University of Huddersfield Repository

Hubbard, Peter, Ward, Chris, Dixon, Roger and Goodall, Roger M.

Real Time Detection of Low Adhesion in the Wheel/Rail Contact

Original Citation

This version is available at http://eprints.hud.ac.uk/17703/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
“Real Time Detection of Low-Adhesion in the Wheel Rail Contact”
What is low adhesion?

- Braking relies on contact friction
- Reduced by
 - Leaf contaminant
 - Rain and ice
 - Oil contaminant
 - ‘Micro-wetting’
- SPADs
 - Cat. A ≈300/year
 - Stonegate cl. 375, 8/11/2010
 - Train at 100kph
 - Expected to stop in 1240m
 - Took 5180m, 3940m past the station
Methodology

- Linear Plan-view model
- Form Kalman-Bucy filter
- Estimate Contact Forces
 - (augmented states)
- Use relationships with dynamics to approximate adhesion
Results – Comparison to ‘real’ VAMPIRE data

F\textsubscript{FF} - Series 1A: Run9
\[M = 0.891; P = 0.264; C = 0.930; \]

F\textsubscript{FR} - Series 1A: Run9
\[M = 0.730; P = 0.232; C = 0.766; \]

M\textsubscript{FF} - Series 1A: Run9
\[M = 1.632; P = 0.390; C = 1.678; \]

M\textsubscript{FR} - Series 1A: Run9
\[M = 2.934; P = 0.429; C = 2.966; \]
Results – Comparison to ‘real’ VAMPIRE data

Adhesion Estimation - Series 1A Datasets
RMS window: 5s

\[\mu = 0.56 \]

\[\mu = 0.072 \]

\[\mu = 0.038 \]
Conclusions

- Reasonable approximation of adhesion estimation
 - Direct data methods showing good results too
- Success against ‘Blind Data’
- Progression to track testing – June 2013?