
University of Huddersfield Repository

Kalman, Tamas, Farzaneh, Masoud, Kollar, László E., McClure, Ghyslaine and Leblond, Andre

Dynamic behavior of iced overhead cables subjected to mechanical shocks

Original Citation

Kalman, Tamas, Farzaneh, Masoud, Kollar, László E., McClure, Ghyslaine and Leblond, Andre 
(2005) Dynamic behavior of iced overhead cables subjected to mechanical shocks. In: 6th 
International Symposium on Cable Dynamics, 2005, Charleston, South Carolina, USA. 
(Unpublished) 

This version is available at http://eprints.hud.ac.uk/id/eprint/17738/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



DYNAMIC  BEHAVIOR  OF  ICED  OVERHEAD  CABLES  

SUBJECTED  TO  MECHANICAL  SHOCKS 

 

Tamás Kálmán, Masoud Farzaneh and László E. Kollár 
CIGELE / INGIVRE,  Université du Québec à Chicoutimi, Québec, Canada 

tkalman@uqac.ca, mfarzaneh@uqac.ca, lkollar@uqac.ca 
 

Ghyslaine McClure 
Civil Engineering and Applied Mechanics, McGill University, Québec, Canada 

ghyslaine.mcclure@mcgill.ca 
 

André Leblond 
Hydro–Québec, TransÉnergie, Québec, Canada 

leblond.andre.2@hydro.qc.ca 
 
 

Abstract 

 

A numerical model using nonlinear finite element analysis is proposed to calculate the dynamic effects 

of ice shedding induced by a pulse-type excitation on a single-span overhead line section. The 

excitation simulates the effect of an external load intended to remove the accreted ice from the cable; 

it can also simulate an accidental load due to impact or component breakage. Several ice-shedding 

scenarios are studied with variables including ice thickness, line parameters such as span length, 

cable tension, and pulse-load characteristics. This model serves as a basis to study various failure 

criteria of atmospheric glaze ice in terms of stress-strain relations and strain-rate effects. The failure 

criteria defined for glaze ice incorporate both axial and bending effects. 

 
 
INTRODUCTION 

 
The main loads applied to transmission line structures come from the cables they support. In cold 
regions prone to atmospheric icing, overhead transmission lines are among the most vulnerable 
structures as they may collect ice from storms of large footprint. It is well known that ice deposits on 
cables can be the source of several mechanical problems. 
 

Numerical modeling of ice shedding on overhead transmission lines 

 
The dynamic analysis of transmission lines subjected to shock loads is complex. Such shock loads 
may result from the effect of an external load intended to remove accreted ice from the cable. More 
generally, they can also be caused by accidental loads due to impact or component breakage. In most 
previous studies of ice shedding from lines [1-3], the line response to instantaneous shedding was 
modeled, whereas in this research, the failure propagation of the ice deposit along the span is studied. 
Combining the two approaches would provide a powerful simulation tool for several practical 
industrial applications for ice accretion mitigation on overhead lines. 

Small-scale experiments and finite element modeling were performed to study the effect of ice 
shedding on overhead lines by Jamaleddine et al. [1]. In this study, ice shedding was simulated 
experimentally by the sudden drop of dead weights, and a nonlinear dynamic finite element model 
was developed using ADINA [14]. Comparison of the experimental and numerical results confirmed 
the modeling capabilities of both static and dynamic analyses.  

Following Jamaleddine's work, a numerical study of a two-span line section response to 
instantaneous shedding was undertaken by Roshan Fekr and McClure [2]. A total of 21 ice-shedding 
scenarios were studied with variables including: ice thickness, span length, difference in elevation 



between end and suspension points, number of spans per line section, presence of unequal spans and 
partial ice shedding on sub-spans. The numerical simulations were also carried out using ADINA.  
 
Mechanical properties of glaze ice 

 
Atmospheric icing may take place at temperatures between -10 and 0°C or, sometimes, at lower 
temperatures under particular conditions. The occurrence, severity, and type of atmospheric icing 
depend very much on temperature, wind speed, total water content of the air, and water droplet 
dimensions. The types of atmospheric ice accreted on transmission lines that are of important 
mechanical concern are heavy adherent wet snow, large but lightweight rime ice, and dense glaze ice 
[6, 11]. 

Ice is a very complex material. Its mechanical properties depend among other things on crystal 
structure, temperature, presence of impurities, and type and rate of loading. In short-term loading, ice 
behaves elastically and fails in a brittle manner. If the loading rate is low (below 10-3 s-1), creep and 
plastic failure predominate [6]. In this study, the properties of ice associated with short-term loading 
are assumed to prevail. 

In the case of mechanically-induced ice breaking by shock loads, the main properties that govern 
the failure of accreted ice on cables relate to the tensional (axial) and flexural rigidities of the iced 
section. On the basis of observations and numerical simulations, the authors suggest that the flexural 
properties of the ice deposit are mainly responsible for the mechanical ice-shedding phenomenon. 
However, information about the mechanical properties of dense glaze ice under high strain rate (above 
10-3 s-1) is lacking.   

Ice in tension behaves in a brittle manner at much lower strain rate than in compression [6-9]. 
Investigations of the brittle failure of polycrystalline fresh-water ice by Schulson [7] indicate that ice 
generally exhibits negligible tensile ductility. The tensile strength of fresh water ice appears to 
decrease with increasing grain size and to be independent of strain rate, and only slightly dependent 
on temperature. Under compression, fresh water ice exhibits brittle behavior only at high strain rates: 
the strength decreases with increasing temperature, strain rate and grain size. Characterization of the 
flexural properties of fine-grained fresh-water ice at low deformation rates [12] indicates that the 
flexural strength is not a function of the loading rate. However, it is believed that the flexural strength 
of ice at high deformation rates is rate-dependent. 

Despite much research effort in the last few decades, information about the mechanical properties 
of atmospheric ice in natural conditions is still lacking. However, both the analysis of ice samples 
collected by Laforte et al. [10] from transmission lines after significant ice storms, and the 
experiments of Druez et al. [9] on the ductile-brittle transition of laboratory glaze ice under 
compression, indicate that the mechanical properties of fine-grained fresh-water ice are a reasonable 
assumption for this study.  
 
 
GENERAL NUMERICAL APPROACH 

 
As in previous numerical studies [1, 2], ADINA [14] is used here to simulate the dynamic effects of 
ice shedding induced by a pulse-type excitation on a level single-span line section. A total of 27 ice- 
shedding scenarios are studied with variables including ice thickness, line parameters such as span 
length, cable tension and pulse-load characteristics. The flexibility of the towers and their foundations 
is not modeled and the cable ends are assumed rigidly fixed.  
 
Cable modeling 

 
The cable is assumed to be perfectly flexible in bending and torsion; therefore it is modeled with 2-D 
two-node isoparametric truss elements using a total Lagrangian formulation with large displacement 



kinematics but small strains [14, 15]. Each cable element has four degrees-of-freedom corresponding 
to the horizontal and vertical translations at each end. The cable material properties are patterned as if 
it was made of elastic material reacting to tension only therefore allowing slackening whenever the 
cable loses its prestressing force. For each 0.2 m long element, an initial strain value is prescribed as 
calculated from a preliminary static analysis for an axially rigid catenary under its self-weight. The 
finite element mesh selection is based on dynamic considerations discussed below. 
 
Accreted ice modeling 

 
Accreted ice on the cable is modeled as a separate nonlinear 2-D two-node plane stress iso-beam 
element in parallel to each cable element. For the plane stress element, it is assumed that the out-of-
plane stress is equal to zero. Using the 2-D beam option instead of the general 3-D beam reduces the 
computational effort considerably for this simple single-span model [14]. Each iso-beam element has 
six degrees-of-freedom corresponding to the horizontal and vertical translations and the in-plane 
rotation. Since only rectangular cross sections can be considered for the materially nonlinear iso-beam 
element in ADINA, the cross-sectional parameters of the beam ice deposit are specified to yield a 
bending stiffness equivalent to the idealized shape of accreted ice. In order to avoid spurious stiffening 
of the system caused by fixed rotational boundary conditions at the supports, iso-beam elements are 
omitted just next to the support nodes.  
 
Damping  

 
Aerodynamic damping is neglected and only structural damping of the iced cable is considered. 
Therefore, damping is modeled by using a non-linear axial dashpot element in parallel to each cable 
element [14]. The selection of the damping constant is discussed in more details by Roshan Fekr et al. 
[2] and McClure and Lapointe [4]. In this study the damping constant is set to represent an equivalent 
viscous damping of 2.6% critical. Besides this viscous structural damping, algorithmic (numerical) 
damping is introduced to filter out spurious high frequencies of the response due to finite element 
discretization. Numerical damping is introduced with the Newmark-  integration operator with 
parameters  = 0.55 and  = 0.3 relying on previous work [5].   
 
Static equilibrium 

 
In order to avoid the stiffening effect of the flexural rigidity of the ice iso-beam on the initial static 
profile, the deformed cable profile is calculated beforehand using an increased density cable model as 
in previous studies [1, 2 and 4]. This deflected static profile serves as the initial profile of the ice-cable 
composite model where the cable element is initially prestressed by setting the initial strain to the 
value obtained from static analysis of the increased density cable model.  
 
Dynamic analysis 

 
A Restart option is available in ADINA to start the dynamic analysis from the initial static equilibrium 
profile obtained for the iced cable. Static analysis is completed in 5 load increments so that dynamic 
analysis is started at time t = 5. The pulse-type excitation is defined as a concentrated vertical upward 
force applied at the mid span joint. It is a triangular pulse (the magnitude is varied) of 3 ms duration. 
The load is activated at time t = 5  for 10 time steps of 0.3 ms. The selection of the time step and the 
mesh size is such as to provide adequate sampling of the shock wave as it travels through the cable 
finite element mesh [5]. A lumped mass formulation is used throughout. As previously indicated, the 
Newmark-  direct implicit integration method is used to solve the equilibrium equations, with the full 
Newton-Raphson iteration method for stiffness updates [14, 15].  
 



Ice failure modeling 

 
Ice failure and subsequent shedding or detachment is modeled using the "element death upon rupture” 
option available in ADINA. For the ice (iso-beam) element with plastic bilinear material model, the 
element death option is automatically activated when the rupture criterion is fulfilled at any 
integration point of the element. The element is then considered as “dead” for the remainder of the 
analysis and its mass and stiffness contributions are removed from the model [14]. The ice material 
model is defined in ADINA by setting the Young’s modulus to 10 GPa, the Poisson’s ratio to 0.33, the 
initial yield stress to 2 MPa, and the maximum allowable effective plastic strain to 10-10.   
 
 
RESULTS 

 
Eigenvalue analysis 

 
Several natural frequencies and mode shape analyses were conducted on various iced span models to 
validate and adjust the parameters of the mesh and investigate alternate modeling approaches. In all 
cases, the cable was modeled with the prestressed truss elements while the ice deposit was represented 
by either the increased-density truss element, the Hermitian beam element or the iso-beam element, 
respectively. The calculated mode shapes and corresponding natural frequencies were identical in all 
models and comparable to those obtained from Irvine’s theory [13]. These investigations proved the 
applicability of modeling the ice deposit with the iso-beam element hence the further applicability of 
the newly developed iced cable model for ice-shedding simulations.  
 
Transient dynamic analysis 

 
Results of one case with parameters summarized in Table 1 are presented in some details to illustrate 
the calculated dynamic response of iced cables subjected to mechanical shocks. The axial response in 
both the cable and the ice deposit, as well as the flexural response of the ice deposit, are monitored. In 
this case, ice is modeled as a linear isotropic material to avoid its rupture so that the dynamic response 
of the fully iced cable can be examined. Figure 1 displays vertical displacement and cable tension 
histories at various points. Figure 2 shows both axial and bending effects of the shock load on the ice 
deposit. Amplitude of the shock point load is set to 30 kN at this stage of analysis.  

The shock point load applied to the cable at mid span generates transverse waves that propagate 
along the span, causing significant bending of the ice deposit at high deformation speed. The wave 
propagation can be seen in Figures 1a and 1b where the vertical displacement of the iced cable is 
shown both at the mid span excitation point and close to the support. The mid span displacement (Fig. 
1a) is clearly dominated by low frequency oscillations combined with smaller amplitude higher 
frequency content. The latter is more pronounced for vertical displacements near the fixed support 
(Fig. 1b). As expected, the shock load generates additional cable tension and the frequency content of 
the signature is higher than for transverse displacements. Cable tensions at the excitation point do not 
exceed those at the support when ice detachment is not considered (Figs. 1c and 1d). However, the 
converse is observed in the transient phase when ice failure and shedding is modeled (Fig. 3d). 

The numerically-generated high frequency content of the response is partly filtered out by the 
numerical integration operator. However, high frequency oscillations are still present, which 
correspond to the fundamental longitudinal vibration of the iced cable (evaluated at 4 Hz). 

The time histories presented in Figure 2 show that both the axial and bending deformation rates 
calculated are high enough to assume ice mechanical properties at high strain rate. However, as 
expected, bending effects in the ice deposit are more significant than axial effects and should govern 
the failure. Bending strain rates and corresponding stresses and strains in the ice deposit (Figs. 2d, e 
and f) are high enough to expect ice failure in a brittle manner. 
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Table 1. Parameters of the case study 
 
 
 
 
 
 
 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ice shedding scenarios 

 
A total of 27 ice shedding scenarios are studied with variables including: ice thickness (10mm, 25mm 
and 38mm), line parameters such as span length (100m, 200m and 300m), cable tension and pulse-
load characteristics. Different pulse-load characteristics are represented by the variation of load 
amplitude (30kN, 45kN and 60kN) while the pulse duration is kept constant at 3 ms. For all cases the 
static catenary profile and the iced static profile are calculated (Table 2). A summary of the results is 
presented in Table 3, which lists the rate of ice shedding (R.I.S.), i.e. the fraction of the ice shed in the 
span, the maximum cable tension at the excitation point (M.T.) and at the support (M.T.S.) as well as 
the maximum cable jump. Zero displacement refers to the fully iced cable configuration. Figure 3 
presents selected time histories of vertical cable jumps at mid span and cable tensions, for the case 
where 20% of the ice sheds (Figs. 3 a, b and d) and for 100% shedding (Fig. 3c).   

Model results indicate that a sudden load with amplitude of 30kN is sufficient to fully remove thin 
(10mm) accreted ice on a 300m span. The larger the ice thickness and span length are, the larger is the 
amplitude of the shock load necessary to shed the ice. However, in this numerical study, a load of 
60kN generated additional tension in the cable at the excitation point that exceeded the rated tensile 
strength of the cable, which is unrealistic. Therefore, to avoid damaging the cable, it may be necessary 
to apply successive lower amplitude shock loads at a given point along the span or at two or more 
points. To verify this scenario, a hypothetical example was simulated for a 300m span with 38mm 

Line parameter  Conductor parameter  
  Span length (m) 300   Name CONDOR 
  Difference in elevation (m) 0   Type ACSR 54/7 
  Initial sag-span ratio (%) 5   Overall diameter (mm) 27.762 
Ice parameter    Total cross sectional area (mm2) 455.03 
  Type Glaze   Modulus of elasticity (GPa) 68.95 
  Density (kg/m3) 900   Mass per unit length (kg/m) 1.5239 
  Radial ice thickness (mm) 25   Rated tensile strength (kN) 125.44 

Figure 1. Dynamic response of an iced cable subjected to a shock load 

a) Vertical displacement of the iced cable at 
mid span (excitation point) 

b) Vertical displacement of the iced cable at 
1.5m from the support 

c) Cable tension at the support d) Cable tension at mid span (excitation point)
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radial ice thickness using two synchronous shock loads with amplitude of 45kN located at about one 
quarter span length from both supports. The results have confirmed that this approach may be safe and 
effective: the ice shedding percentage increased from 15% (with one shock load at mid span) to about 
40% without reaching the load limit of the cable and/or the structure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Static cable tensions and sags 

 

Catenary state Iced span 
Span (m) 

Radial ice thickness 
(mm) Tension (kN) Max. sag (m) Tension (kN) Max. sag (m) 

10 3.81 5.017 6.44 5.049 
25 3.81 5.017 12.87 5.125 100 
38 3.81 5.017 20.69 5.215 
10 7.62 10.036 12.81 10.159 
25 7.62 10.036 25.27 10.449 200 
38 7.62 10.036 40.09 10.783 
10 11.43 15.053 19.10 15.328 
25 11.43 15.053 37.26 15.953 300 
38 11.43 15.053 58.47 16.652 

10
-5

 
10

-2
 

a) Axial strain in the ice deposit at mid span 
(excitation point) 

b) Axial strain rate in the ice deposit  
at mid span (excitation point) 

c) Axial stress in the ice deposit at mid span 
(excitation point) 

10
-4

 

d) Bending strain in the ice deposit at an 
arbitrary section (not at excitation point) 

e) Bending strain rate in the ice deposit at an 
arbitrary section (not at excitation point) 

f) Bending stress in the ice deposit at an 
arbitrary section (not at excitation point) 

Figure 2. Axial and bending effects in the ice deposit under shock load 
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Table 3. Ice shedding scenarios 
 

Radial ice thickness 
10 mm (1.07 kg/m) 25 mm (3.73 kg/m) 38 mm  (7.07 kg/m) 

Span 

(m) 
Load 

(kN) 
R.I.S M.T. M.T.S M.D. R.I.S. M.T. M.T.S M.D R.I.S. M.T. M.T.S M.D. 

30 100 76.36 65.18 0.71 70 67.28 29.98 0.54 20 58.84 42.78 0.16 
45 100 105.9 99.48 0.87 100 93.30 27.78 0.68 70 92.43 42.75 0.41 100 
60 100 142.0 142.0 1.21 100 130.63 32.58 0.68 95 114.5 40.88 0.65 
30 100 77.78 23.28 0.49 15 73.06 36.06 0.40 10 69.99 56.78 0.22 
45 100 107.0 64.80 0.75 50 98.77 40.72 0.68 15 97.18 57.01 0.35 200 
60 100 133.6 59.50 0.99 100 134.3 38.21 0.90 20 122.9 57.69 0.75 
30 100 76.62 29.12 0.48 20 78.89 49.08 0.42 10 83.94 76.38 0.12 
45 100 102.6 45.52 0.68 25 104.8 51.96 0.87 15 107.5 72.42 0.37 300 
60 100 131.8 57.19 0.80 100 138.3 54.12 1.11 40 132.5 70.53 0.55 

 

R.I.S. - Rate of ice shedding (%)   M.T. - Maximum cable tension (at excitation point) (kN) 
M.T.S. - Maximum cable tension at support (kN)  M.D. - Maximum mid span displacement (m) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

The finite element model presented can serve as a basis to study various failure criteria of atmospheric 
glaze ice in terms of stress-strain relations, and strain-rate effects. Further refinements of the failure 
criteria of atmospheric ice can be integrated to this model as they become available. Various line 
section geometries can also be easily investigated using the model. However, experimental validation 
of the model results in real scale is paramount. 
 
This study has shown that it is feasible to model the effects of ice shedding induced by a shock load 
on single-span overhead transmission cables. To our knowledge, this is the first time such a numerical 

a) Vertical displacement at mid span due to 
shock load causing 20% ice shedding 

(span: 300m; ice thickness: 25mm; load: 30kN)

b) Cable tension at the support due to shock 
load causing 20% ice shedding 

(span: 300m; ice thickness: 25mm; load: 30kN)

d) Cable tension at mid span due to shock load 
causing 20% ice shedding 

(span: 300m; ice thickness: 25mm; load: 30kN)

c) Vertical displacement at mid span due to 
shock load causing 100% ice shedding 

(span: 100m; ice thickness: 25mm; load: 45kN)

Figure 3. Transient dynamic response of cable to shock load inducing ice shedding 



model is presented where the rupture of the ice deposit is explicitly considered. We envision that 
similar models will provide a powerful simulation tool to assist in the management of mitigation for 
atmospheric icing on lines. 
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