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Abstract

The Fast Fourier Transform (FFT) is commonly used in the field of digital signal
processing to move a signal from the time domain to the frequency domain. The
FFT is popular as a low level processing technique in automatic music
transcription algorithms, but there is a performance trade-off between suitable
time and frequency resolutions for music transcription. To address this problem,
multiresolution methods that employ several FFTs across the frequency
spectrum have become popular. The purpose of this investigation was to assess
the properties of the FFT in the context of Automatic Music Transcription (AMT)
and to optimise the main parameters of a multiresolution FFT to improve the
spectral output.

Background theory of AMT and current low level processing techniques is
presented. Discussion of the FFT decomposition theory and multiresolution
techniques are followed by a brief overview of spectral processing and current
high level processing approaches. These topics are presented within the context
of western music harmony as a foundation for the presentation of an optimised
multiresolution FFT.

A novel method of scoring FFT parameters based upon frequency resolution,
time resolution and the alignment of the fundamental frequencies for equal
tempered musical notes with the frequency bins of the FFT was developed. A 4-
band multiresolution FFT with optimised sub-band divisions and FFT lengths is
derived from the exhaustive evaluation of parameters based upon the scoring
method.

The optimised 4-band multiresolution FFT is evaluated against a single band
FFT, a 3-band optimised solution, an existing 4-band multiresolution FFT
solution and two variations of the existing 4-band multiresolution solution -
comparing optimisation scores and performance in sinusoidal extraction tasks.

Theoretical results show the optimised 4-band multiresolution FFT does offer an
improved performance for use in automatic music transcription compared to a
non-optimised solution. Preliminary real world testing indicated issues that
require further investigation.
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Introduction

Mozart would have attended many concerts and performances during his
lifetime, but famously he attended a performance of Gregorio Allegri’s “Miserere”
in the Sistine Chapel in 1770. It is famous because upon leaving the performance
he proceeded to write the entire score for the piece of music he had just heard,
from memory. He then attended a second performance just to check he had
scored it correctly (Gutman, 1999). This ability to listen to music and decode it is
possible for all humans with a functioning auditory system in some measure,
even if it is just identifying one sound as being higher than another, or it being
different in tone. Although Mozart was highly trained and exceptionally good at
transcribing music, that is analyzing an acoustic signal and writing down the

pitch, onset time, duration and source of each sound that occurs in it, today’s

computers still struggle to succeed at even simple transcription tasks.

Some of the earliest handwritten scores are found in the early church where
monks would transcribe chants from the performance they heard to written
notation therefore allowing others to reproduce the original music having never
previously heard it. Later, the invention of the printing press greatly increased
the distribution of written music and so it developed over time to the standards
found in the musical scores of today (Latham, 2002, pp. 842-849). Despite the
great advancement in technology for printing and distributing written music, the
human ability to detect and decode sounds into their basic characteristics of time

duration and pitch is something which technologists are still striving to replicate.
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The dawn of the computer age gave great pace to signal analysis, particularly
when |W Cooley and ]J.W. Tukey published their paper in 1965 utilising a
computer to calculate the Discrete Fourier Transform (Cooley & Tukey, An
Algorithm for the Machine Calculation of Complex Fourier Series, 1965). Interest
specifically in music analysis and automatic music transcription increased from
the 1980s, when advancements in processing power first allowed computers to
feasibly model the human auditory system and analyze audio quickly and
efficiently - allowing many processes to be performed simultaneously (Patterson
& Moore, 1986). Now the area of automatic music transcription research is very

active covering many aspects of music transcription and analysis.

The annual ISMIR conference is a bench mark for progress in the research
community and the evidence of the papers submitted suggest that the initial
processing stage in music analysis is moving an audio signal from the time
domain to the frequency domain. There are varying methods to transform a
signal from the time domain to the frequency domain, such as filter banks (Diniz
F., Kothe, Netto, & Biscainho, 2007) and wavelets (Azizi, Faez, Delui, & Rahati,
2009) but still the Fourier family of transforms is used widely as a low level
frequency analysis process for music transcription (Tan, Zhu, & Chaisorn, 2010)
(Hsu & Jang, 2010). So, despite it's age, the Fourier transform is still important in
signal processing, and often is the foundation of other transform techniques such
as Fast Filter Banks (Diniz F. , Kothe, Netto, & Biscainho, 2007) and the

multiresolution FFT (Dressler, 2006).

The development of multiresolution processes such as wavelets and the

multiresolution FFT are of significance. All windowed spectrum analyses,
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including the Short Time Fourier Transform suffer from a compromise between
time resolution and frequency resolution This is related to the Heisenberg
Uncertainty Principle (Roads, 1996) that states if an accurate measurement of a
signal’s timing is required, the accuracy of the signal’s frequency measurement
will be compromised. Conversely, if an accurate measurement of a sound’s
frequency is required, the accuracy of the sounds timing measurement will be
compromised. Multiresolution analyses are designed to address the Heisenberg
Uncertainty Principle and improve the time and frequency resolution

simultaneously.

The first chapter of this thesis introduces the fundamentals of sound and music
as well as how the human detects and perceives sound and pitch. The different
disciplines within automatic music transcriptions are also discussed, as well as

the problems associated with fundamental frequency tracking.

Chapter 2 presents current single resolution low level processing techniques for
automatic music transcription. The main content of this chapter is a discussion of

the Discrete Fourier Transform and the Fast Fourier Transform implementation.

Chapter 3 continues the discussion of low level processing, focusing on
multiresolution techniques. The techniques presented are divided into two
categories, those imitating the human auditory system and those based upon a

‘constant Q’ factor to vary time and frequency resolution across the spectrum.

Chapter 4 is a brief introduction to ‘Peak Picking’ methods for extracting
frequency maxima representing note frequencies from a spectral representation.

The frequencies selected by the peak picker are the ‘note candidates’ presented
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to the ‘high level’ processing. This chapter also discusses methods to manipulate

the spectral information to improve the performance of the peak picker.

Chapter 5 provides an overview of current popular high level processing for
automatic music transcription. The purpose of this chapter is put into context the

low level processing discussed in previous chapters.

Chapter 6 is a discussion of the FFT parameters and characteristics of the FFT

algorithm for use in automatic music transcription.

Chapter 7 proposes a novel method of choosing parameters for multiresolution
Fast Fourier Transforms to optimise the output to create higher quality note
candidates for higher-level automatic music transcription processing. The
optimised multiresolution FFT is tested and compared to other implementations.

Results are presented and discussed.
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1 Fundamentals of Sound, Hearing, Music and Transcription

Before discussing pitch detection, identification methods and digital processing
techniques, it is important that the fundamentals of sound and its properties are
established. This section will introduce the fundamental properties of sound
waves, to help understand what is being attempted in this work and the

associated problems.

The basic properties of wavelength, frequency, loudness, amplitude and phase

are defined in appendix 1.

1.1 Superposition of Waves — Constructive and Destructive Interference

Two waves traveling in opposite directions can pass through each other and
emerge with their original form. This behavior is described by the principle of
superposition (Rossing, Moore, & Wheeler, 2002, p. 44). Figure 1-1 shows 2 sine
wave pulses passing through each other. At the point they meet their amplitudes
are summed resulting in a single summed pulse. However, note that the
frequency component stays consistent for each of the pulses. Once the two waves

have passed, they maintain their original characteristics.
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Superposition of pulses P1 and P2
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Figure 1-1 Superposition of waves

Image from (Stracha, 2008)

The same theory can be used for musical notes. A sine wave tuned to 440Hz
played with a second sine wave tuned to 493Hz will create a wave consisting of

the summation of a 440Hz and a 493Hz sine wave (Figure 1-2).
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R . U |

Figure 1-2 Wave summation

It is clear to see that the interaction of waves results in far more complex
patterns than a simple sine wave. This is one of the difficulties associated with
extracting pitch information from polyphonic waveforms as wave period

information is harder to extract as waves interact and superimpose.

The amplitude, frequency and phase of individual waveforms contribute to the
characteristics of the waveform produced when combined. The superposition of
waves can result in cancellation. Figure 1-3 shows the complete cancellation of 2
waves with opposite phase resulting in silence - this is known as destructive

phase interference.
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Figure 1-3 Destructive interference

If ‘in-phase’ waves are combined constructive interference occurs producing a
wave with increased amplitude equal to the sum of the combined amplitudes

(Figure 1-4).

Figure 1-4 Constructive interference

The above examples are very simple, but serve to demonstrate that although a
frequency is produced by a sound source, overlapping waves can cause complete
or partial cancellation. Waves are combined with waves from other sources,

resulting in some frequencies not being present or detectable in a mixed

waveform.
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1.2 Real World Notes

So far sine waves have been used to explain sound phenomena however, in the
real world, acoustic signals are rarely perfect sine waves. Many factors are
present in real world instruments and environments that ‘colour’ or ‘shape’ the
sound. The source of vibration e.g. a string, or a reed will vibrate with different
properties, the shape and material of the instrument will alter the way the sound
resonates. How the player plays the instrument will change the resultant sound
wave. The room in which the instrument is played will alter the sound reaching
your ears. These and variants result in much more complex waves than a sine
wave. Figure 1-5 demonstrates this by showing the waveform for an acoustic
guitar playing a note at 440Hz. The guitar was recorded using an AKG 414
microphone placed approximately 12 inches from the sound hole in an
acoustically treated studio environment, which minimizes the quantity of

reflections and reverberation detected by the microphone.

|||||||I .||||.|.| BRI AT A ||||[u.| M i, LA AW, I TP
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Figure 1-5 A 440Hz Guitar Note

Figure 1-5 demonstrates the complexity of ‘real world’ sound waves of

instruments when compared to ‘ideal’ sine wave representations. The

22



complexity of the waves is in part due to frequencies other than that of the pure
note frequency (in this example 440Hz) being generated by the sound source

and being received by the microphone.

1.3 Harmonics, Fundamental and Pitch

A frequency domain analysis of the 440Hz guitar note shown in Figure 1-5

reveals many more frequencies present in the signal than that of 440Hz [Figure

1-6].

o
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Figure 1-6 Guitar harmonics

Within the frequency make up of the guitar note are the harmonics of the
fundamental frequency. Most oscillators such as a plucked string, human voice
or trumpet naturally oscillate at not only one, but several frequencies. These are
known as partials. When an oscillator vibrates with partials at integer multiples
of the fundamental frequency, they are know as harmonics. Partials whose
frequencies are not at integer multiples of the fundamental frequency are known

as inharmonic.
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The fundamental frequency is the note frequency, in this example 440Hz and is
typically the lowest frequency component, although not always as some
instruments have sub harmonics. A harmonic is a frequency component that is
an integer value of the fundamental, e.g. for a fundamental f, a series of
harmonics could be 2f, 3f, 4f etc. For a note of 440Hz (fundamental) the first
harmonic is at 880Hz, second harmonic at 1320Hz and so on. Figure 1-7 marks

the fundamental frequency and the 4 harmonics of the guitar note of 440Hz.
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Figure 1-7 Numbered guitar harmonics

Although the untrained human ear does not detect harmonics as separate notes,
harmonics do contribute to the perceived quality, timbre (the attribute used to
discern two sounds as being dissimilar using criteria other than pitch, loudness
or duration (Rossing, Moore, & Wheeler, 2002, p. 135)) and pleasantness of a
sound, which are all influenced by the relative strength of the individual

harmonic frequencies (Mesaros, Lupu, & Rusu, 2003).
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The complexity of the sound wave, both in the time and frequency domains
increases when multiple notes are sounded at the same time. Figure 1-8 shows
an excerpt from the waveform of 2 notes played on an acoustic guitar recorded

with an AKG 414 microphone. The notes are 440Hz and 493Hz.
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Figure 1-8 A section of a wave generated by 2 notes on an acoustic guitar

The resultant waveform of the 2 notes in unison is significantly more complex
than that of a single note as the phases and amplitudes of the 2 notes and their
harmonics interact with destructive and constructive interference. The
frequency domain analysis shows the complexity of the interaction of the 2 notes

and their harmonics (Figure 1-9).
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Figure 1-9 Interaction of harmonics

Interaction of the harmonics can make it difficult to discern the fundamental
frequency of a note being played as it is masked by harmonics of other notes.
However, as discussed later, the presence and pattern of the harmonics can be
used to ‘authenticate’ the presence of a fundamental. In a similar way, the human
auditory system uses the upper harmonics of a sound to determine the pitch of a
note, and can even determine the fundamental frequency from the pattern of the
harmonics even if the actual fundamental is not included in the wave (Rossing,

Moore, & Wheeler, 2002, p. 126).

1.4 Human Auditory System

The human auditory system and the brain of a trained musician is the most
reliable audio transcriptions system available (Klapuri, 2006b, p. 229). It has the
ability to discern pitch, the timbre of a sound, separate sound sources and locate
sound in an environment with great ease and accuracy that currently cannot be
rivaled by computer technology. Therefore, when investigating pitch analysis it

is informative to understand how the human auditory system functions.
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The input to the peripheral system is an acoustic signal and the output is a

collection of neural spikes that enter the brain (Gold & Morgan, 2000, p. 195).

Figure 1-10 shows a simple diagram of the human ear.

Pinna Hammer Anvil Stapes
\ , / Cochlea Basilar membrane
Eardrum
N\
\
Sound \} — A
Waves
Ear canal A

Outer ear Middle ear Inner Ear

Figure 1-10 The human auditory system

A simplified diagram of the human ear. Image modified from (Rossing, Moore, &

Wheeler, 2002, p. 84)

Sound enters the ear and travels down the auditory canal and is transmitted to
the eardrum where the acoustic energy is transformed to vibrational mechanical
energy in the middle ear. The hammer, anvil and stapes transfer the vibration
from the eardrum to the inner ear. The stapes motion impinges on the oval
window of the inner ear, which is a flexible membrane, and its motion sets the
fluid within the cochlea in motion. The motion of the fluid is transferred to the

basilar membrane within the cochlea. This is where frequency detection occurs.
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Figure 1-11 The cochlea

A simplified model of the cochlea. Image source: (Gold & Morgan, 2000, p. 193)

The position where the stapes impinges on the oval window of the cochlea is
called the base; the far end of the cochlea is the apex. Near the base of the
cochlea the basilar membrane is relatively narrow and stiff, and at the apex it is
wider and less stiff. This structure results in high frequencies exciting the basilar
membrane at the base but vibrations subside as they approach the apex. Low
frequencies enter the cochlea at the base but agitate the basilar membrane to
maximum amplitude at the apex. The vibration of the basilar membrane at
different points indicates different frequency content. It is this function that
leads to the supposition that the basilar membrane action is akin to a filter bank

(Klapuri, 2006b, pp. 234-237) (Figure 1-12).
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Figure 1-12 The basilar membrane as a filter bank

A representation of the activity along the basilar membrane. The filter bank
comparisons of the basilar membrane are clear. Image source: (Gold & Morgan,

2000, p. 193)

The motion of the hairs, or stereocilia on the basilar membrane causes firing of
the auditory nerves that connect to the hair cells and it is the spikes produced by
the auditory neurons that relay all auditory information to the brain for
interpretation. To transfer this model of the ear to a pitch perception algorithm,
the basilar membrane can be considered the low level processing, and the brain

as the high level processing - interpreting the data from the low level processing.

The model of the peripheral human auditory system as a sophisticated filter
bank is the basis of a significant amount of pitch detection research and theory
(Fletcher, 1938) and is still common in modern audio analysis algorithms

(Klapuri, 2008). Klapuri reasons that as it is the most accurate transcription
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system known, then it is sensible to imitate its functionality (Klapuri, 2006b, p.

229)

1.5 Critical Bands

The functionality of the basilar membrane as a filter bank is the basis of
‘Auditory filter’ research. The America physicist Harvey Fletcher was a leader in
the field of auditory filters and in the 1940s introduced the term ‘critical band’,
which referred to the then loosely defined bandwidths of the auditory filter

(Swets, Green, & Tanner, 1962).

A pure tone input to the basilar membrane will not agitate just a single hair, but a
large number of hairs. If 2 pure tones of similar frequency are present, the
agitation of the hairs in the basilar membrane will be similar for both tones, i.e.
they will stimulate the same receptors. When there is significant overlap of
which hairs are stimulated, it is said the 2 tones fall in the same critical band. The
effect of 2 frequencies being present in the same critical band is linked to the
inability of the auditory system to resolve 2 frequencies that are close together
as the louder of the 2 frequencies will mask the other in the same critical band
(Campbell & Greated, 1994). Critical bands allow the discrimination of different
sounds simultaneously only when the 2 or more frequencies fall within separate

critical bands to each other. (Roland-Mieszkowski, 1994)

The basilar membrane has 24 critical bands, with each band roughly equating to
a width of 1 third of an octave (Zwicker, 1961). However, when a single sound
source is heard in isolation (where there is no issue with masking), the ear can

discern pitch variances of less than 1 critical band. (Roland-Mieszkowski, 1994)

30



The total number of pitch steps perceptible by the human auditory system is
approximately 1400, which is far greater than the number of notes in the range
of traditional western harmony and musical instruments. (Olson, 1967, pp. 248-

251)

Having discussed the properties of sound waves and how the human body
detects and perceives pitch, it is important to now consider pitch in musical
terms. There are basic properties and fundamentals of western musical tonality
that are of importance when discussing and designing music transcription

algorithms.

1.6 Western Musical Tonality

Modern popular western music is composed using the equal temperament. The
equal temperament tuning divides each octave into 12 semitones which are all
equal on a logarithmic scale and is usually tuned relative to a standard pitch of
around 440Hz, which is widely accepted as concert A. Although the exact
frequency of concert A does vary between orchestras, the equal tuning ensures
the intervals between notes remains constant. The frequency ratio between 2

adjacent notes is the twelfth root of 2, or 2 to the power of 1/12.

For the purposes of this thesis the most important property of the equal
tempered scale is the logarithmic relationship between adjacent note
frequencies. This logarithmic property results in low frequency notes being
closer together in terms of Hertz, than high frequency notes. This is significant
when considering the frequency resolution of low level processing for music

transcription algorithms.
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Figure 1-13 shows 4 octaves of equal tempered notes starting at 440Hz,

demonstrating the logarithmic increase in frequency of the equal tempered scale

The Logarithmic Nature of Musical Notes
300
250

200

Note

150
Frequency

100

Frequency (Hz)

50

C D E F#GHAH# C D E FHGH#AH C D E F#GHA#H
Notes

Figure 1-13 Logarithmic note frequencies

Automatic music transcription is part of a larger area entitled Music Information
Retrieval, which can be sub divided into different categories This next section
will introduce the different categories and also some of the problems and issues

that make the process of using computers to transcribe music so difficult.

1.7 Categories of Music Information Retrieval

The Music Information Retrieval Evaluation eXchange (MIREX), an annual
evaluation of music information retrieval systems (MIREX, 2010b) has
categorised different areas of music information retrieval for the purposes of the

conference. Table 1 is a brief explanation of the key categories as defined by
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Mirex for the 2010 conference, and while it is not categorisation of music

information retrieval per se, it does provide a useful set of definitions.

Category

Task

Audio Key Detection

Identify the musical

recorded music

key of pre

Audio Cover Song Identification

Identify other versions/recordings of
an original query audio track.

Real-time Audio to Score Alignment

Requires the algorithm to align an
incoming music signal to the
corresponding musical score.

Query by Singing/Humming

Using a sung or hummed input signal
the algorithm will identify the correct
score from a database.

Audio Chord Estimation

Requires the algorithm to extract or
transcribe a sequence of chords from a
musical recording.

Audio Melody Extraction

Identify and extract the melody line
from a polyphonic recording.

Audio Beat Tracking

Track each beat location in a sound file.

Audio Music Similarity and Retrieval

Queries music files to group similar
music together.

Structural Segmentation

Identify the segments or ‘form’ of a
piece of music.

Audio Tempo Extraction

Extract the tempo of a piece of music.

Audio Onset Detection

To find the time locations of musical
events e.g. Notes in a recording

Multiple  Fundamental
Estimation & Tracking

Frequency

Estimate the fundamental frequencies
present in a piece of audio and track
their changes over time.

Table 1 Categories of music information retrieval

(MIREX, 2010c)

The Multiple Fundamental Frequency Estimation Tracking task is of particular

interest for this thesis. The task deals with the concept that a complex music

signal can be represented as a series of fundamental frequency contours. The

goal of this discipline is to identify the fundamental frequencies present in each
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time frame, and use this information to track notes through a complex music
signal. This is a complex task and tracking all fundamental frequencies in an

audio mixture is very difficult. Therefore, MIREX limit the problem to 3 cases:

* Estimate active fundamental frequencies on a frame-by-frame basis.
* Track note contours on a continuous time basis. (As in audio-to-MIDI).

* Track multiple timbres on a continuous time basis.

(MIREX, 2010c)

The category of fundamental frequency estimation and tracking is a good
example of the importance of both time and frequency resolution in automatic
music transcription, and is primarily the category of interest for this thesis. A
good frequency resolution is required to accurately detect fundamental
frequencies, but also a good time resolution is required to accurately identify the
timing of frequency onset. The next section outlines some of the challenges

associated with multiple fundamental frequency estimation.

1.8 Challenges Associated with multiple fundamental frequency estimation

Figure 1-14 shows a spectrogram of a recording of a conversation taking place in

an environment containing many other background conversations and noises.
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PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

Figure 1-14 Spectrogram of a conversation

The task of reading a complex spectrogram as in Figure 1-14 and extracting a
single sound source would be impossible for even an expert spectrogram reader
(Bregman, 1994), even though the human auditory system can decipher the

sound.

The difficulty of reading the spectrogram is due to sounds overlapping in both
time and frequency - this is a fundamental difficulty in multiple Fundamental
frequency estimation (Multiple FO Estimation). The overlapping of sounds
causing one not to be heard is termed Auditory Masking in psychoacoustics
(Wegel & Lane, 1924). Wegel and Lane’s investigation of masking focused on the
auditory system response to sound masking (as discussed in section 1.5) and the
effect of partials of lower frequency sound interfering with higher frequency

fundamentals (Figure 1-15).

Wegel and Lane found that the masking is greatest for tones nearly alike. When

the masking tone is loud it masks tones of higher frequency better than those of
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frequency lower than itself. When the masking tone is weak, there is little

difference. (Wegel & Lane, 1924)

Masking Tone

Masked Area

Inaudible Tone

Amplitude

Audible Tone

-~

v

Frequency

Figure 1-15 Auditory masking

Wegel and Lane’s work refers to masking of sounds which humans cannot detect,
but Yeh (Yeh, 2008) refers to masking of sounds which increase the difficulty for

computers to track fundamental frequencies, but which the human ear can hear.

Yeh refers to the difficulty of overlapping time and frequency components of
sound sources in more musical terms. He states that when musical notes are
played in harmonic relations, i.e. in the same key or scale (which is typical of
western popular music), the harmonics or partials of the higher notes may
completely mask, that is overlap, those of lower notes (Yeh, 2008). This,
combined with the diverse spectral characteristics of musical instruments,

results in greater ambiguity in the estimation of partial amplitudes increasing
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the difficulty of accurately extracting and tracking fundamental frequencies
through a piece of music. A spectrogram of a monophonic (single source)
recording (Figure 1-16) compared to that of a polyphonic source (Figure 1-17)

clearly shows the difficulty of polyphonic fundamental frequency estimation.

/Users/admin/Desktop/monophonic.wav
PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

10 kHz

0:06
Seconds

Figure 1-16 A monophonic Piano Line

/Users/admin/Desktop/polyphonic.wav
PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

Figure 1-17 a polyphonic piano line and bass line
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The time and frequency overlap of sound sources is the crux of the multiple
fundamental frequency estimation problem, particularly when considering the
harmonic structure of music and sound. In a given piece of music, perhaps 4 or
more notes may be overlapping in time, but given the theory of western tonality,
the fundamentals of these notes may be in simple integer ratios, leading to a
collision of their harmonics in spectral terms. This results in complex
constructive and destructive interference in the frequency domain (Poliner, Ellis,
Ehmann, Gomez, Streich, & Ong, 2007), which in part contributes to the complex

spectral representation of music.

The clear deciphering of fundamental frequencies from spectral representations
is the starting point for a very active area of research as people explore different

techniques and methods to transcribe notes from an audio mixture.

1.9 Structure of Fundamental Frequency Estimation Algorithms

Numerous single and multiple Fundamental Frequency (FO) Estimators have a

similar basic processing structure as that shown in Figure 1-18.

Low Level Processing High Level Processing

| Timeto Frequency
| Domain Transform

Transform Output
Manipulation

Peak Pick/Presentation Statistical Analysis
of Note Candidates ' Y Music Transcription

Figure 1-18 A commonly used structure of automatic music transcription algorithms
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Digitized audio is transformed from the time domain to the frequency domain.
From the output of this transform frequencies are selected as note candidates.
Further processing is performed to determine the correct notes from the note
candidates and the chosen notes are transcribed into a score - which is typically

generated as a MIDI file.

Although common, this structure is not exclusively followed (e.g. (Cheveigne &
Kawahara, 2002) but the presented structure in Figure 1-18 will be assumed as
the starting point for the following discussion and form the inspiration for the

optimisation investigation.

For the purposes of this thesis low level processing refers to the transformation of
a digital music source from the time domain to the frequency domain, any
manipulation of the transform output and the peak picking process to present
note candidates. High level processing refers to any analysis of the output data
from the low level transform to present a series of fundamental frequencies that

represent the original acoustic signal.
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2 Low Level Processing — Single Resolution Analysis

Low level processing refers to the techniques used to extract frequency
information from a time domain musical signal. The frequency domain
information is critical for automatic music transcription as it is the frequency
content that determines the note pitch to be transcribed. The techniques
described in the following section are implemented as the initial stage of the
majority of music information retrieval algorithms, but will be discussed
specifically in the context of fundamental frequency estimation and onset

detection.

The purpose of the low level processing stage is to present the spectral
information of the signal being transcribed as accurately as possible,
representing the fundamental frequencies and harmonics (dependent on the
type of high level processing used) clearly. If the initial low level processing can
present strong ‘note candidates’ i.e. clear spectral maxima to the high level
processors, then the likelihood of those candidates being ‘true’ is increased from

the outset, resulting in an easier high-level process to discern notes.
The characteristics of a desirable low-level process are:

* A good time resolution to accurately locate a frequency in time
* A good frequency resolution to accurately represent adjacent note

frequencies
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Low level processing can be divided into 2 categories, single resolution
transforms where a single time-frequency resolution is used across the entire
spectrum, and multiresolution transforms which use a variable time-frequency
resolution across the frequency spectrum - typically by splitting the initial signal
into different frequency bands. Single resolution transforms can be sub divided

in to frequency domain and time domain methods.

2.1 Time Domain Low Level Processing

Time domain low level processing methods look for repetitive patterns in the
waveform to determine a periodicity, and therefore a frequency. Time domain
approaches to pitch extraction have been used with successes for monophonic
pitch estimation (Rabiner, On the Use of Autocorrelation Analysis for Pitch
Detection, 1977) but such approaches are not suitable for multiple pitch
estimation due to the spectral complexity of the signal. However, for

completeness it is useful to have an understanding of these basic methods.

2.2 Zero Crossing

The zero crossing is the point where a waveform intersects the zero point,

changing sign from positive to negative (Figure 2-1).
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Figure 2-1 Zero Crossing

By tracking the time between zero crossings the period of the waveform and
therefore frequency can be calculated. This technique has been used as a crude
fundamental frequency estimator for speech processing (Veeneman, 1988) as
well as other disciplines such as the classification of percussive sounds (Gouyon,
Pachet, & Delerue, 2000), but as a stand-alone low level process for polyphonic
pitch extraction the complex waveforms render it wholly inaccurate (Roads,

1996, p. 508).

2.3 Autocorrelation

Correlation functions compare two signals with the goal of finding similarity
between the two signals (Roads, 1996, p. 509). Autocorrelation compares a
signal with versions of itself delayed by regular intervals. The comparing of
delayed versions results in finding underlying periodic signals from noisy signals

(Figure 2-2).

42



Amplitude

v

Time

ACF

v

Time

Figure 2-2 Autocorrelation

The top diagram shows a time domain signal with a ‘hidden’ sine component. The
bottom diagram shows the result of the autocorrelation function on the time

domain signal.

Autocorrelation has been used as the main process with success in monophonic
pitch estimation (Rabiner, On the Use of Autocorrelation Analysis for Pitch
Detection, 1977), particularly in speech recognition (Kida, Sakai, Masuko, &
Kawamura, 2009) and is still a powerful tool for auditory model based methods
for multiple FO estimation (Klapuri, 2006b). These examples all use the same

basic autocorrelation process for pitch detection (Figure 2-3)
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‘ Y[n] Pitch ,
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X[n] algorithm

Delaym | Y[n-m]
samples

Figure 2-3 Auto correlation process

Part of the input signal is delayed in a buffer, and as more of the input signal
comes in, the detector attempts to match a pattern in the incoming signal with
the part of the waveform delayed in the buffer (Roads, 1996, p. 510). If the
detector finds a match between the two signals periodicity is indicated. The time
interval between the two waveform patterns is measured and the frequency is

calculated.

Although various autocorrelation algorithms exist (Moorer, 1975) a typical

function is

N
Autocorrelation[lag] = z signal[n] x signal[n + lag]
n=0

Equation i

Where:
N is the length of the input signal.

The magnitude of the autocorrelationf[lag] is determined by the similarity of the

values of signal at different points n and n+lag.
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When attempting to detect periodicity in more complex signals, the ‘pitch

decision’ algorithm will search for recurrent peaks in the autocorrelation (Roads,

1996, p. 511).

The difficulty with autocorrelation techniques is that peaks can occur at sub
harmonics, making it difficult to determine which are fundamental frequencies
(Gerhard, 2003). Modification of the basic autocorrelation function is not

uncommon to minimize the errors generated from the basic implementation

(Cheveigne, 1991).

Cheveigne and Kawahara presented the YIN estimator, which uses an adapted
version of the autocorrelation function as it’s low level processing (Cheveigne &
Kawahara, 2002). YIN utilises a ‘cumulative mean normalized difference
function’, which is a squared difference function normalized with it's average
over short lag values. This modification reduces error rates from 10% to 1.69%
compared to the standard autocorrelation function (Cheveigne & Kawahara,

2002) and has become a much-cited algorithm in the field.

The following section will discuss low-level frequency domain processing, and

primarily the Fast Fourier Transform.

2.4 Frequency Domain Low Level Processing

Frequency domain low level processing refers to methods that present spectral
information as an output by transforming the time domain signal into the

frequency domain. The most famous of these algorithms is the Fourier
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Transform. Many of the leading music transcription algorithms use the Fourier
Transform to view the spectral components of a signal (Goto 2006, Klapuri
2006), so it is important to discuss the Fourier family of transforms, their
properties and characteristics to understand their positive and negative
attributes for the purpose of fundamental frequency estimation and onset

detection.

2.5 Fourier Analysis

The Fourier transform is a mathematical operation that decomposes a time
signal into its component frequencies, generating a corresponding spectrum

representation (Roads, 1996, p. 550).

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830), a

French mathematician who contributed significantly to the field.

2.5.1 The Fourier Family of Transforms

The differentiation between the categories of transforms in the Fourier family is

based on the signal in can transform.

A signal can be either continuous or discrete, and it can be either periodic or
aperiodic. These properties generate the 4 categories of Fourier transform which

are described in the following diagram (Smith S. W., 1997)
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Figure 2-4 The Fourier family

Image modified from (Smith S. W., 1997, p. 145)

The Discrete Fourier Transform (DFT) (boxed in blue in Figure 2-4) is utilised in
DSP as digital computers can only work with a discrete and finite amount of data

(samples), therefore ruling out the use of the other 3 transforms.

The above 4 categories of signal including the DFT, in mathematical terms all
extend to negative and positive infinity, and what is shown in Figure 2-4 is only a
small section of a mathematically infinite signal. However, only a finite number
of samples of a signal are used during a DFT, therefore this discrepancy needs to

be resolved, as discussed in the following section.

2.5.2 Periodicity of the DFT

As shown in Figure 2-4 the DFT is periodic i.e. it views both the time and

frequency domain as periodic. This may seem unsuitable for use in DSP as most
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signals used in DSP are not periodic but constantly changing, but a mathematical
characteristic of the DFT is that it views a time domain signal as a section of a
periodic signal which extends to infinity. To use the DFT to analyse a finite signal,
the finite signal is made to look infinite by duplication of the finite signal as
imaginary points either side of the actual signal. This results in the signal
appearing to be discrete and periodic, thus matching the criteria for the DFT

(Figure 2-5).

Original Signal
Sampled
{ Discrete
Signal

l

Discrete signal to
be transformed

Discrete Periodic Signal

Negative Infinity Positive Infinity

Figure 2-5 Discrete periodic signal
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2.5.3 The DFT Decomposition — An Introduction

The DFT decomposes a time domain signal into a series of component sine and

cosine waves.

Each member of the Fourier family of transforms can be sub-dived into real and
complex versions. The real version does not use complex numbers for the
decomposition process and is therefore relatively simple. The complex version

requires the use of complex numbers, which is the method of the FFT.

Smith (Smith S. W.,, 1997) is a useful single and easy-to-follow source for DSP
fundamentals. The following section on the DFT and FFT is a summary of the
content that Smith presents in his widely referenced book regarding the DFT and

FFT.

The DFT can be calculated in three different ways. The first is by simultaneous
equations, but this method is too inefficient to be of practical use. The second
method is by correlation and the third method is by using the Fast Fourier

Transform.

Although simultaneous equations and correlation methods will arrive at the
same result as the FFT, the speed and efficiency of the FFT is significantly better,
improving computation times by hundreds. The following section introduces the

decomposition method used in the Fast Fourier Transform.
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2.6 The Fast Fourier Transform

Tukey and Cooley are credited for introducing the FFT in 1965 (Cooley & Tukey,
An Algorithm for the Machine Calculation of Complex Fourier Series, 1965), but
in reality others such as Karl Friedrich Gauss (1777-1855) had discovered the
technique many years earlier (Smith S. W., 1997, p. 225). This early work was
forgotten as the tools were not available to make it practical, but Cooley and

Tukey’s introduction of the FFT coincided with the computer revolution.

The FFT calculates the complex DFT. The practical mathematics of the complex
DFT and the FFT is complicated, but it is useful to have a basic understanding of

how the FFT calculates the DFT.

2.6.1 The Complex DFT

The complex DFT transforms an N point time domain signals a real part, and an

imaginary part in to two N point frequency domain signals (Figure 2-6).
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Figure 2-6 Complex DFT

The complex DFT decomposition transforms both real and imaginary parts in the
time domain to the frequency domain. Shaded areas show values common to the

real DFT.

The real and imaginary parts of the time domain signals are represented in the
FFT collectively as N complex points. Complex points are composed of 2 values,
the real and imaginary parts. As each complex point holds two numbers, when
one complex point is multiplied by another the four components need to be
combined to form the two components of the produced complex variable. This
brief introduction to complex numbers in the FFT is useful to know when

discussing the FFT decomposition process in section 2.6.2, and more specifically

the FFT butterfly.
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2.6.2 FFT Decomposition

The decomposition performed by the FFT is what makes the FFT fast in
comparison to the simultaneous equations and correlation methods. The
following is a summary description of the FFT decomposition process,
emphasizing its speed and efficiency, rather than the complexities of

functionality, which are not relevant to the purpose of this project.

There are three stages to the FFT decomposition

* Decomposing an N point time domain signal into N time domain signals
each a single point

* (Calculate the N Frequency corresponding to each of the N time domain
signals

* Synthesize the N Spectra in to a single frequency spectrum

Smith’s 16-point time domain signal example will be used as a simple

explanation of the FFT decomposition process.

The first stage divides the 16 point signal in a pyramid structure where one
signal of 16 is split in to two signals of 8, is split in to four of 4 until there are
sixteen signals of 1 point. Duhamel and Vetterli refer to this as the ‘divide and
conquer’ method (Duhamel & Vetterli, 1990). Each time a signal is separated an
interlace decomposition is used to separate the signal in to its odd and even

numbered points. The figure below shows this process.
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Figure 2-7 FFT Sample ordering

The output of the N point decomposition process shown in Figure 2-7 is
essentially the result of a bit reversal sorting algorithm. Bit reversing involves
rearranging the 16 time domain samples based on the flipping of their binary

representations (Table 2)
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Samples In 'normal’ order Samples after bit reversal
Decimal Binary Decimal Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 6 0100
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Table 2 Bit reversal

The table on the right shows the decimal numbers reordered as a product of

reversing the binary numbers from the table on the left.

Stage two of the FFT is to determine the frequency spectra of the 1-point time
domain signals. This is the simplest step as the frequency spectrum of a 1 sample
signal is equal to itself, therefore nothing is involved is this step to take the 1
point signal from the time domain to the frequency domain. Each 1 point signal

is now a frequency spectrum, not a time domain signal

The third step of the FFT algorithm is more complicated as it involves combining
the 16 points of the frequency spectra in exactly the reverse order that the time
domain decomposition took place, undoing the interlaced decomposition

performed in the time domain. However, the bit reversal method is not
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applicable. Instead, the process must be performed one step at a time,
synthesizing the sixteen 1-point spectra in to eight 2-point spectra, in to four 4-
point spectra etc. The last stage results in the output of the FFT being a 16-point

frequency spectrum.

2.6.3 Frequency Domain Reordering and Butterflies

The method for combining the points of the frequency spectra involves diluting
the N point time domain signals to be decomposed/synthesized with zeros. Lets
take the process of combing two 4-point signals into a single 8-point signal to

explain the process.

A four-point signal abcd becomes a0b0c0d0 and when combined with a second
signal of 0e0f0g0Oh the synthesis of the two former 4-point signals becomes a
single 8-point signal of aebfcgdh. Diluting the time domain signal with zeros
results in a duplication in the frequency spectrum. The FFT combines the

frequency spectra by duplicating the spectra and then summing them.
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Figure 2-8 Spectral combination

Image modified from Smith (Smith S. W., 1997, p. 230)

One signal has been diluted at the even points, the other at the odd points to
ensure the signals match up when added. An alternative way to view the dilution
with zeros is the second signal has been shifted to the right by one point. This
shift in the time domain corresponds to multiplying the spectrum by a sine wave.
The diagram below shows the method of combining two 4-point frequency
spectra into a single 8-point spectrum. ‘xS’ denotes the operation of multiplying

the signal with a sinusoid of an appropriate frequency determined by Fs/N.
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Figure 2-9 combining two 4-point frequency spectra into a single 8-point spectrum

Figure 2-9 combining two 4-point frequency spectra into a single 8-point

spectrum modified from (Smith S. W., 1997, p. 231)

The diagram above is formed from a single basic calculation, which is repeated
many times. This basic calculation is known as the FFT ‘butterfly’ and is the most
fundamental element of the FFT, converting 2 complex points into two other

complex points (Figure 2-10).
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Figure 2-10 FFT Butterfly

This method of FFT decomposition is based on the Cooley and Tukey radix-2 FFT
(Cooley & Tukey, An Algorithm for the Machine Calculation of Complex Fourier
Series, 1965). Power of 2 FFTs are popular due to their speed and efficiency, but
other Fast Fourier Transforms have been developed which allow for non-power

of 2 numbers of samples.

2.7 Non Power of 2 FFTs and the Fastest Fourier Transform in the West

Tukey and Cooley, when they presented their paper used a power of 2
decomposition as an example (Cooley & Tukey, An Algorithm for the Machine
Calculation of Complex Fourier Series, 1965), but the algorithm actually included
a ‘twiddle factor’ which allowed for non power of 2 sample sizes to be used. Itis
only because of their example that it assumed to be a radix-2 only transform
(Duhamel & Vetterli, 1990). In very basic terms, the difference between the
different FFT algorithms in use is the process of transforming from N time
domain samples to N samples of the frequency domain. The usual measurement

of success is the efficiency in which it can be done (Duhamel & Vetterli, 1990).
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A popular algorithm in current DSP practice is known as ‘The Fastest Fourier
Transform in the West’ or FFTW. The FFTW is an open source software library
that is widely regarded as the fastest FFT by adapting its performance to the N
points it is presented with and the hardware it is run on (Frigo & Johnson, 2005).
It is the FFTW included with the Matlab software (Moler, 2005) that is used in

the investigation of FFT parameters and characteristics in Chapter 6.

Considering automatic music transcription as the application for a FFT the
number of FFT points is of significance as it directly relates to the time resolution
- that is the length of time the spectrum represents, and also the frequency
resolution - that is how many component sine waves are available to represent
the frequency content. To address the time and frequency resolution the Short

Time Fourier Transform is popular for music analysis.

2.8 The Short Time Fourier Transform

If a DFT is performed on the entirety of a pop song, there is no way of knowing
which frequencies in the spectral information occurred at the start of the song, in
the first line, or the first word - there is no time information to localize frequency

maxima to a point in time.

The Short Time Fourier Transform (STFT) functions as the DFT does, but
analysis is performed on small ‘windows’ of the signal being analysed. Once the
content inside the ‘window’ has been transformed, the window will move along
the signal by a number of samples (usually equal to the window length or less )
where the next part of the signal will be transformed. This method allows the

spectral information to be associated with a finite amount of time equal to the
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window length within the context of the entire signal being analysed.

Spectrograms are constructed by aligning adjacent STFT windows.

This positive aspect of localizing frequency spectra to a point in time is also the
major negative of the algorithm. Due to the decomposition method of the DFT, if
a short time frame is used, i.e. fewer samples, there are fewer sinusoids to
represent the frequency components, therefore the size of each ‘bin’ is greater
and the accuracy of the frequency values compared to the actual values in the
signal is compromised. To improve the spectral accuracy the window must be
enlarged, but then the ability to localize a frequency domain event in the time
domain is compromised as is the ability to detect fast changes. This is discussed

further in section 6.3.

Despite the time-frequency trade off, the STFT is a highly popular method of
extracting spectral information from an audio signal for purposes of automatic
music transcription. An analysis of the algorithms submitted to MIREX 2010
show a large number use the STFT algorithm (Table 3). Page numbers refer to

the MIREX 2010 complete proceedings (MIREX, 2010a).

Authors Title Pages Low Level Window Higher Level
Processing Size & Processing
Other
Information
Grindlay, Ellis A PROBABILISTIC | 20 - STFT 1024 NMF
SUBSPACE MODEL | 26
FOR MULTI-
INSTRUMENT
POLYPHONIC
TRANSCRIPTION
Coz, Lachambre, | A SEGMENTATION- | 27-31 STFT Not stated Comb Decision' -
Koenig, Obrecht BASED TEMPO Harmonic
INDUCTION METHOD Analysis
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Joder, Essid, Richard | AN IMPROVED | 39 - STFT HMM
HIERARCHICAL 44 generated
APPROACH FOR Chroma
MUSIC-TO-SYMBOLIC Vectors
SCORE ALIGNMENT
Yoshii, Goto INFINITE LATENT | 309 - Wavelet 60ms Time Bayesian
HARMONIC 314 Transform Resolution Variation
ALLOCATION: A
NONPARAMETRIC
BAYESIAN
APPROACH TO
MULTIPITCH
ANALYSIS
Eyben, Bock, | UNIVERSAL  ONSET | 589 - MRFFT 1024, 2048 Neural Networks
Schuller, Graves DETECTION WITH | 594
BIDIRECTIONAL
LONG SHORT-TERM
MEMORY  NEURAL
NETWORKS
Wang, Li, Ogihara ARE TAGS BETTER | 57 - STFT NMF
THAN AUDIO | 62
FEATURES? THE
EFFECT OF JOINT USE
OF TAGS AND AUDIO
CONTENT FEATURES
FOR ARTISTIC STYLE
CLUSTERING
Humphrey AUTOMATIC 69 - 22 Band Chroma
CHARACTERIZATION 74 Cochlea Filter
OF DIGITAL MuUSIC Bank
FOR RHYTHMIC
AUDITORY
STIMULATION
Rump, Miyabe, | AUTOREGRESSIVE 87 - | 40 Band Mel MFCC analysis
Tsunoo, Ono, | MFCC MODELS FOR | 92 Filter Bank
Sagama GENRE
CLASSIFICATION
IMPROVED BY
HARMONIC-
PERCUSSION
SEPARATION
Abeber, Brauer, | BASS PLAYING STYLE | 93 - STFT Support Vector
Lukashevich, DETECTION  BASED | 97 Mechanism
Schuller ON HIGH-LEVEL (SVM)
FEATURES AND

PATTERN SIMILARITY
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Weiss, Bello

IDENTIFYING
REPEATED PATTERNS
IN  MUSIC USING
SPARSE
CONVOLUTIVE NON-
NEGATIVE  MATRIX
FACTORIZATION

123
128

STFT

NMF Variation

Mauch, Dixon

APPROXIMATE NOTE
TRANSCRIPTION FOR
THE IMPROVED
IDENTIFICATION OF
DIFFICULT CHORDS

135
140

STFT,
Hamming
Window

4096,
11Khz, 2048
Hop

Bayesian Network

Granseman,
Scheunders,
Mysore, Abel

EVALUATION OF A
SCORE-INFORMED
SOURCE SEPARATION
SYSTEM

219
225

STFT

2048,
44.1Khz,
512 hop

NMF Variation

Karydis,
Radovanovic,
Nanopoulos,
lvanovic

LOOKING THROUGH
THE “GLASS
CEILING”: A
CONCEPTUAL
FRAMEWORK  FOR
THE PROBLEMS OF
SPECTRAL
SIMILARITY

267
272

STFT

512, 11Khz,
256 hop

MFCC / Gaussian
Mixture Model

Lidy, Mayer, Rauber,
Leon, Pertusa, Inesta

A CARTESIAN
ENSEMBLE OF
FEATURE SUBSPACE
CLASSIFIERS FOR
MUSIC
CATEGORIZATION

279
284

STFT

Various
Spectrogram
Analysis

Oliveira, Gouyon,
Martins, Reis

IBT: A REAL-TIME
TEMPO AND BEAT
TRACKING SYSTEM

291
296

STFT,
Hamming
Window

1024,
44.1Khz,
512 hop

Agent Based
tempo tracker

Han, Raphael

INFORMED SOURCE
SEPARATION OF
ORCHESTRA AND
SOLOIST

315
320

STFT, Hann
Window

Various
Spectrogram
Analysis

Schnitzer, Flexer,
Widmer, Gasser

ISLANDS OF
GAUSSIANS: THE
SELF ORGANIZING
MAP AND GAUSSIAN
MUSIC  SIMILARITY
FEATURES

327
332

STFT

1024, 22kHz

MFCC / Gaussian
Mixture Model

Marolt, Lefeber

ITS TIME FOR A
SONG -
TRANSCRIBING
RECORDINGS OF
BELL-PLAYING
CLOCKS

333
338

Constant Q
Transform

NMF
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Hamel, Eck

LEARNING FEATURES
FROM MUSIC AUDIO
WITH DEEP BELIEF
NETWORKS

339
344

STFT

1024,
22.5kHz

DBN Neural
Networks

Jo, Yoo

MELODY
EXTRACTION FROM
POLYPHONIC AUDIO
BASED ON PARTICLE
FILTER

357
362

STFT,
Hanning

2048,
44.1Khz,
512 hop

Bayesian Particle
Filter

Raczynski, Vincent,
Bimbot, Sagayama

MULTIPLE PITCH
TRANSCRIPTION
USING  DBN-BASED
MUSICOLOGICAL
MODELS

363
368

STFT

NMF/DBN Neural
Networks

Nakano,
Ono,

Murao,
Kitano,
Sagayama

MONOPHONIC

INSTRUMENT SOUND
SEGREGATION BY
CLUSTERING NMF
COMPONENTS

BASED ON BASIS
SIMILARITY AND
GAIN DISJOINTNESS

375
380

Wavelet
Transform

NMF

Chang,
lliopoulos

Jang,

MUSIC GENRE
CLASSIFICATION VIA
COMPRESSIVE
SAMPLING

387
392

Octave
Subband STFT

Various Spectral
Analysis inc.
MFCC

Tjoa, Liu

MUSICAL
INSTRUMENT
RECOGNITION USING
BIOLOGICALLY
INSPIRED FILTERING
OF TEMPORAL
DICTIONARY ATOMS

435
441

STFT,
Hamming
Window

2048,
44.1Khz,
512 hop

NMF Variation

Dessein,
Lemaitre

Cont,

REAL-TIME
POLYPHONIC MUSIC
TRANSCRIPTION
WITH NON-
NEGATIVE  MATRIX
FACTORIZATION AND
BETA-DIVERGENCE

489
494

STFT,
Hamming
Window

630 Data,
1024 FFT,
12.6kHz,
512 hop

NMF

Mak,
Yeung, Lam

Senapti,

Similarity Measures
for Chinese Pop
Music Based on Low-
Level Audio Signal
Attributes

512
518

STFT

2048

MFCC / Gaussian
Mixture Model
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Hsu, Jang, SINGING PITCH | 525 MRFFT 2048, 1024, Partial Trend

EXTRACTION BY | 531 (Dressler 512, 256 Tracking

VOICE 2006)

VIBRATO/TREMOLO

ESTIMATION AND

INSTRUMENT

PARTIAL DELETION
Gkiokas, Katsouros, | TEMPO INDUCTION | 555 Mel Filter Convolution
Carayannis USING FILTERBANK | 558 Bank

ANALYSIS AND

TONAL FEATURES
Duggan, Shea TUNEPAL - | 583 FFT Hanning 2048, Klapuri Harmonic

DISSEMINATING A | 588 window 22.05kHz, Analysis

MUSIC 1024 hop

INFORMATION

RETRIEVAL SYSTEM

TO THE TRADITIONAL

IRISH MUSIC

COMMUNITY
Schuller, Kozielski, | VOCALIST GENDER | 613 DFT 50% NMF/Bayesian
Weninger, Eyben, | RECOGNITION IN | 618 overlap Networks
Rigoll RECORDED POPULAR

MUSIC
Paulus, Muller, | AUDIO-BASED MUSIC | 625 Discrete MFCC
Klapuri STRUCTURE 636 Cosine

ANALYSIS Transform
Kelly, Gainza, | LOCATING TUNE | 128 STFT Chroma
Dorran, Coyle CHANGES AND | 134

PROVIDING A

SEMANTIC

LABELLING OF SETS

OF IRISH

TRADITIONAL TUNES
Niedermayer, A MULTI-PASS | 417 MRFFT 4096,1024, NMF
Widmer ALGORITHM FOR | 422

ACCURATE AUDIO-

TO-SCORE

ALIGNMENT
Panagakis, SPARSE MULTI-LABEL | 393 Wavelet NMF Variation
Kotropoulos, Arce LINEAR EMBEDDING | 398 Transform

WITHIN
NONNEGATIVE
TENSOR
FACTORIZATION
APPLIED TO MUSIC
TAGGING

Table 3 - MIREX 2010 processing techniques
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The STFT is popular front end to automatic music transcription systems, but the
time frequency trade off remains as a compromise. An alternative method to a

single resolution transform such as the STFT is the multiresolution transform.

The following section introduces the concept of multiresolution analysis and

techniques for the purpose of automatic music transcription.
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3 Low Level Processing - Multiresolution Analysis

Multiple resolution analysis for automatic music transcriptions consists of 2
main approaches, multiresolution in time, and multiresolution in frequency
(Duxbury, Bello, Davies, & Sandler, A Comparison Between Fixed and

Multiresolution Analysis for Onset Detection in Musical Signals, 2004).

Time varying multiresolution signal analysis is based on varying the analysis
window used for Fourier transform based frequency estimation methods

resulting in a variable time-frequency scale (Dressler, 2006).

The multiresolution in frequency approach comprises of splitting the frequency
spectrum in to subbands and then analysis is performed on each separate band.
This allows short analysis windows to be used at higher frequencies where the
fast transients reside, while a longer window can be implemented for the lower
frequencies resulting in frequency resolution adequate to separate closely space

fundamentals.
The following section is an introduction to multiresolution analysis.

3.1 Approaches to Multiresolution Analysis

Broadly speaking, approaches to multiresolution analysis can be categorized into
methods based upon modeling the critical bands of the human auditory system,
and methods based upon a ‘quality’ factor, referred to as ‘Constant Q’, which is
defined as the center frequency (Hz) divided by the bandwidth (Hz) (Diniz F.,

Kothe, Netto, & Biscainho, 2007).
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_FC
"~ Bw

Q

Equation ii

Where:

Q is the ‘quality factor’
Fc is the center frequency

Bw is the bandwidth

As the center frequency of each band increases, so too does the bandwidth,
therefore maintaining a constant quality factor. The human auditory system
reflects an approximately constant Q frequency resolution in its critical bands
(Garas & Sommen, 1998), but it is convenient for this thesis to categorize
approaches as those that aim to achieve auditory functionality, and those that

aim to achieve constant Q functionality.

The concept of constant Q is significant and important for automatic music

transcription as it reflects the logarithmic nature of music and harmonics.

The constant Q transform (CQT) refers to any method of generating a time
frequency representation where the frequency bands or bins are geometrically
spaced and the Q factors of all bands/bins are equal (Schorkhuber & Klapuri,
2010). A constant Q transform results in the frequency resolution being
improved in the low frequency ranges compared to higher frequencies -

reflecting the logarithmic nature of western music.
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The following sections present some common methods and approaches for
multiresolution analysis. First the auditory system based methods are

introduced, followed by constant Q approaches.

3.2 Auditory System Methods Filter Banks

A filter bank is an array of band pass filters that separate the original signal into
multiple frequency bands (Roads, 1996, p. 193). The output of each filter is a
sub-band containing the frequencies determined by the parameters of the filters

used.

The center frequencies of the filters used for the lower frequencies can be closer
together than the filters used for the higher frequencies. The arrangement
results in a finer frequency resolution in the low frequencies where note

fundamentals are closer together.

An Example of Filter Bank Configuration
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—Filter 1
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2 Filter 2
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- = N N <

Logarithmic Frequency (Hz)

Figure 3-1 Filter bank
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3.2.1 Auditory Filter Banks

Filterbanks are popular for auditory system approaches to pitch detection due to
their behavior being similar to the cochlea (section 1.4). A typical model uses
about 100 filters (Klapuri, Signal Processing Methods for Music Transcription,
2006b), with their center frequencies uniformly distributed along the
logarithmic frequency scale, but various configurations of filters are used for

multiresolution analysis of music signals.

3.2.2 Mel Filter Banks

Mel filter banks consist of filters with triangular magnitude response whose
bandwidths reflect the Mel scale. Stevens, Volkman and Newman are credited
with the Mel scale, which is a scale of pitches as perceived by humans (Stevens,
Volkman, & Newman, 1937). The scale reflects the increasingly larger intervals
above 500Hz judged by humans to produce equal pitch increments, implying
humans have less resolution at high frequencies, and finer resolution at lower

frequencies.

The spacing of the bands gives the Mel filter bank it's multiresolution property

(Figure 3-2).
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Min Freq Max
Frequency

Figure 3-2 Mel filter bank

Uchida and Wada successfully use Mel filters to identify pitched instruments by
comparing the output of the Mel filter bank to a trained database of sample

instruments and pitches (Uchida & Wada, 2010).

3.2.3 Bark Scale

The Bark scale was proposed by Eberhard Zwicker in 1961 and is closely related
to the Mel scale. The bark scale ranges from 1 to 24, where each point on the
scale represents one of the first 24 critical bands of hearing, for 20Hz to 15.5kHz

(Figure 3-3).
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Bark Scale Frequency Band Centers Distribution
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Figure 3-3 Bark scale frequencies

Shannon and Paliwal state in their investigation that despite the popularity of
the Mel scale, there is little difference between that and the bark scale (Shannon
& Paliwal, 2003). Indeed, Dressler uses the Bark scale rather than the Mel scale
to determine frequency cut off points for his multiresolution sinusoidal analysis

(Dressler, 2006).

3.2.4 Gammatone Filter Bank

The gammatone filter was introduced by Johannesma to imitate the filtering
performed by the human ear by recreating the impulse response of the auditory
system ((Johannesma, 1972) cited by (Lyon, Katsiamis, & Drakakis, 2010)) and
has been popular for auditory modeling systems. This is mainly due to its
simplicity (Lyon, Katsiamis, & Drakakis, 2010) and accuracy in imitating the

filtering performed by the human ear (Ellis, 2009).
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Although the filter models the auditory system impulse response, the filter itself
only represents a single band, so for a full auditory system model it is

implemented as a bank of gammatone filters.

Klapuri, building on work from Patterson et al. implemented a bank of
gammatone filters for a perceptually motivated fundamental frequency
estimation system (Patterson, Nimmo-Smith, Holdsworth, & Rice, 1987)

(Klapuri, 2005).

Klapuri defines the bandwidth of 72 gammatone filters along the critical bands
between 60Hz and 5.2kHz. This low level processing provides the initial spectral
information Klapuri uses for an iterative harmonic detection and elimination
method of fundamental pitch estimation. In testing, the method proved to be
efficient and out performed its competitors in multiple fundamental frequency

estimation tasks (Tolonen & Karjalainen, 2000).

The implementation of filters in the time domain for auditory modeling is a
significant topic (Lyon, Katsiamis, & Drakakis, 2010), but the filtering of audio

signals for music transcription purposes is not restricted to auditory models.

The following section presents constant Q motivated approaches to

multiresolution frequency analysis.

3.3 Third Octave Banks

Third octave filter banks consist of a bank of filters that divide up each octave of

the musical scale in to thirds. Each third of the octave is covered by a single
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band-pass filter, which results in a non-liner frequency resolution across the

frequency spectrum.

A One Third Octave Band Filter Bank
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Figure 3-4 Third octave banks

Third octave filter banks are commonly used in graphic equalizers, but
historically they have also been popular in auditory system modeling (Barabell &
Crochiere, 1979) as the bandwidths of the filters approximately represent the

bandwidths of the human auditory system (Cassidy & Smith, 2008).

The result of the one-third sub division of the frequency spectrum is what is

referred to as a constant Q transform.

Pertusa et al. implement a one-semitone band pass filter bank on the output of a
STFT (Pertusa & Inesta, 2009). The one semi tone filter bank is tuned to the
western scale with the center frequency of each band pass corresponding to a
note in the musical scale. The tuning of the filters creates strong note candidates

for the onset detection and peak picking algorithms.
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3.4 The STFT as a Filter Bank

The STFT so far has been viewed as a windowed DFT representation but the STFT
can also be viewed as a filter bank representation (Smith ]J. 0., 2010). By
rearranging the STFT equation the output of the STFT can be interpreted as a
frequency-ordered collection of narrow band time domain signals. This variation
in the decomposition method of the FFT results in the input signal being
converted to a set of N time-domain output signals, one corresponding to each

bin (or channel) of the STFT (or filter bank) (Roads, 1996, p. 1096) (Figure 3-5).

%f\[-\/—_,f\ — Frequency Bin (K+2)
Frequency Bin (K+1)

--» Frequency Bin (K)

Magnitude

Time

o

Figure 3-5 STFT Filter bank

The time frequency resolution of this basic STFT filter bank is still linear, but can

be implemented as a part of a constant Q system.

3.5 The Constant Q Fast Filter Bank

The constant Q fast filter bank (CQFFB) as proposed by Diniz et al. is an attempt
to utilise the speed and selectivity of the FFT based filter banks, with the ideal
constant Q properties previously described, but without the computational
overhead of other constant Q transforms (Diniz F., Kothe, Netto, & Biscainho,

2007).
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The CQFFB is based on the Fast Filter Bank (FFB) as proposed by Lim et al. (Lim
& Farhang-Boroujeny, 1992). The FFB takes advantage of the tree structure of
the FFT, but modifies the ‘butterfly’ to increase the selectivity of the channels in
the frequency domain. By implementing filters in the FFT decomposition with
very steep pass band-stop band transitions the FFB decreases any interference
between adjacent bins, thus presenting strong maxima in the bins, from which
note candidates can be more easily ‘peak picked’. Although this increases the

computation time of the FFT, it is still relatively efficient.

The design of the steep band filters follows the Frequency Response Masking
Method (FRM) (Lim, 1986), which results in a highly optimised, low complexity
filter. The FRM generated filters are generated across the FFT structure in a
formation that results in each interpolated filter being masked by subsequent

filters in the cascade. This is the FFB (Lim & Farhang-Boroujeny, 1992).

Although the original FFB implementation was highly selective and efficient, it

still suffered from linear bin alignment in the same way as the STFT filter.

v

1f 2f 3f 4f 5f 6f 7f Frequency

Figure 3-6 FFB Frequency bin spacing
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Filipe et al. introduced a Bounded Q Fast Filter Bank (BQFFB) to improve the
spectral analysis of the FFB for the musical context (Filipe, Diniz, Luiz, Biscainho,
& Netto, 2006). Instead of calculating all bands linearly, the BQFFB

logarithmically spaced the octaves, but inside each octave the channels were

linearly distributed.
Octave Octave Octave
i | Ao eem
| | | -
1f 2f 3f 4f 5f 6f 7f 8f 9f  Frequency

Figure 3-7 BQFFB Bin spacing

The BQFFB improved the performance of the FFB for analyzing music signals,
but at the time the inefficiency meant a truly constant Q implementation wasn’t

practical.

The CQFFB demonstrated a computationally expensive, although still practical
way of distributing the bands of the FFB geometrically across the entire

spectrum, not just the octave bands.
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Figure 3-8 CQFFB Bin spacing

The implementation of the FFB combined with the constant Q spacing improved
the distinction of maxima in the produced spectrum on tests with sinusoidal
inputs. This property suggests the CQFFB is a useful tool for automatic music
transcription, but the current implementation is relatively computationally
expensive. Also several approaches for automatic music transcription require a
signal to be transformed back to the time domain from the frequency domain,
which the FFT and FFB are capable of doing but the CQFFB and BQFFB are not.
This is possibly the reason why this method has so far not been adopted for

automatic music transcription.

3.6 Other FFT and Filter Based Multiresolution Techniques

Zhou’s Resonant Time Frequency Image (RTFI) (Zhou R., 2006) method for
frequency analysis uses down sampling in the fast multiresolution
implementation of the RTFI (Zhou, Reiss, Mattavelli, & Zoia, 2009), implementing
a cascading filter bank similar to Goto (Goto, 2002). The RTFI is becoming more

popular due to its constant Q properties and flexibility (Benetos & Dixon, 2011).

Cancela et al. used an Infinite Impulse Response (IIR) filter on the output of an

FFT in a simple but effective algorithm for multiresolution analysis (Cancela,
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Rocamora, & Lopez, 2009), which was used on the best ‘Overall Accuracy’
algorithm for the Audio Melody Extraction exercise at Mirex 2008 (Durrieu, Gael,

& Bertrand, 2008).

Smith presents an approach to designing and efficiently implementing non-linear
FFT filter banks that approximately matches the constant Q form (Smith J. O.,
2009). By performing smaller inverse FFTs on each band of an FFT output, Smith
synthesized the down sampling of the time domain signals in each band, thus
resulting in a non-linear time-frequency scale. The concept of down sampling is

introduced in the following section.

3.7 Multirate Filter Banks

Multirate filter banks use different sample rates for different bands, which are
matched to different filter bandwidths to generate varying time-frequency

resolutions across the spectrum.

The process of down sampling is to retain every Mth sample of a signal x(n)
relabeling the index axis accordingly. The compression of time explicit in this
process is accompanied by a stretching in the frequency domain (Akansu &

Haddad, 1992), hence a non-linear time frequency resolution.

The down sampling of a digital signal when combined with low pass filtering is
known as Decimation. The decimation functions in stages where the top half of

the frequency spectrum is output as an audio band, and the bottom half of the
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frequency spectrum is down-sampled. The process is then repeated on the

decimated audio. The basic process is shown in Figure 3-9

v

Audio Signal [>{ sample Rate (Hz)

v

Decimator [ sample Rate/2

v

Decimator [ sample Rate/4

i —>
Decimator Sample Rate/8

Decimator [

Sample Rate/16

Figure 3-9 Decimation

It is not immediately obvious how this process varies the time frequency
resolution, but applying the concept of reducing sample rates to the FFT
decomposition, it is clear to see that varying the sample rate will affect the time
resolution and the frequency resolution. Table 4 is an example of the effect of
varying the sample rate for a 1024 sample FFT across different bands, resulting

in a variable time frequency resolution.
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Time Res Frequenc
Bottom of | Top of | Sample of 1024 q . ¥
. Resolution
Frequency frequency Rate Window (Hz)
Band (Hz) bands (Hz) (s)

689.06 1378.13 2756.25 0.372 2.69
1378.13 2756.25 5512.5 0.186 5.38
2756.25 5512.50 11025 0.093 10.77
5512.50 11025.00 22050 0.046 21.53
11025.00 22050.00 44100 0.023 43.07

Table 4 FFT Multirate resolutions

Figure 3-10 below shows the time-frequency plane diagram for the first four
bands of the multirate example in Table 4 to clearly show the varying time and

frequency resolution across the different frequency bands of the original signal.
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Figure 3-10 Multirate FFT plane diagram

Considering the frequency spacing of the equal tempered scale and the pattern of
the time frequency resolution plane in Figure 3-10 it is clear that this method of
multiresolution decomposition is suited to music transcription. The lower
frequencies where note fundamentals are closer together are in a band that has a
higher frequency resolution than the highest band where fundamentals are
further apart. Also, high frequency notes tend to have faster rates of change than
lower notes, which is reflected in the relevant time resolution of the frequency

bands.

Goto implements a multirate filter bank as the low level processing in his PreFest

algorithm (Goto, 2000). PreFest was the first algorithm to successfully prove the
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transcription of polyphonic music from a commercial CD is possible (Goto, 2000)

by accurately estimating the melody and bass line note fundamentals.

Goto implements a multirate filter bank to obtain an adequate time frequency
resolution. The multirate filter banks also allow for real time processing by

keeping the computational load relatively low (Goto, Music Scene Description,

2006, p. 332).

Goto starts with a 16kHz sampled audio signal, which is decimated in 4 steps to a
1kHz sampled signal. The decimation stage consists of a low pass filter with a cut
off frequency of 0.45 of the sampling frequency of that ‘branch’ of processing,
and then half down sampled. An STFT is then performed on each frequency

band. This process is shown in Figure 3-11.

Audio Signal | 16Khz .
' ] FFT 1.8-3.6KHz
== Decimator ﬁl 8KHz

[ 1 FFT 0.9-1.8KHz ’
Decimator [~ 4KH:

,' 0.45-0.9KHz I
. ’ FFT }——> 0-0.45KHz

Decimator 2KHz

Decimator

Figure 3-11 Goto implementation

The multirate filter as used by Goto is very similar in its construction and

resulting time-frequency plain as the Discrete Wavelet Transform.
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3.8 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a constant Q transform that uses
cascading pairs of high pass and low pass filters to decompose a signal to a time-

frequency spectrum.

A single level of DWT consists of the signal to be analysed being filtered through
a high pass and low pass filter simultaneously. A quadrature mirror filter is used
for this process, which splits the signal in to two bands where each filter is
subsampled by 2 at the output. (Mallat, 2009). This decomposition halves the
time resolution, but as each output has either the high frequency band or low
frequency band of the input signal, the frequency resolution has been doubled.

This process is repeated in a cascading formation (Figure 3-12).

—G@r-

Level 3

Level 2

Audio —>@ ‘@ > Level 1

Figure 3-12 DWT down-sampling

The resultant frequency spectrum is shown in Figure 3-13.
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Level 3 Level 2 Level 1

0 f/8 f/4 f/2 f

Figure 3-13 DWT frequency division

And the resultant time-frequency plane is shown in Figure 3-14.

<«— AMuanbaly ———»

< Time >

Figure 3-14 DWT plane diagram

Wavelet transforms differ from filter banks in that the half band filters always
create a true pyramid structure in the time-frequency plane, whereas filter banks
do not necessarily result in a pyramid structure (Humphrey, 2010). However, the
similarity between the DWT and the multirate filterbank decomposition as used

by Goto (Goto, Music Scene Description, 2006) is clear.

Wavelet analysis has been used for automatic music transcription and pitch
analysis as the constant Q properties are ideal (Yegnanarayana & Murty, 2009),
but it is not a popular choice in the fundamental frequency estimation discipline
of music transcription. Analysis of the submissions to Mirex 2010 show only one
competitor used the wavelet transform method for multipitch analysis (Yoshii &

Goto, 2010). A significant reason for the unpopularity of the DWT is the Q factors
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currently required for multiple fundamental frequency estimation can be
equivalent to up to 96 bands/bins per octave (Schorkhuber & Klapuri, 2010). To
create this resolution using a wavelet transform requires filtering the input
signal hundreds of times, thus making it highly inefficient and computationally
expensive, particularly compared to the, albeit non constant Q, but very fast and

efficient STFT (Schorkhuber & Klapuri, 2010).

3.9 Variable and Multiple Window STFT Representation

An alternative method to FFT filter based multiresolution analysis is the variable
and multiple window technique. The size of the analysis widow used in an FFT
directly affects the time-frequency resolution, so the adjusting in length and

combining these windows results in a non-linear time-frequency response.

The process as implemented by Anderson (Anderson, 1996) and later by Tyagi
and Bourland (Tyagi & Bourland, 2003) involves taking multiple sliding FFTs of
varying window lengths of the same input data. The long windowed high
frequency resolution FFT is used for low frequency analysis, the short
windowed, low frequency resolution used for high frequency analysis. The use of
multiple window sizes for multiresolution Fourier transforms was adopted by
Brown and Puckette as part of a constant Q transform (Brown & Puckette, 1992),
and Keren et al. also used varying window lengths in their low level processing

for transcribing piano music (Keren, Zeevi, & Chazan, 1998).

Godwin developed the idea of variable window lengths by implementing a

dynamically changing window length based upon the transient activity of the

85



signal, providing greater time resolution in areas of high energy activity

(Godwin, 1997).

Djurovic and Stankovic further developed an adaptive window for
multiresolution analysis by calculating the optimal window width for an STFT
reliant upon the Bias-Variance of the FFT and the Mean Square Error (MSE)

(Djurovic & Stankovic, 2003).

The MSE is a method of quantifying the difference between implied values
generated by an estimator (0*) and the actual values being estimated (0). The

MSE is calculated as:
MSE = Var(0 +) + Bias(8 +)*

Equation iii

Although the lack of bias of a system is attractive based on the above formula, if
the bias can be increased to minimize the variance in the system, then the error

rate can be reduced and accuracy improved.

In the context of the FFT for fundamental frequency estimation, the MSE of the
system is a measure of the FFT’s accuracy of measuring a frequency within an
audio signal (Djurovic & Stankovic, 2003). The variance of the system is the
probabilistic distribution of the frequencies within the signal (see section 5.1).
The optimal window width for the FFT is derived by Papoulis (Papoulis, 1977),
but cannot be used practically as the bias of the FFT relies on unknown

behaviors dependent on the input signal (Djurovic & Stankovic, 2003).
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Djurovic and Stankovic develop a method to calculate the optimal window width
that can be implemented based on the intersection of the confidence intervals
(ICI) rule (Djurovic & Stankovic, 2003), as introduced by Goldenshluger and

Nemirovski (Goldenshluger & Nemirovski, 1997).

Although the ICI is mathematically involved, Katkovnik et al. explain the rule in
the context of window sizes (Katkovnik, Egiazarian, & Shmulevich, 2001). For a
finite set of window sizes, the bias is proportional to the window size. A
confidence interval is calculated for the bias resulting from each window size,
forming a sequence of confidence intervals. Considering the sequence of
confidence intervals, there will be a common point of intersection of the
intervals, from which the optimal adaptive window is calculated (Katkovnik,

Egiazarian, & Shmulevich, 2001).

Djurovic and Stankovic include a probability parameter in the calculation of the
confidence interval sequence, which determines the algorithm accuracy. The
results of FFT analysis on a mixture of 3 sine waves show their optimised
adaptive window out performs the minimum static window and maximum static
window, generating stronger magnitudes in the FFT output with reduced noise

(Djurovic & Stankovic, 2003).

Duxbury et al. suggested variable window analysis to be a redundant technique
(Duxbury, Bello, Davies, & Sandler, A Comparison Between Fixed and
Multiresolution Analysis for Onset Detection in Musical Signals, 2004), but
research and methods are still being developed using variable windows.
Benaroya et al implemented a tri-window multiresolution FFT (MRFFT) as a
successful front end to a Bayesian high level process, improving results
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compared to a single window analysis (Benaroya, Blouet, Fevotte, & Cohen,
2006). Benaroya’s et al. method implements cascading FFTs of different window

lengths, each becoming shorter on each iteration.

Keren et al. Proposed a multi windowed FFT algorithm for polyphonic music
transcription which demonstrated the usefulness of varying the frequency
resolution to detect harmonics of piano notes (Keren, Zeevi, & Chazan, 1998)
However, the process was computationally demanding and impractical for most

real world applications.

Dressler described a very efficient implementation of a 4 windowed
multiresolution STFT (Dressler, 2006), which is used as a benchmark for other

FFT based multiresolution algorithms (Cancela, Rocamora, & Lopez, 2009).

3.10 Sinusoidal Extraction Using a Multiresolution FFT (MRFFT)

Dressler’'s MRFFT generates varying time and frequency resolutions by altering
the data frame size only, leaving the hop size and window length constant. Four
data lengths are used - 2048, 1024, 512 and 256 - all powers of 2 in length,
resulting in a four layer MRFFT, but zero padding is used to maintain a constant

window length of 2048.
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Figure 3-15 FFT data vs. window length

The time-frequency plane diagram of the MRFFT is dependent on sample rate
and window length so remains constant in Dressler’s implementation. However,
as Dressler points out, the time-frequency resolution of the transform is not
necessarily the time-frequency resolution of the resulting calculated as sample
rate/window size, but actually, the true resolution of the transform is calculated
as the sample rate/data size. This is discussed further in section 6.10. The sample
rate/data size time frequency plane diagram as generated by Dressler takes on a

familiar form (Figure 3-16)
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Figure 3-16 Dressler's plane diagram

As all transforms are the same length due to zero padding, the spectra of the 4
STFT windows can simply be summed. The magnitudes (resultant of the
constant window size) of the summed spectra are valid for peak picking at this

point, which demonstrates the simplicity of this process.

Wen and Sandler look to further improve the efficiency of MRFFT
implementations by optimising a radix-2 FFT for multiresolution calculations by
reducing the number of calculations required in the FFT decomposition by half

by reusing internal results (Wen & Sandler, 2007).
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Dresslers’ Mirex 2009 submission implemented the MRFFT as the low level
processing stage, and performed with the highest overall accuracy for the Audio

Melody Extraction test (Dressler, 2009).
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4 Peak Picking and Spectral Processing

This section introduces methods for extracting frequencies from the frequency

spectrum to present as note candidates to the high level processing.

Peak picking is the term given to the process of extracting the frequency
associated with a maxima from a spectra representation such as a spectrogram,
or more typically the output of a Fourier transform. Peak picking has an
important role to play in spectral analysis for audio as it aims to select only
peaks corresponding to genuine resonant components present in a signal

(Nunes, Esquef, & Biscainho, 2007).

4.1 Threshold Based Peak Picking

The most basic peak picking method is to set a static threshold, and when the
threshold is crossed by the magnitude of a frequency component, it is
determined to be a note candidate. Using sine waves it is possible to gain
acceptable results by using a very simple static threshold method, but in reality it

is ineffective when dealing with the spectral complexities of ‘real’ audio.

Collins implemented a basic peak picker imitating how a human would visually
‘peak pick’ by comparing peaks to their nearby ‘terrain’. Collins’ peak picker
scores the most salient peaks relative to their local ‘terrain’ - the current frame
and 3 analysis frames either side (Collins, 2005). The spectral energy in the 7
frames is normalized to be between 0 and 1 and is then analysed. An empirically
determined threshold of 0.34 is manually set to then extract any peaks. The

manual setting of the threshold is typical for this kind of application (Duxbury,
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Bello, Davies, & Sandler, Complex Domain Onset Detection for Musical Signals,

2003).

Duxbury et al however, do state that manual setting of thresholds is not
acceptable in all cases, for example a commercial product where the user should
not be expected to set a threshold for each source. Thresholds are therefore set
either globally, which is a computationally efficient method but more prone to
errors by missing candidates in quiet passages, or over detecting in louder
passages of music, or thresholds can be set locally by analyzing the spectral
content on a frame by frame method to dynamically adjust the threshold. This,

according to Duxbury et al is essential for effective onset detection.

Various methods of analyzing the frame content to determine the local threshold
are used in peak picking algorithms (Nunes, Esquef, & Biscainho, 2007) but by its
nature peak picking is prone to errors (Kumar, Jakhanwal, Bhowmick, &
Chandra, 2011) and not robust enough to act as the only method to extract note
candidates from a spectral analysis. The errors are due to threshold peak pickers
relying solely on magnitude information, thus neglecting the detection of events
without a strong energy increase e.g. low notes, transitions between
harmonically related notes or onsets played by bowed instruments and due to
the energy in the frequency domain attributed to features other than
fundamental frequencies (Bello, Daudet, Abdallah, Duxbury, Davies, & Sandler,

2005), hence the need for further processing.
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4.1.1 Phase Based Peak Pickers

Keiler and Marchand (Keiler & Marchand, 2002) suggest peak picking algorithms
that also consider the phase of the signal are more accurate. By using phase
changes in the spectral information, peak pickers can increase their accuracy of
detecting low and high frequency tone changes regardless of their intensity.
However, this approach is still not wholly robust as variations by the phases of
noisy low energy spectra, and from phase distortions common in commercial
post production effects and processes can cause errors (Bello, Daudet, Abdallah,

Duxbury, Davies, & Sandler, 2005).

Betser et al. further discuss phase based frequency estimators for short time
Fourier transforms, grouping algorithms in to 3 main types (Betser, Collen,
Bertrand, & Gael, 2006) - Arccos estimator (Lagrange, 2004), Long Term Phase
Vocoder (Puckette & Brown, 1998) and the Short Term Phase Vocoder (Flanagan

& Golden, 1966) as used by Dressler (Dressler, 2006)

The accuracy of the peak picking algorithm can be improved by processing and

enhancing the spectral information generated by the time-frequency transform.

4.2 Spectral Processing

The following section introduces some methods for processing the spectral
results of a time to frequency transform to help improve the performance of a
peak picking algorithm. These processing techniques aim to improve the ‘quality’
of the spectral representation by presenting ‘strong’, accurate spectral peaks to

the peak picking algorithm.
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4.2.1 Spectral autocorrelation

Autocorrelation can be used in the frequency domain as well as the time domain
(discussed in 2.3) but suffers from the same limitations for multiple fundamental
frequency estimation (Lahat, Niederjohn, & Krubsack, 1987). Spectral
autocorrelation is the comparison of the spectrogram of a section of an audio
signal with a spectrogram of an adjacent section. Frequency magnitudes
reinforced by the addition of adjacent frame information are presented as
‘stronger’ note candidates. Although found to be quite accurate on single
fundamental frequency estimation (Cheveigne & Kawahara, Comparative
Evaluation of FO Estimation Algorithms, 2001), spectral autocorrelation is not

robust enough for the complexity of multiple fundamental frequency estimation

(Klapuri, 2006b).

4.2.2 Spectral Compression

Harris developed early work on the identifying of fundamental frequencies
based upon measuring the frequency intervals between potential harmonics
(Harris & Weiss, 1963). Schroeder further developed this work by transposing
spectral transients to lower frequencies to enhance potential fundamental
frequencies (Schroeder, 1968). Spectral compression is used to generate the
Schroeder histogram, which counts equally the contribution of each spectral
peak to the related FOs that are common divisors of its frequency. Schroeder

assigned the magnitude of higher frequency components to harmonically
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matching hypothetical fundamental frequencies on the spectrum This process
focuses the energy of higher partials on distinct peaks, and the maximal peak
determines the related FO (Yeh, 2008, p. 12). Although this process is not robust
against noise in the spectrum, Szczerba and Czyzewski successfully combined in
part this method with prior music knowledge to help reduce errors made in

pitch estimation (Szczerba & Czyzewski, 2005).

Klapuri developed the idea of spectral compression to create a computationally
efficient fundamental frequency estimator for polyphonic music (Klapuri,
2006a). Klapuri’s algorithm calculates the strength of a fundamental frequency
candidate in the output of a Fourier transform as a weighted sum of the
amplitudes of its harmonic partials. The accuracy of the system is improved
through ‘training’ the algorithm with test data to increase accuracy when
identifying harmonics, and also by a simple method of cancelling a confirmed
fundamental frequency and associated harmonics from the mixture, thus
simplifying the spectrum for further analysis. The utilisation of the information
provided by the presence of partials in a polyphonic mixture is directly related to

Harris’s early work on spectral peak interspacing.

4.2.3 Harmonic Matching

Harmonic matching is the process of matching a known harmonic spectral
pattern to an observed spectrum. This is performed by using either a specific
spectral model or by a harmonic comb, which is a series of spectral pulses with

equal spacing defined by a hypothetical fundamental frequency (Yeh, 2008). The
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purpose of the harmonic comb is to emphasize the energy in the observed
spectrum at the expected ideal harmonic locations, thus making any harmonic

energy clearer in the associated spectrogram.

Rao and Rao’s submission to MIREX 2008 successfully developed the harmonic
matching theory and used a ‘two way mismatch’ method (Rao & Rao, 2008). Two
way mismatch minimizes a spectral mismatch error that is the result of a
particular combination of energy at the partial and it’s frequency deviation from
the ideal harmonic location. Rao & Rao’s algorithm, which uses an FFT for its
low level processing, is particularly robust for sparse but strong harmonic
interference in comparisons to other harmonic matching pitch detection

algorithms. (Rao & Rao, 2008).

4.2.4 Spectral Tilt Compensation

Audio will typical exhibit a spectral pattern whose energy decreases with

frequency (Grey & Gordon, 1978) and as a result low energy peaks in the high

frequency range, which may actually correspond to a note, may be discarded

(Nunes, Esquef, & Biscainho, 2007) (Figure 4-1)
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Figure 4-1 Spectral pattern with decreasing energy
Image from (Nunes, Esquef, & Biscainho, 2007, p. 3)
Nunes et al. evaluate methods of adjusting the spectral information to

compensate for the changes in partial maxima based upon their frequency -

Spectral Tilt Compensation.

In simplistic terms, a spectral tilt estimator calculates as accurately as possible
the spectral profile of the signal and uses this to adjust the spectrum so a

constant threshold can be used (Figure 4-2).
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Figure 4-2 A comparison between the non tilted and tilted spectra

Image from (Nunes, Esquef, & Biscainho, 2007, p. 5)

One method suggested by Nunes to accomplish this is ‘Stochastic Spectrum
Estimation’ (SSE), as introduced by Laurenti, Poli and Montagner (Laurenti, Poli,
& Montagner, 2007). Laurenti et al are primarily concerned with modeling
musical sounds and therefore separating the sinusoids, transients and noise that
are the components of a musical instrument. To separate the ‘noise’ components
Laurenti et al estimate the spectral envelope by calculating the energy of the

signal in the frequency domain over successive sliding windows.

The magnitude output of a DFT of the signal is passed through a filter to remove
any null magnitude samples. The reciprocal of this filtered spectrum is calculated
and then smoothed. The estimated envelope is then calculated as being the

reciprocal of the smoothed signal (Figure 4-3).
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Figure 4-3 Diagram of the stochastic spectrum estimation method

In Nune’s test system, the performance of the peak picker working on the SSE
spectral tilted audio worked to an 88.5% success rate, compared to a 38.2%
success rate for the same peak picker working on non processed spectral
information. Although these results only relate to spectral tilt processing, it does
demonstrate the significant improvement to peak picking performance spectral

processing can make.

The output of a peak picking algorithm is a series of note candidates, which are
presented to the high level processes to process. Although the scope of this thesis
does not allow detailed discussion of high level processes, it is good to be aware
of some of the more commonly used techniques used to put into context the low

level processing discussed later.
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5 High Level Processing Summary

The purpose of the high level processing in multiple fundamental frequency
estimation systems is to survey the hypothetical notes presented by the low level
processing and prune as accurately as possible the note candidates presented in

error from those which are correct.

The following is an introduction to some of the common high level concepts and

processes implemented in multiple fundamental frequency estimation systems.

5.1 Probability Density Function

High level processes often rely on prior information to determine the likelihood
of an event occurring. The ‘events’ in FO estimation will normally be note pitches
and/or note intervals. The probability of these events occurring is characterized

by the probability distribution selected for the algorithm (Roads, 1996, p. 896).

Probability density functions provide the prior distribution information for
Bayesian statistical methods (Davy, An Introduction to Signal Processing, 2006a,

p. 40)

5.2 The Bayesian Model

Rules of scales, pitches, intervals and harmonics etc. can be used to help
understand, and extract information from a complex waveform (Davy, 2006b, p.

205).
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As Davey explains “This structure of tonal music can be utilised to build a Bayesian
model, which is a mathematical model embedded into a probabilistic framework

that leads to the simplest model that explains a waveform” (Davy, 2006b, p. 205).

A Bayesian network is a graphical interpretation of probability that represents a
series of random variables and their inter-dependency. The nodes of a Bayesian
network correspond to random variables, such as note candidates, and the links
between the nodes encode probabilistic dependencies between the
corresponding random variables (Kashino, 2006, p. 313) i.e. the probability a
note transition will occur based upon prior distribution. The direction of the
arrow denotes the direction of probabilistic dependency from the origin of the

arrow (the ‘parent’), to the end point (the ‘child’).

Figure 5-1 Bayesian nodes

In Figure 5-1the node labeled A is the parent to the child nodes labeled ‘B’ and
‘C’. The arrows connecting the child nodes to the parent represent the

probability of the variable B or C occurring when the current observed state is A.

Kashino implements a Bayesian network for music transcription in his Organised

Processing Towar