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 � � �  � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � 1 � � � � � � � � � � � � � � �� � � � � � � �
The thermal structure of an experimentally modeled ice accretion with a water film in an 

icing wind tunnel is investigated here at both inner and outer interfaces using non-

destructive remote sensing techniques and traditional thermometry. The water film 

developing into rivulets was produced by spraying of an aerosol flow from a single 

water-dispersing nozzle cloud onto the iced bottom of a thermally insulated channel.  The 

water film was then driven by a concurrent air flow at negative temperatures. The shear-

driven water film thus created was thereby forced to freeze from below due to convection 

and evaporation from its surface. Heat conduction lengthwise along the bottom of the 

channel and perpendicular to it was controlled by measuring the outer surface of the 

bottom of the channel at several sites. The surface temperature of the flowing water film 

developing into rivulets, as measured by infrared camera, was found to be negative 

throughout all the experiments.  � � � �  ! " � � �  �
A number of atmospheric icing models incorporate, in different ways, the concept of a 
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thin water film which appears and starts flowing when there is an excess of incoming 

supercooled water onto an icing surface. The precise dynamics of this film, however, and 

its thermodynamic properties, are still not known clearly. From the time of the first 

introduction of the concept of a water film on the surface of growing atmospheric ice 

(Schumann, 1938) and the subsequent introduction of the freezing fraction concept 

(Messinger, 1953) up to and including late eighties, it was thought that the temperature of 

this water film should be equal to the equilibrium temperature between the water and ice, 

or water fusion temperature # m=273.15 K. Thus, all atmospheric icing models originating 

from forties onward were based entirely on the heat balance calculation of an icing 

surface, where the temperature of water fusion was taken as the reference point, 

distinguishing the solid from the liquid states of water. A series of experiments with 

artificial hailstones grown in laboratory simulations of natural conditions (List et al., 

1989; Greenan and List, 1995) confirmed that the temperature of the water film on an 

icing surface in the wet mode is always below 0 
o
C. Yet over 30 years earlier, there was 

only one theoretical model, proposed by Kachurin (1962), which predicted supercooling 

of icing surfaces in both icing modes: with and without a water film. This icing model, 

initially developed for aircraft icing and then applied to the problem of icing of non-

rotating cylinders (Kachurin et al., 1974), was based on the dynamics of a supercooled 

water film flowing over an icing surface and incorporating a Couette shear layer as well 

as the concept of eddy diffusivity in a flowing water film. Because Kachurin’s work was 

largely unknown in the West, classical run-back icing models, such as the one proposed 

by Lozowski et al. (1979), continued to adopt the heat balance calculation of an icing 

surface, and parallel attempts were made to understand and explain theoretically the 

recorded water supercooling by introducing concept of non-isotropic heat transfer (List, 

1990). Simultaneously, Kachurin’s idea was successfully applied for computing hailstone 

growth processes and for explaining experimentally observed supercooling (Gvelisiani, 

1968; Karev, 1993). Recently, the experimental data freshly obtained from the parallel 

fields of thin water film flow gave new birth to the initial idea and made it possible to 

specify its applicability to the icing processes (Karev et al., 2003a and 2003b). Moreover, 

a parallel was drawn between the hailstone growth and atmospheric icing processes by 

recording experimentally the supercooling at the surface of a water-film flowing on icing 

cylinder (Karev and Farzaneh, 2003). This investigation is an attempt to record water 

film supercooling by experimentally modeling a Couette shear water layer in plane, 
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which flows on an ice surface at the bottom of a channel and freezes from below. Such an 

experimental configuration is of scientific interest primarily because of its similarity to all 

natural icing processes involving the appearance and flow of an aerosol-created water 

film on an ice surface.  The simplifications carried out in relation to the natural icing 

problem consist in: (i) altering the collection efficiency by applying the corresponding 

coefficient of the settling of supercooled aerosol particles; (ii) making the shear stress 

constant lengthwise along the ice-covered bottom of a channel; and, (iii) eliminating the 

streamwise air pressure gradient. To avoid any inadvertent influence on the ice accretion 

process, a non-destructive remote sensing technique was applied using an infrared (IR) 

camera. � $ %  � % � � � � � � � � 
 & �  " � ! �  � � � � % � � " � % � % � � �
In our previous studies on atmospheric ice formation on horizontal cylinders (Karev and 

Farzaneh, 2003), industrial IR pyrometers were used as detectors of electromagnetic 

waves emitted from the surface under investigation. Such instrumentation, as shown by 

the results of these studies, is hypersensitive to a number of ambient and geometrical 

parameters, and mainly to ambient temperature changes. Moreover, calibration 

adjustment must be made ' ( ) * (  to taking the measurements by comparing real 

temperatures, as measured by a reliable instrument such as a thermocouple, with the 

readout from the IR instrument. The uncertainties in measuring resulted even with 2 
o
C 

errors obtained by using IR pyrometers do not exist for FLIR IR camera SC-2000, for 

which all ambient conditions, including local emissivity of investigated surfaces, may be 

adjusted after the IR pictures were taken. The camera covers a 7 to 13 m spectral range 

in the long wavelength infrared (LWIR) band which corresponds approximately to an 8 

to 14 m atmospheric window, thus the influence of air humidity, having also been 

selected between adjustable ambient parameters, is minimal. The seeming problem of 

angular variation of the IR emissivity of ice and water surfaces in the LWIR band (Rees 

and James, 1992) may be solved in a simple manner by the adjustment of local emissivity 

according to the angle of observation using tabulated values of emissivity for different 

angles. We refer readers to our previous investigation (Karev and Farzaneh, 2003) for an 

in-depth discussion of all problems arising during the IR measurement of the ice surface 

temperatures. A greater part of these problems were solved for this particular IR camera.  
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% + , % � � � % � � � � � % � - " ,
The experiments were carried out at the CIGELE atmospheric icing research wind tunnel 

which is a horizontal closed-loop low-speed wind tunnel with a total length of about 30m, 

including a 3-m long test section with a rectangular cross-section 0.46m high and 91.5m 

wide. Ice was prepared in long narrow open channels prior to each run of experiments. 

Two different channels were used for this purpose. One was longer than the other with a 

length of 1.22 m, a width of 6.7
.
10

-2
 m, and a wall height of 2.5

.
10

-2
 m. The length of the 

second one was 0.91 m, its width was 7.8
.
10

-2
 m and its wall height was 7.6 cm, making 

it possible to deposit thicker ice in it. The channel was placed in the middle of the test 

section of the wind tunnel 0.12 m downstream of the water supply. This distance was 

chosen so that the aerosol cloud might reach the edge of the channel and cover it by half 

of the cross-section. Water was provided by a single water-dispersing nozzle mounted on 

an aluminum rake that was fixed to the top of the wind tunnel. The temperature of the ice 

was measured by six T Type thermocouples that were installed right below the surface of 

the ice and at the bottom of the channel at three different stations, 0.5 cm, 15 cm and 30 

cm behind the leading edge of the channel. During the experiments, additional ice 

accumulated on the surface of the prepared ice, thus the thermocouples no longer 

provided the exact temperature of the ice surface, which is why a FLIR SC-2000 IR 

camera was applied in order to measure the temperature of the water layer flowing on the 

surface of the ice. The infrared camera was placed 60 cm downstream the leading edge of 

the channel in a box installed on the top of the wind tunnel. This box might be turned 

such that the angle of camera to the horizontal direction was 45 degrees, and thus, the 

entire channel became visible in the camera. Three experiments were performed 

involving different air velocities, =10 ms1./ -1
, =20 ms2./ -1

 and =30 ms3./ -1
, while the 

following parameters were kept constant: temperature of ambient air, , 

temperature of supplied water, , and water flow rate, . 

The longer channel was used for the experiments where the air velocity was 10 m/s and 

20 m/s, while the shorter one was applied for the case of 30 ms

01 2
1534 5

2 1351083.1 678 5
-1

 speed. The duration of 

each run was 15 minutes, while the thermocouples provided data at every second, and 
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images were taken by the infrared camera initially every 15 seconds by the end of the 

experiment increasing to 30 seconds. � % � " � � � � � ! ! � � � " � � �  �9 ) : ; ( < = >  and ? present the temperatures measured at different designated sites in the 

bulk ice and on the surface of the water film which flowed on the ice surface. It may be 

seen in the figures that the start of the ice accretion process influences the temperature 

measured at all six points. The initial surge of heat flux throughout the ice to the bottom 

of the channel is recognizable by sudden changes in the temperature at any given site. 

The first two experiments were performed for the ice thickness h=2
.
10

-2
 m, while the 

experiment with  =30 m/s was performed for thicker ice, h=5.13./ .
10

-2
 m, so that the heat 

surge was greater, but the final temperature at the bottom of the channel at the end of the 

experiment was lower. Such an anomaly in temperature behavior was always observed at 

the interface between the prepared ice accretion and the bottom of the channel. At this 

interface, the oscillations of temperature occur at the beginning of the icing process. 

These oscillations are related to fluctuations in the main direction of latent heat transfer 

and go from the one occurring throughout the accreting ice layer to the one released into 

the ambient medium. As the ice accretion develops, the oscillations die down and the 

entire heat flux is directed towards the ambient medium solely as a result of the low value  
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of the coefficient of the heat conduction of ice. Consequently, the icing surface, after 

initial temperature surge, chills gradually to the ambient temperature. The temperature of 

the ice surface, even under conditions for water film appearance, remains negative at all 

times throughout the entire ice accretion process. This temperature displays some weak 

lengthwise distribution from the leading edge of the channel, where the supercooled 

aerosol is supplied, to its trailing edge, where the water rivulets form and freeze. From 

the comparison of the two figures, it may be concluded that the supercooling of flowing 

water film on the surface of ice depends on the air speed: for 
/

a=30 m
.
s

-1
 it is about -4 

o
C, 

as compared to the lower supercooling of -2
o
C obtained whith the air speed  of 20 m.s

-1
. 

The investigation should be, however, made in the future concerning the role of initial ice 

thickness.      

During the process of ice formation, the local temperature of a supercooled water film 

changes slightly over time, displaying a final stabilization depending on the given 

ambient conditions. It was found that heat transfer throughout the water film to the 

concurrent air flow is a pivotal factor in maintaining a water film on the ice accretion 

being formed at the bottom of the channel.  
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�  � � � " � �  � �
The results of spatio-temporal remote IR and traditional thermometry measurements were 

presented and discussed in this investigation into the surface temperatures of an ice-

covered channel during the process of ice accretion in an icing wind tunnel. It was 

demonstrated that the surface temperature of accreting ice, i.e. the surface temperature of 

flowing water film, remains supercooled at all times during the experiment. The 

lengthwise temperature distribution in bulk ice accreted at the bottom of the channel and 

in flowing water film was observed and recorded. In spite of the theory (Messinger, 

1955) which proposes the assumption, that the surface temperature is 0
o
C for the icing 

regime with a water film on the ice surface, the temperatures of water flowing on the 

surface of prepared ice were negative even when frozen rivulets were observed at the 

trailing edge of the channel providing evidence of flowing water. It should be noted that 

the terminology “wet” and “dry” which since the time of Schumann’s theoretical work 

(1938) is usually applied in various models in order to distinguish between the ice 

accretion icing regimes with and without a water film on the icing surface, has now 

become obsolete and misleading in the light of further research. Finding an alternative to 

the contemporary distinction between the two icing regimes mentioned should be the 

main objective of subsequent research in the physics of atmosphere and atmospheric 

icing. To date, only one theory (Kachurin, 1962), mentioned in the Introduction, satisfies 

the requirements, and with certain modifications (Karev et al., 2003a and b), should be 

tested in future experimental work.   � � 
 �  � � % ! & � % � � �
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