Graphics, IEEE Transactions, 14(6):

1364-1371.

Cai, W. and G. Sakas (1998). "Maximum intensity projection using splatting in

sheared object space." Computer Graphics Forum, 17(3): 113-124.

Carmona, R. and B. Froehlich (2011). "Error-controlled real-time cut updates for

multi-resolution volume rendering." Computers & Graphics, 35(4): 931-944.

Chan, T. and L. Vese (2001). "Active contour without deges." IEEE Transactions

on Image Processing, 10(2): 266-277.

Chen, M., R. H. Clayton, et al. (2003). "Visualising cardiac anatomy using

constructive volume geometry." Proceedings of the 2nd international conference on

Functional imaging and modeling of the heart: 30-38.

References

174

Chen, M., D. Silver, et al. (2003). "Spatial transfer functions: a unified approach

to specifying deformation in volume modeling and animation." Proceedings of the

2003 Eurographics/IEEE TVCG Workshop on Volume graphics: 35-44.

Chen, M. and J. V. Tucker (2000). "Constructive volume geometry." Computer

Graphics Forum, 19(4): 281-293.

Cho, K. H., S. J. Cho, et al. (2012). "Dose responses in a normoxic

polymethacrylic acid gel dosimeter using optimal CT scanning parameters." Nuclear

Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 675: 112-117.

Choi, S. M., Y.K. Lee, et al. (2004). "Quantitative analysis of gated SPECT

images using an efficient physical deformation model." Computers in Biology and

Medicine, 34(1): 15-33.

Choi, J. J., B. S. Shin, et al. (2000). "Efficient volumetric ray casting for

isosurface rendering." Computers & Graphics, 24(5): 661-670.

Cimiano, P., A. Hotho, et al. (2004). "Comparing conceptual, divisive and

agglomerative clustering for leaning taxonomies from text." Proceedings of the

European Conference on Artificial Intelligence: 435-439.

Comaniciu, D. and P. Meer (2002). "Mean Shift: a robust approach toward

feature space analysis." IEEE TRANSACTIONs on Pattern Analysis and Machine

Intelligence, 24(5): 603-619.

Cormack, A. M. (1979). "Early two dimensional reconstruction and recent topics

stemming from it." Science 26 September 1980, 209(4464): 1482-1486.

Correa, C. and K. Ma. (2008). "Size-based Transfer Functions: A new volume

exploration techique." IEEE Transactions on Visualization and Computer Graphics,

14(6): 1380-1387.

References

175

Correa, C. D., D. Silver, et al. (2010). "Constrained illustrative volume

deformation." Computers & Graphics, 34(4): 370-377.

Corrigan, A., F. Camelli, et al. (2011). "Semi-automatic porting of a large-scale

fortran CFD code to GPUs." International Journal for Numerical Methods in Fluids,

69(2): 314-331.

Courtecuisse, H., H. Jung, et al. (2010). "GPU-based real-time soft tissue

deformation with cutting and haptic feedback." Progress in Biophysics and Molecular

Biology, 103(2-3): 159-168.

De Vaal, M. H., J. Neville, et al. (2011). "Patient-specific prediction of intrinsic

mechanical loadings on sub-muscular pectoral pacemaker implants based on an

inter-species transfer function." Journal of Biomechanics, 44(14): 2525-2531.

Dempster, A. P., N. M. Laird, et al. (1977). "Maximum likelihood from

incomplete data via the EM algorithm." Journal of the Royal Statistical Society.

Series B (Methodological), 39(1): 1-38.

Drager, C. (2005). "A chainmail algorithm for direct volume deformation in

virtual endoscopy applications." Institute of Computer Graphics and Algorithm,

Vienna Univeristy of Technology. PHD: 128.

Drebin, R. A., L. Carpenter, et al. (1988). "Volume rendering." SIGGRAPH

Comput. Graph., 22(4): 65-74.

Du, X. and T. D. Bui (2008). "A new model for image segmentation." IEEE

signal process., 15: 182-185.

Dumas, L., B. Druez, et al. (2009). "A fully adaptive hybrid optimization of

aircraft engine blades." Journal of Computational and Applied Mathematics, 232(1):

54-60.

References

176

Elsaesser, T. and A. Barker (1990). "Early cinema: space, frame, narrative." BFI

Publishing.

Engel, K., M. Hadwiger, et al. (2004). "Course notes 28: real-time volume

graphics." Special Interest Group on Graphics and Interactive Techniques.

Engel, K., M. Kraus, et al. (2001). "High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading." Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware: 9-16.

Engel, K., F. Oellien, et al. (2000). Client-server-strategien zur visualisierung

komplexer struktureigenschaften in digitalen dokumenten der chemie. IT+TI 6/2000

Informationstechnik und Technische Informatrik: 17-23.

Fang, G. (2001). "A comprehensive overview of basic clustering algorithms."

Fang, L., Y. Wang, et al. (2002). "Fast maximum intensity projection algorithm

using shear warp factorization and reduced resampling." Magnetic Resonance in

Medicine, 47(4): 696-700.

Faramarz, F. S., S. Colin, et al. (2007). "Reverse loop subdivision for geometry

and textures." IRANIAN Journal of Mathematical Sciences and Informatices, 2(1):

21-37.

Fluck, O., C. Vetter, et al. (2011). "A survey of medical image registration on

graphics hardware." Computer Methods and Programs in Biomedicine, 104(3): 45-57.

Forsberg, F., R. Mooser, et al. (2008). "3D micro-scale deformations of wood in

bending: Synchrotron radiation muCT data analyzed with digital volume correlation."

Journal of Structural Biology, 164(3): 255-262.

Gibson, S. and B. Mirtich (1997). "A survey of deformable modeling in

computer graphics." Cambridge.

References

177

Gibson, S. F. F. (1997). "3D chainmail a fast algorithm for deforming volumetric

objects." Symposium on interactive 3D graphics: 149-154.

Gluchoff, A. (2005). "Pure mathematics applied in early twentieth-century

America: The case of T.H. Gronwall, consulting mathematician." Historia

Mathematica, 32(3): 312-357.

Green, S. (2005). "Volumetric particle shadows." Nvidia Corporation: 1-13.

Hadwiger, M., P. Ljung, et al. (2009). "Advanced illumintation techiqnues for

GPU-based volume raycasting." ACM SIGGRAPH 2009 Courses: 1-166.

Hadwiger, M., C. Sigg, et al. (2005). "Real-time ray-casting and advanced

shading of discrete isosurfaces." Computer Graphics Forum, 24(3): 303-312.

Han, D., J. Keyser, et al. (2009). "A local maximum intensity projection tracing

of vasculature in knife-edge scanning microscope volume data." Proceedings of the

Sixth IEEE international conference on Symposium on Biomedical Imaging: From

Nano to Macro: 1259-1262.

Hernandez, I., C. Mateos, et al. (2009). "Lie theory: applications to problems in

mathematical finance and economics." Applied Mathematics and Computation,

208(2): 446-452.

Hladuvka, J., A. Konig, et al. (2000). "Curvature-based transfer function for

direct volume rendeirng." Spring Conference on Computer Graphics: 58-65.

Hounsfield, G. N. (1979). "Computed medical imaging." Nobel Lecture 8.

Jaganathan, S., H. V. Tafreshi, et al. (2008). "A realistic approach for modeling

permeability of fibrous media: 3-D imaging coupled with CFD simulation." Chemical

Engineering Science, 63(1): 244-252.

References

178

Kanungo, T., D. M. Mount, et al. (2002). "An efficient k-means clustering

algorithm: analysis and implemenation." Journay of IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 24(7): 881-892.

Kass, M., A. Witkin, et al. (1988). "Snakes: active contour models." International

Journal of Computer Vision, 1(4): 321-331.

Kaul, U. K. (2010). "Three-dimensional elliptic grid generation with fully

automatic boundary constraints." Journal of Computational Physics, 229(17):

5966-5979.

Keeve, E., S. Girod, et al. (1996). "Anatomy-based facial tissue modeling using

the finite element method." Visualization '96. Proceedings: 21-28

Kniss, J., G. Kindlmann, et al. (2002). "Multidimensional transfer functions for

interactive volume rendering." IEEE Transactions on Visualization and Computer

Graphics, 8(3): 270-285.

Kniss, J., S. Premoze, et al. (2003). "A model for volume lighting and

modeling." IEEE Transactions on Visualization and Computer Graphics, 9(2):

150-162.

Kobayashi, Y., A. Onishi, et al. (2010). "Development of an integrated needle

insertion system with image guidance and deformation simulation." Computerized

Medical Imaging and Graphics, 34(1): 9-18.

Konig, A. H. and W. M. Groller (2001). "Mastering transfer function

specification by using volumepro technology." Spring Conference on Computer

Graphics 2001, 17: 279-286.

Kotava, N., A. Knoll, et al. (2012). "Morse-male decomposition of multivariate

transfer function space for separably-sampled volume rendering." Computer Aided

Geometric Design.

References

179

Kruger, J. and R. Westermann (2003). "Acceleration techniques for GPU-based

volume rendering." Proceedings of the 14th IEEE Visualization 2003 (VIS'03), IEEE

Computer Society: 38

Kurzion, Y. and R. Yagel (1997). "Interactive space deformation with

hardware-assisted rendering." IEEE Comput. Graph. Appl., 17(5): 66-77.

Lefebvre, S., S. Hornus, et al. (2003). "Octree textures on the GPU." In GPU

Gems2: 595-613.

Lefohn, A., J. Kniss, et al. (2003) "Implementing efficient parallel data structure

on GPUs." In GPU Gems2: 521-545.

Leu, A. and M. Chen (1999). "Modelling and rendering graphics scenes

composed of multiple volumetric datasets." Computer Graphics Forum, 18(2):

159-171.

Levoy, M. (1988). "Display of Surfaces from Volume Data." IEEE Comput.

Graph. Appl., 8(3): 29-37.

Levoy, P. L. a. M. (1994). "Fast volume rendering using a shear-warp

factorization of the viewing transformation." SIGGRAPH '94 Proceedings of the 21st

annual conference on Computer graphics and interactive techniques: 451-458.

Lewis, J. P., M. Cordner, et al. (2000). "Pose space deformation: a unified

approach to shape interpolation and skeleton-driven deformation." Proceedings of the

27th annual conference on Computer graphics and interactive techniques, ACM

Press/Addison-Wesley Publishing Co: 165-172.

Li, Y. and K. Brodlie (2003). "Soft object modelling with generalised chainmail

- extending the boudnaries of web-based graphics " Computer Graphics Forum, 22(4):

717-727.

References

180

Lorensen, W. E. and H. E. Cline (1987). "Marching cubes: a high resolution 3D

surface construction algorithm." ACM SIGGRAPH Computer Graphics, 21(4):

163-169.

Luebke, D. (2001). “A developer's survey of polygonal simplification

algorithms.” Computer Graphics, 21(3): 24-35.

MacKay, D. (2003). "Chapter 20. An example inference task: clustering."

Information Theory, Inference and Learing Algorithms: 284-292.

Mark, W. R., G. Steven, et al. (2003). "Cg: a system for programming graphics

hardware in a C-like language." Procedding of the conference on ACM SIGGRAPH

'03: 896-907.

Maruya, J., K. Nishimaki, et al. (2010). "Hyperperfusion syndrome after neck

clipping of a ruptured aneurysm on a dolichoectatic middle cerebral artery." Journal

of Stroke and Cerebrovascular Diseases, 20(3): 260-263.

Matsuura, Y., S. Oharu, et al. (2003). "Mathematical approaches to bone

reformation phenomena and numerical simulations." Journal of Computational and

Applied Mathematics, 158(1): 107-119.

Mille, J. (2009). "Narrow band region-based active contours and surfaces for 2D

and 3D segmentation." Computer Vision and Image Understanding, 113(9): 946-965.

Nakao, M. and K. Minato (2010). "Physics-based interactive volume

manipulation for sharing surgical process." Information Technology in Biomedicine,

IEEE Transactions on, 14(3): 809-816.

Natsupakpong, S. and M. C. Cavusoglu (2010). "Determination of elasticity

parameters in lumped element (mass-spring) models of deformable objects."

Graphical Models, 72(6): 61-73.

References

181

Nealen, A., M. Müller, et al. (2006). "Physically based deformable models in

computer graphics." Computer Graphics Forum, 25(4): 809-836.

Nicodemus, F. E. (1965). "Directional reflectance and emissivity of an opaque

surface." Applied Optics, 4(7): 767-773.

Nienhuys, H. W. and A. F. v. d. Stappen (2000). "Combining finit element

deformation with cutting for surgery simulations." Eurographics 2000: 143-152.

Nishita, T., Y. Dobashi, et al. (1996). "Display of clouds taking into account

multiple anisotropic scattering and sky light." Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques: 379-386.

Oh, K. M. and K. H. Park (1995). “A vertex merging algorithm for extracting a

variable-resolution isosurface from volume data.” Systems, Man and Cybernetics,

1995. Intelligent Systems for the 21st Century, 4: 3543-3548.

Olabarriaga, S. D. and A. W. M. Smeulders (2001). "Interaction in the

segmentation of medical images: A survey." Medical Image Analysis, 5(2): 127-142.

Park, S. and C. Bajaj (2007). "Feature selection of 3D volume data through

multi-dimensional transfer functions." Pattern Recognition Letters, 28(3): 367-374.

Patete, P., M. I. Iacono, et al. (2012). "A multi-tissue mass-spring model for

computer assisted breast surgery." Medical Engineering & Physics.

Petersch, B., M. Hadwiger, et al. (2005). "Real time computation and temporal

coherence of opacity transfer functions for direct volume rendering of ultrasound

data." Computerized Medical Imaging and Graphics, 29(1): 53-63.

Pfister, H., B. Lorensen, et al. (2001). "The transfer function bake-off."

Computer Graphics and Applications, IEEE, 21(3): 16-22.

References

182

Pinto, F. d. M. and C. M. D. S. Freitas (2006). "Two-level interaction transfer

function design combining boundary emphasis, manual specification and evolutive

generation." Computer Graphics and Image Processing, 2006. SIBGRAPI '06. 19th

Brazilian Symposium on: 281-288.

Pinto, F. d. M. and C. M. D. S. Freitas (2008). "Volume visualization and

exploration through flexible transfer function design." Computers & Graphics,

32(5): 540-549.

Provot, X. (1995). "Deformation constraints in a mass-spring model to describe

rigid cloth behavior." Graphics Interface: 141-155.

Qian, Z., P. H. Joshi, et al. (2011). "Relationship between chest lateral width,

tube current, image noise, and radiation exposure associated with coronary artery

calcium scanning on 320-detector row CT." Journal of Cardiovascular Computed

Tomography, 5(4): 231-239.

Radon, J. (1986). "On the determination of functions from their integral values

along certain manifolds." Medical Imaging, IEEE Transactions on, 5(4): 170-176.

Rajon, D. A. and W. E. Bolch (2003). "Marching cube algorithm: review and

trilinear interpolation adaptation for image-based dosimetric models." Computerized

Medical Imaging and Graphics, 27(5): 411-435.

Ray, H., H. Pfister, et al. (1999). "Ray casting architectures for volume

visualization." IEEE Transactions on Visualization and Computer Graphics, 5(3):

210-223.

Reader, P. and M. P. Meyer (2000). Restoration of motion picture film,

Butterworth-Heinemann: 23-24.

Rieder, C., S. Palmer, et al. (2011). "A shader framework for rapid prototyping

of GPU-based volume rendering." Computer Graphics Forum, 30(3): 1031-1040.

References

183

Roy, S. and G. A. Ahmed (2011). "Monte carlo simulation of light scattering

from size distributed sub-micron spherical CdS particles in a volume element." Optik

- International Journal for Light and Electron Optics, 122(11): 1000-1004.

Rui, X. and D. Wunsch II (2005). "Survey of clustering algorithms." Neural

Networks, IEEE Transactions on, 16(3): 645-678.

Sakamoto, N., T. Kawamura, et al. (2010). "Improvement of particle-based

volume rendering for visualizing irregular volume data sets." Computers &

Graphics, 34(1): 34-42.

Sato, N., N. Shiraga, et al. (1998). "Local maximum intensity projection."

Journal of Computer Assisted Tomography, 22(6): 912-917.

Sauvage, B., S. Hahmann, et al. (2008). "Detailed preserving deformation of

B-spline surface with volume constraint." Journal of Computer Aided Geometric

Design, 25(8): 678-696.

Schroeder, W. J., J. A. Zarge, et al. (1992). "Decimation of triangle meshes."

SIGGRAPH Comput. Graph, 26(2): 65-70.

Stankevich, D., Y. Shkuratov, et al. (2003). "Computer simulations for multiple

scattering of light rays in systems of opaque particles." Journal of Quantitative

Spectroscopy and Radiative Transfer, 76(1): 1-16.

Strengert, M., M. MagallÃ³n, et al. (2005). "Large volume visualization of

compressed time-dependent datasets on GPU clusters." Journal of Paralle Computing,

31(2): 205-219.

Sugihara, M., B. Wyvill, et al. (2010). "WarpCurves: a tool for explicit

manipulation of implicit surfaces." Computers & Graphics, 34(3): 282-291.

References

184

Szekely, G. J. and M. L. Rizzo (2005). "Hierarchical clustering via joint

between-within distances: extending ward's minimum variance method." Journal of

Classification, 22(2): 151-183.

Tappenbeck, A., B. Preim, et al. (2006). "Distance-based transfer function

design: specification." Methods and Applications. Simulation and visualization:

259-274.

Tatarchuk, N., J. Shopf, et al. (2008). "Advanced interactive medical

visualization on the GPU." Journal of Parallel and Distributed Computing, 68(10):

1319-1328.

Tejada, E. and T. Ertl (2005). "Large steps in GPU-based deformable bodies

simulation." Simulation Modelling Practice and Theory, 13(8): 703-715.

Vigneron, L. M., R. C. Boman, et al. (2008). "Enhanced FEM-based modeling of

brain shift deformation in image-guided neurosurgery." Journal of Computational and

Applied Mathematics, 234(7): 2046-2053.

Wallis, J. W., T. R. Miller, et al. (1989). "Three-dimensional display in nuclear

medicine." Medical Imaging, IEEE Transactions on, 8(4): 297-230.

Weiskopf, D., K. Engel, et al. (2003). "Interactive clipping techniques for

texture-based volume visualization and volume shading." Visualization and Computer

Graphics, IEEE Transactions on, 9(3): 298-312.

Weiskopf, D., M. Hopf, et al. (2001). "Hardware-accelerated visualization of

time-varying 2D and 3D vector fields by texture advection via programmable

per-pixel operations." Proceedings of the Vision Modeling and Visualization

Conference '01: 439-446.

Weng, T. L., S. J. Lin, et al. (2002). "Voxel-based texture mapping for medical

data." Computerized Medical Imaging and Graphics, 26(6): 445-452.

References

185

Westermann, R. and T. Ertl (1998). "Efficiently using graphics hardware in

volume rendering applications." Proceedings of the 25th annual conference on

Computer graphics and interactive techniques, ACM: 169-177.

Westermann, R. and B. Sevenich (2001). "Accelerated volume ray-casting using

texture mapping." Proceedings of the conference on Visualization '01. IEEE

Computer Society: 271-278.

Wittenbrink, C. M., T. Malzbender, et al. (1998). "Opacity-weighted color

interpolation, for volume sampling." Proceedings of the 1998 IEEE symposium on

Volume visualization: 135-142.

Wu, Y., V. Bhatia, et al. (2003). "Shear-image order ray casting volume

rendering." Proceedings of the 2003 symposium on Interactive 3D graphics: 152-162.

Xu, C. and J. L. Prince (1998). "Shankes, shapes and gradient vector flow." IEEE

Trans. Image process, 17(3): 359-369.

Yuan, Z. Y., Y. Y. Zhang, et al. (2010). "Real-time Simulation for 3D Tissue

Deformation with CUDA Based GPU Computing." Journal of Convergence

Information Technology, 4(4): 109-119.

Zhang, Y., D. Zhu, et al. (2011). "Importance sampling for volumetric

illumination of flames." Computers & Graphics, 35(2): 312-319.

Zhou, N., T. Matsumoto, et al. (2010). "Pore-scale visualization of gas trapping

in porous media by X-ray CT scanning." Flow Measurement and Instrumentation,

21(3): 262-267.

Zhou, L., M. Schott, et al. (2012). "Transfer function combinations." Computers

& Graphics.

Appendix

186

Appendix A

Because of the benefits from applying GPU, the traditional computing process is

evolving from “central processing” on the CPU to “co-processing” on the CPU and

GPU. In order to support this new computing paradigm, Nvidia built up CUDA, a

parallel computing architecture, to facilitate the heterogeneous computing with CPU

and GPU. As a subset of C with dedicated extensions, CUDA is a programming

model that enables dramatic increases in computing performance by harnessing the

power of the GPU.

CUDA serves as a technically partition of an object task into a certain amount of

subtasks and assigns them to be accessed and processed in the manner of threads in

GPU. Although both processing mechanisms are based on the thread, the advantage of

GPU’s threads over CPU’s contains: very little creation overhead (i.e. GPU can own

more threads than CPU) and indexable ID for rapid switching (i.e. offering faster

thread management). Besides, as a special feature of GPU, the inherent threads are

available for synchronisation which can overcome the problems of limited memory

bandwidth and redundant computation. Consequently, utilizing GPU to process the

computation works can save processing time and increase system efficiency.

Inside this cooperative processing, CPU and GPU are two distinct processors and

require two different types of memory: host memory (only available in CPU but not

accessible for GPU’s threads) and device memory (dedicated storage unit in GPU).

Appendix

187

For the communication between them, there constrainedly exists a series of memory

allocation operations which standardise the data transfer tasks.

As a powerful tool of GPU-based acceleration, CUDA has been becoming popular in

various categories of recent graphics cards, representing a significant installed base

for different application developers or researchers.

Appendix B

Consumer grade is for describing a gear manufactured for general users who want

ordinary application with an acceptable price of it. Different from professionals, the

consumer grade gear is normally designed to suffice for various user demands without

any special service restrictions.

As an example of consumer grade gear, the consumer grade computer owns various

features: low prices, low quality, popular, convenient maintenance and management,

etc. Although it cannot achieve the same high-performance as the professional gear

(the workstation), the consumer grade computer has been becoming more powerful

through benefitting from the hardware development the design and application of new

materials in the past two decades.

