
University of Huddersfield Repository

Chrpa, Lukas, Vallati, Mauro, Kitchin, Diane E. and McCluskey, Thomas Leo

Generating Macro-operators by Exploiting Inner Entanglements

Original Citation

Chrpa, Lukas, Vallati, Mauro, Kitchin, Diane E. and McCluskey, Thomas Leo (2013) Generating 
Macro-operators by Exploiting Inner Entanglements. In: Proceedings / The Tenth Symposium on 
Abstraction, Reformulation, and Approximation (SARA 2013). AAAI Press, Palo Alto, Calif. ISBN 
9781577356301 

This version is available at http://eprints.hud.ac.uk/id/eprint/17367/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Generating Macro-operators by Exploiting Inner Entanglements

Lukáš Chrpa and Mauro Vallati and Thomas Leo McCluskey and Diane Kitchin
Knowledge Engineering and Intelligent Interfaces Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, m.vallati, t.l.mccluskey, d.kitchin}@hud.ac.uk

Abstract

In Automated Planning, learning and exploiting ad-
ditional knowledge within a domain model, in or-
der to improve plan generation speed-up and increase
the scope of problems solved, has attracted much re-
search. Reformulation techniques such as those based
on macro-operators or entanglements are very promis-
ing because they are to some extent domain model and
planning engine independent. This paper aims to ex-
ploit recent work on inner entanglements, relations be-
tween pairs of planning operators and predicates encap-
sulating exclusivity of predicate ‘achievements‘ or ‘re-
quirements’, for generating macro-operators. We pro-
vide a theoretical study resulting in a set of conditions
when planning operators in an inner entanglement rela-
tion can be removed from a domain model and replaced
by a macro-operator without compromising solvability
of a given (class of) problem(s). The effectiveness of
our approach will be experimentally shown on a set
of well-known benchmark domains using several high-
performing planning engines.

Introduction
Because even classical planning is intractable (up to
PSPACE-complete (Bylander 1994)), exploiting additional
knowledge which is somehow characteristic for a given class
of planning problems is a promising way towards making
the planning process more efficient. Since the 1970’s, and
lately with the help of the Learning Track of the Inter-
national Planning Competition (IPC)1, many such learning
techniques have been developed. One of the most studied
is the generation and use of macro-operators (macros), en-
coded in the same format as the operators forming the plan-
ning domain model, but encapsulating a sequence of such
(primitive) operators (Dawson and Siklóssy 1977; Botea et
al. 2005; Newton et al. 2007; Chrpa 2010b). Macros, whose
power lies in providing “shortcuts” in the search space,
have always been hampered by the problem of utility: used
naively, their addition to a domain model can cause an ex-
plosion of operator instances.

The use of macros can be considered a technique for
planning problem reformulation, a domain and planner in-
dependent way of preprocessing a planning problem (in

1http://ipc.icaps-conference.org

PDDL (Mcdermott et al. 1998) defined by domain model
and problem files) so that a planning engine may be able to
solve the problem more efficiently. Another such technique
is outer entanglements (Chrpa and Barták 2009), which can
be used to reformulate the domain model by effectively
removing unpromising operator instances. Inner entangle-
ments (Chrpa and McCluskey 2012) are relations between
pairs of planning operators and predicates, denoting exclu-
sivity of ‘achievement’ or ‘requirement’ of a predicate. That
is, one operator achieves a predicate exclusively for an-
other operator, or an operator requires a predicate exclu-
sively from another operator.

This paper investigates how inner entanglements might
be exploited to generate useful macros within a reformu-
lation phase of a planning problem. After some theoretical
background, we formulate and prove a theorem which en-
capsulates a set of sufficient conditions for (i) creating a
macro from two primitive operators in an inner entangle-
ment relationship, and (ii) safely removing one or both of the
primitive operators from the domain model of a given prob-
lem. Being able to remove domain operators, while adding
macros, ameliorates the main problem of macro utility. We
present the results of an empirical evaluation of our inner
entanglement-based technique on a set of well-know IPC
benchmark domains using state-of-the-art planning engines,
showing that in domains where such macros can replace
both primitive operators, the reformulation is very effective.

Preliminaries
Classical planning (in state space) deals with finding a se-
quence of actions transforming the static, deterministic and
fully observable environment from some initial state to a de-
sired goal state (Ghallab, Nau, and Traverso 2004).

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms defin-
ing their preconditions, negative and positive effects (i.e.,
a = (pre(a), eff−(a), eff+(a))). An action a is applicable in
a state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ eff−(a)) ∪ eff+(a).

In the classical representation atoms are predicates. A
planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is a generalized action (i.e. action is a grounded instance
of the operator), where name(o) = op name(x1, . . . , xk)



(op name is an unique operator name and x1, . . . xk are vari-
able symbols (arguments) appearing in the operator) and
pre(o), eff−(o) and eff+(o) are sets of (unground) predi-
cates. A planning problem is specified via a planning do-
main, initial state and set of goal atoms.

The set-theoretic representation can be obtained from the
classical representation by grounding. Note that comparing
predicates (needed for set operations) is done such that pred-
icates are equal if they have the same name and their ar-
guments (including their order) are identical. Hereinafter,
we will assume that different operators have different argu-
ments (unless otherwise stated). Substitutions which are sets
of mappings from variable symbols to terms are used to de-
termine which arguments operators or predicates share. A
substitution is minimum (w.r.t. a class of substitutions) if it
has the smallest number of elements.

Basic Relations between Actions and Operators
By analysing action or operator schema we can identify how
these influence each other. As discussed in Chapman’s ear-
lier work (Chapman 1987), an action having some atom in
its positive effects is a possible achiever of that atom for
some other action having that atom in its precondition. If
an action achieves an atom for some other action in some
plan, then the first action is a necessary achiever of the atom
(hereinafter only achiever) for the other one. Note that be-
ing ‘achiever’ refers to a notion “causal link” in plan-space
planning. A notion of being a possible achiever can be easily
extended for planning operators. Formally:
Definition 1. Let ai and aj be actions. We say that ai pos-
sibly achieves an atom p for aj if and only if p ∈ eff+(ai) ∩
pre(aj).
Let oi and oj be planning operators and Θ be a substitution.
We say that oi possibly achieves an atom (predicate) p for
oj with respect to Θ if and only if p ∈ eff+(oi) ∩ pre(ojΘ).
Let 〈a1, a2, . . . an〉 be a plan. We say that an action ai nec-
essarily achieves an atom p for an action aj if and only if
i < j, p ∈ eff+(ai)∩ pre(aj) and ∀k ∈ {i+ 1, . . . , j − 1} :

pgnd 6∈ eff+(ak). �

The opposite for being a (possible) achiever is being a
(possible) ‘clobberer’ which means that action ai deletes
atom(s) aj has in its precondition. Clearly, a notion of nec-
essary clobberer is meaningless unless negative precondi-
tions are used. Note that being ‘clobberer’ refers to a no-
tion “threat” in plan-space planning. A notion of (possible)
clobberer can be also easily extended for planning operators.
Formally:
Definition 2. Let ai and aj be actions. We say that ai is a
clobberer for aj if and only if eff−(ai) ∩ pre(aj) 6= ∅.
Let oi and oj be planning operators and Θ be a substitution.
We say that oi is a clobberer for oj with respect to Θ if and
only if eff−(oi) ∩ pre(ojΘ) 6= ∅. �

Inner Entanglements
Inner Entanglements have been recently introduced as rela-
tions between pairs of planning operators and atoms (pred-
icates) (Chrpa and McCluskey 2012). Inner entanglements

stand for operator exclusivity of ‘achieving’ or ‘requiring’
predicates. In the BlocksWorld (Slaney and Thiébaux 2001)
it may be observed, for instance, that operator pickup(?x)
achieves predicate holding(?x) exclusively for operator
stack(?x,?y) (and not for operator putdown(?x)) because
putdown(?x) would just reverse the effects of pickup(?x).
This relation is denoted as an ‘entanglement by succeeding’.
Similarly, it may be observed that predicate holding(?x)
for operator putdown(?x) is exclusively achieved by oper-
ator unstack(?x,?y) (and not by operator pickup(?x)) be-
cause again putdown(?x) would just reverse the effects of
pickup(?x). This relation is denoted as an ‘entanglement by
preceding’. Informally speaking, inner entanglements pro-
vide constraints affecting ordering of operators’ instances
in solution plans. If an operator o1 is entangled by a suc-
ceeding operator o2 with a predicate p in a given planning
problem, then in some solution plan instances of o1 are at
some point followed by corresponding instances of o2 and
no corresponding instance of other operator having p in its
precondition cannot be placed in between them. Similarly, if
an operator o2 is entangled by a preceding operator o1 with a
predicate p in a given planning problem, then in some solu-
tion plan instances of o2 are at some point preceded by cor-
responding instances of o1 and no corresponding instance of
other operator having p in its positive effects can be placed
in between them. This is formalized in the following defini-
tion (note that in (Chrpa and McCluskey 2012) the definition
below refers to strict inner entanglements).
Definition 3. Let P be a planning problem. Let o1 and o2
be planning operators, p be a predicate (o1, o2 and p are
defined in a planning domain related to P ) and Θ be a sub-
stitution such that p ∈ eff+(o1) and p ∈ pre(o2Θ). We say
that o1 is entangled by succeeding o2 with p if and only if
there exists a solution plan π of P and ∀a1 ∈ π, instances of
o1, ∃a2 ∈ π, an instance of o2Θ, such that a1 achieves pgnd
(pgnd is a grounded instance of p) for a2.
We also say that o2 is entangled by preceding o1 with p if
and only if there exists a solution plan π of P and ∀a2 ∈ π,
instances of o2Θ, ∃a1 ∈ π, an instance of o1, such that a1
achieves pgnd (pgnd is a grounded instance of p) for a2.
Henceforth, entanglements by preceding and succeeding are
denoted as inner entanglements. �

A single (inner) entanglement requires only the existence
of one plan solving the given planning problem where the
entanglement conditions are met and, therefore, different en-
tanglements might be met in different solution plans. A set
of compatible entanglements ensures existence of at least
one solution plan following all the entanglements in the
set (Chrpa and McCluskey 2012). For example, both the
BlocksWorld related entanglements mentioned throughout
this section forms a set of compatible entanglements. Here-
inafter, we will assume that multiple entanglements are a set
of compatible entanglements unless stated otherwise.

Determining Macro-operators from Inner
Entanglements

Inner entanglements as mentioned before refer to exclusivity
of ‘achievement’ and ‘requirement’ of predicates between



planning operators. Entanglement by succeeding says that
a predicate achieved by a given operator can be required
only by instances of a specific operator. For a typical prob-
lem in the Depots domain, we may observe that the op-
erator lift(?hoist, ?crate, ?surface, ?place) is entangled
by the succeeding operator load(?hoist, ?crate, ?truck,
?place) with the predicate lifting(?hoist,?crate). Hence, if
an instance of lift (e.g. lift(h1,c1,c2,p1)) is executed at the
i-th step of some solution plan, then a corresponding in-
stance of load (e.g. load(h1,c1,t1,p1)) is executed at the
j-th step of the plan, where j > i. Also, no instance of an-
other operator requiring (having in its precondition) or con-
suming (having in its negative effects) lifting(h1,c1) (e.g.
drop(?hoist, ?crate, ?surface, ?place)) can be executed
in between. Similarly, we may observe that the operator
load(?hoist, ?crate, ?truck, ?place) is entangled by the
preceding operator lift(?hoist, ?crate, ?surface, ?place)
with the predicate lifting(?hoist,?crate). Hence, if an in-
stance of load (e.g. load(h1,c1,t1,p1)) is executed at the
i-th step of some solution plan, then a corresponding in-
stance of lift (e.g. lift(h1,c1,c2,p1)) is executed at the j-th
step of the plan, where j < i. Also, no instance of other op-
erator achieving lifting(h1,c1) (e.g. unload(?hoist, ?crate,
?truck, ?place)) can be executed in between. Analogously,
we may observe entanglement by preceding and succeed-
ing between the operators load(?hoist, ?crate, ?truck,
?place) and unload(?hoist, ?crate, ?truck, ?place) and
the predicate in(?crate,?truck).

Macros, on the other hand, encapsulate situations where
corresponding instances of given planning operators are exe-
cuted consecutively. For a typical problem in the Depots do-
main, we may observe that the operators lift and load can be
assembled (in this order) into a macro in such a way that the
arguments ?hoist,?crate are shared. However, in the case of
the operators load and unload we may observe that consec-
utive application of instances of these operators results in a
situation, where the crate is still at the same place. It is thus
necessary to execute the drive operator in between which
moves the truck (and the crate which is loaded in it) from
one place to another. Hence, it is not reasonable to assemble
load and unload into a macro.

Inner entanglements indicate pairs of planning operators
which are candidates for becoming macros and also deter-
mine arguments the operators share since it is known which
predicate or predicates are achieved by one operator exclu-
sively for another operator or vice versa. If o1 is entangled
by succeeding o2 with p, or o2 is entangled by preceding
o1 with p, then o1 and o2 are candidates for becoming a
macro, and there is a minimum substitution Θ (determin-
ing which arguments are shared by o1 and o2) such that
p ∈ eff+(o1) ∩ pre(o2Θ). In case the (inner) entanglement
holds with more predicates, Θ is determined analogously,
i.e., {p1, . . . , pk} ⊆ eff+(o1)∩pre(o2Θ). Straightforwardly,
o1 must not be a clobberer for o2 with respect to Θ, other-
wise the macro cannot be generated. Also, there must not
be another operator o whose instances must be executed in
between instances of o1 and o2. There are two possibilities
which have to be addressed (they are formalized in the fol-
lowing theorem). Firstly, it might happen that not all the

predicates o2 requires are true after executing o1. Hence,
some other operator(s) must achieve these predicates. By
analysing inner entanglements we may find out that such
operator(s) cannot be an achiever for o2. However, if such
an operator is still a possible achiever for o2 and it is also
a clobberer for o1, then it cannot be executed (directly) be-
fore o1 and, hence, it might have to be executed in between
o1 and o2. Secondly, o2 might clobber some predicates o1
achieved. If there exists some other operator which requires
some of these predicates, it might be necessary to execute
it in between o1 and o2. However, by analysing inner en-
tanglements we may find out that o1 cannot be an achiever
for such an operator and hence we do not have to consider a
possibility of executing this operator in between o1 and o2.

An inner entanglement between operators also indicates
that there exists a solution plan of some planning problem
where instances of one operator are always followed or pre-
ceded by instances of the other operator. This information
is useful because a macro generated from these operators
may replace one or both of these operators without affect-
ing completeness for that planning problem. Concretely, an
entanglement by succeeding means that instances of one op-
erator (o1) are always followed by corresponding instances
of the other operator (o2) and therefore if a macro is gen-
erated o2 becomes unnecessary. Similarly, an entanglement
by preceding means that instances of one operator (o2) are
always preceded by corresponding instances of the other op-
erator (o1) and therefore if a macro is generated o1 becomes
unnecessary. If both inner entanglements hold between o1
and o2, then if a macro is generated both o1 and o2 becomes
unnecessary. However, attention must be given to situations
where a single instance of an operator achieve an atom for
multiple instances of another operator. For instance, drive
may achieve a predicate at(?truck, ?place) for multiple in-
stances of the unload operator. In such a case, we do not
have a one to one matching of operators’ instances and thus
a macro cannot replace any of the operators.

These ideas are formalized in the following theo-
rem. Keep in mind that since inner entanglements are
problem-specific sort of knowledge, the theorem is also
problem-specific. However, as it has been shown in earlier
works (Chrpa and Barták 2009; Chrpa and McCluskey 2012)
we are able to find a set of compatible entanglements that
applies for a whole class of ‘typical’ problems in a given
domain.

Theorem 1. Let P be a planning problem. Let o1 and o2 be
planning operators, p∗ be a set of predicates (defined in P )
such that at least one of the following conditions is met.

(i) ∀p ∈ p∗ : o1 is entangled by succeeding o2 with p
(ii) ∀p ∈ p∗ : o2 is entangled by preceding o1 with p

Let Θ be a minimum substitution such that p∗ ⊆ eff+(o1) ∩
pre(o2Θ), and assume o1 is not a clobberer for o2 with re-
spect to the substitution Θ. Further, assume that all the fol-
lowing conditions hold:

(a) for each operator o in the domain model,
and substitution ξ: {p′ | p′ ∈ (eff+(oξ) ∩
(pre(o2Θ) \ (eff+(o1) ∪ (pre(o1) \ eff−(o1))))) ∧



o is not entangled by succeeding o′ 6= o2 with p′ ∧
o2 is not entangled by preceding o′ 6= o with p′} 6= ∅
implies o is not a clobberer for o1 with respect to ξ.

(b) for each operator o 6= o2, substitution ξ and a predicate
p′ ∈ (pre(oξ) ∩ (eff+(o1) ∩ (eff−(o2Θ))), it is the case
that o1 is entangled by succeeding o′ 6= o with p′ or o is
entangled by preceding o′ 6= o1 with p′.

(c) no instance of o1 achieves an instance of a predicate
from p∗ for multiple instances of o2.

Let o1,2 be a macro generated from o1 and o2 w.r.t. Θ. If the
domain of P is modified in such a way that o1,2 is added, o1
is removed if the condition (i) holds, and o2 is removed if the
condition (ii) holds, then there still exists a solution of P .

Proof. Firstly, we have to show that there exists a solution
plan for P such that corresponding instances of o1 and o2
are always executed successively in that plan. The assump-
tions of the theorem immediately eliminate cases where an
instance of o1 achieves an atom for multiple instances of o2,
and where o1 is a clobberer for o2 with respect to Θ. This
leaves the following two cases, where successive execution
of the corresponding instances of o1 and o2 may be hindered:

(1) some action other than the instance of o1 achieves an
atom for the instance of o2

(2) the instance of o1 achieves an atom for an instance of
some other operator (excluding o2)

Regarding (1), it is clear that after executing o1 atoms (pred-
icates) in (eff+(o1)∪ (pre(o1) \ eff−(o1))) must be true. For
ensuring applicability of o2 atoms (predicates) in pre(o2)
must be true. If some predicates in pre(o2Θ) (the substitu-
tion Θ refers to arguments o2 shares with o1) are not guar-
anteed to be present after executing o1, then some other op-
erator o must achieve them. Analysing inner entanglements
relations might exclude some alternatives, i.e., o cannot be
entangled by succeeding o′ 6= o2 with these predicates or o2
cannot be entangled by preceding o′ 6= o with these pred-
icates. In other words, if o exclusively achieve predicate(s)
for a different operator than o2, or o2 exclusively requires
predicate(s) from a different operator than o, then we do
not have to consider o as an achiever for o2. According to
the condition (a) if there exists at least one predicate that o
might possibly achieve for o2, then o is not a clobberer for
o1. Hence, o can be applied before o1.

Regarding (2), it may happen that o1 possibly achieves
some predicate(s) for some operator o which o2 clobbers.
On the other hand, analysing inner entanglements may re-
veal that these predicates are not achieved by o1 for o. Con-
cretely, if o1 is entangled by succeeding o′ 6= o with p′, then
according to the entanglement condition o1 achieves p′ only
for o′ and not for o. Similarly, if o is entangled by preceding
o′ 6= o1 with p′, then according to the entanglement condi-
tion only o′ can achieve p′ for o. Therefore, p′ does not have
to be considered as being possibly achieved by o1 for o. The
condition (b) excludes such predicates p′ as predicates that
o1 achieves for o. If no other predicate might be achieved by
o1 for o, then o does not have to executed in between o1 and
o2.

Secondly, we have to show that operators can be removed
from the problem’s domain model. Condition (i) asserts that
o1 is entangled by succeeding o2 with all the predicates from
p∗. Together with the above, this means that in some solution
plan of P , instances of o1 are always immediately followed
by corresponding instances of o2 (no other action is exe-
cuted in between them). Hence, no instance of o1 is executed
unless it achieves instances of predicates in p∗ to a corre-
sponding instance of o2. Introducing the macro o1,2 into the
domain of P ensures that pairs of corresponding instances
of o1 and o2 will be always adjacent. Therefore, if the con-
dition (i) is met then o1 can be removed from the domain of
P after the macro o1,2 is added there without affecting solv-
ability of P . Analogously, the condition (ii) says that o2 is
entangled by preceding o1 with all the predicates from p∗.
Together with the above, this means that in some solution
plan of P , instances of o2 are always immediately preceded
by corresponding instances of o1. Hence, no instance of o2
is executed unless a corresponding instance of o1 achieves
its instances of predicates in p∗. So, if the condition (ii) is
met then o2 can be removed from the domain of P after the
macro o1,2 is added there without affecting solvability of P .
Note that if both the conditions (i) and (ii) are met, then both
the operators o1 and o2 can be removed after the macro o1,2
is added there without affecting solvability of P .

Theorem 1 is not restricted to generating macros from
only two operators. When a new macro o1,2 is generated,
one of or both operators o1 and o2 are removed. It may
be observed that an inner entanglement held between some
other operator o and o1 (or o2) becomes true between o and
the generated macro o1,2 if o1 (o2) is removed. This is be-
cause the new macro encapsulated the primitive operators
from which it was assembled, and when the primitive oper-
ator is removed the new macro becomes its only ‘follower’.
However, if the primitive operator is not removed the inner
entanglement relation with it might be compromised since
also the new macro consists of this primitive operator. Since
macros are encoded in the same way as ordinary planning
operators, then Theorem 1 can be applied recursively, which
might result in generating ‘longer’ macros.

Indirect Inner Entanglements
Theorem 1 formally introduces under which conditions can-
didates for macros determined by inner entanglements can
be considered for macros and, moreover, which (primi-
tive) operator can be replaced by a newly generated macro.
However, the conditions (a)-(c) might be too restrictive
and therefore some situations might be incorrectly con-
sidered as negatives. For instance, in the Zeno domain,
we may observe that the operator refuel(?aircraft, ?city,
?fuel1, ?fuel2) is entangled by the succeeding operator
fly(?aircraft, ?city1, ?city2, ?fuel2, ?fuel1) with the pred-
icate fuel-level(?aircraft, ?fuel2). Intuitively, instances of
these operator can be executed consecutively in plans. How-
ever, the condition (a) (Theorem 1) is not satisfied since
there is the operator zoom which possibly achieves the pred-
icate at(?aircraft,?city1) for the operator fly but possibly
clobbers the predicate at(?aircraft,?city) for the operator



refuel. In this case, the issue is that the entanglement in-
dicates that only the ?aircraft and ?fuel2 arguments are
shared by refuel and fly. To overcome the issue we must
unify the arguments ?city and ?city1. In order to use The-
orem 1 refuel must be entangled by succeeding fly also
with the predicate at(?aircraft,?city). However, such a pred-
icate is not present in refuel’s positive effects. On the other
hand, treating the persisting precondition at(?aircraft,?city)
as one of refuel’s positive effects will not affect soundness
and enables the possibility to detect ‘indirect’ inner entan-
glements. We generalise this idea with the following Re-
mark:

Remark 1. Indirect inner entanglements are also rela-
tions between pairs of operators and predicates. Let o1, o2
be planning operators and p be a predicate such that p ∈
pre(o1). Let o′1 = (name(o1), pre(o1), eff−(o1), eff+(o1) ∪
{p}). If there is an inner entanglement (by preceding or suc-
ceeding) between o′1, o2 and p, then we say that there is an
indirect inner entanglement relation between o1, o2 and p.

Implementation Details
Detection and Use of Inner Entanglements
A method for detecting inner entanglements has recently
been published (Chrpa and McCluskey 2012). This de-
tects straightforward cases, where there is only one operator
achieving or requiring a certain predicate. Detecting inner
entanglements is believed to be intractable in general, how-
ever, and therefore an approximation method was used. This
method analyses a set of training plans, solutions of simpler
planning problems, in order to identify a set of compatible
(inner) entanglements which holds for every training prob-
lem and then it is assumed that this set of compatible (inner)
entanglements holds for a whole class of planning problems
using the same domain model. Despite incompleteness of
such an approach, it was shown empirically that only in a
very few cases enforcing entanglements caused loss of solv-
ability of the problem (Chrpa and McCluskey 2012).

Encoding Inner Entanglements into Domain and
Problem Models
Work (Chrpa and McCluskey 2012) utilized a planner-
independent approach to enable the reformulation of do-
mains and problems in order to enforce (inner) entangle-
ments during the planning process. In other words, alterna-
tives which do not follow exclusivity of ‘achieving’ and ‘re-
quiring’ predicates between operators must be avoided. The
idea behind the reformulation is in introducing specific pred-
icates, ‘locks’, which prevents executing certain instances
of operators in some stage of the planning process. An in-
stance of an operator having a ‘lock’ in its precondition can-
not be executed after executing an instance of another op-
erator (‘locker’) having a ‘lock’ in its negative effects un-
til an instance of some other operator (‘releaser’) having a
‘lock’ in its positive effects has been executed. For exam-
ple, a situation where pickup(?x) is ‘entangled by succeed-
ing’ stack(?x,?y) with holding(?x) is modeled such that
pickup(?x) is a ‘locker’ for putdown(?x) and stack(?x,?y)

Algorithm 1 A high-level description of our method for
generating macros from inner entanglements
Require: Planning domain model with training planning

problems and their solutions
Ensure: Reformulated domain model (added macros, re-

moved some of primitive operators)
1: Determine a set of compatible inner entanglements
2: repeat
3: for all Operators o1, o2 having an inner entanglement

relation(s) between them do
4: if the conditions of Theorem 1 are satisfied then
5: generate a new macro o1,2 and remove o1, o2 or

both (depends if (i), (ii) of Theorem 1 or both are
satisfied)

6: update inner entanglement relations
7: break
8: else
9: if only the condition (a) of Theorem 1 is violated

then
10: if there are indirect inner entanglements be-

tween o1 and o2 with corresponding predi-
cates then

11: add the indirect inner entanglements into
the set of compatible entanglements

12: goto step 4
13: end if
14: end if
15: end if
16: end for
17: until No new macro has been generated
18: generate a reformulated domain model

is a ‘releaser’ for putdown(?x). For details about encoding
inner entanglements, see (Chrpa and McCluskey 2012).

Note that ‘trivial’ inner entanglements, i.e., whether there
is only one achiever for a certain predicate or a certain pred-
icate is required by only one operator, do not have to be en-
coded in the domain model since they do not provide any
useful knowledge which can be used to prune some un-
promising alternatives in the search.

Macro Generation
Our method is described in Algorithm 1. It utilises the

original method for detection of inner entanglements (line
1), and then uses them to perform a macro generation phase
(lines 2-17). The inner loop (lines 3-16) consists of consec-
utively checking whether the macro candidates (pairs of op-
erators in an inner entanglement relation) meet the condi-
tions of Theorem 1 (line 4). If a candidate does meet the
conditions, then a new macro is generated, one of or both
(primitive) operators are removed (according to Theorem 1)
and inner entanglement relations are updated (as already dis-
cussed before). Then, we continue with the main loop (line
2). If no candidate meets the given conditions the macro gen-
eration phase finishes and a reformulated domain model is
generated (line 18).

Failing to fulfil the condition (a) (Theorem 1) only (line 9)



does not directly lead to a conclusion that the candidate can-
not be assembled into a macro. As discussed in the previous
section indirect inner entanglements are then analysed which
may eventually lead to fulfilling the condition (a) (lines 10-
12).

Note that the condition (c) (Theorem 1) can be verified
by checking whether the operator o2 is a clobberer for it-
self with respect to Θ (o2 and Θ are as defined in Theo-
rem 1) or whether multiple application of different instances
of o2Θ will not bring any new information. For instance,
in the Gold-miner domain, the operator pick-gold achieves
only holds-gold and thus it is not necessary to execute it
more than once.

Experimental Evaluation
The goal of the experimental evaluation was to demonstrate
the potential of reformulating problems by the replacement
of original operators with inner entanglement-based macros,
to compare this with inner entanglement reformulation, and
to explore the range of domains and planners for which the
techniques are successful. For evaluation purposes we chose
several IPC benchmark domains (typed strips) from IPC-3,
IPC-6 and 7 (learning track), where it was clear that this
kind of reformulation would be applicable (for example, it
would not be applicable to domains with one operator). The
domains are BlocksWorld (BW), Depots, Zeno, DriverLog,
Gold-Miner, Matching-BW, Satellite and TPP. As bench-
marking planners we chose Metric-FF (Hoffmann 2003),
LPG-td (Gerevini, Saetti, and Serina 2003), Probe (Lipovet-
zky and Geffner 2011), LAMA 2011 (Richter and Westphal
2010), SatPlan 2006 (Kautz, Selman, and Hoffmann 2006)
and Mp (Rintanen 2012). All the planners successfully com-
peted in the IPCs. Timeout was set to 900s. The experiment
was performed on Intel Xeon

TM
3 GHz, 2 GB RAM. For

each benchmark we selected 5-7 easy problems as training
problems and produced training plans by Metric-FF which
were used to learn inner entanglements and generate macros
from them. Metric-FF was selected due to the fact that it is
usually fast, and provides good quality plans. Time spent on
learning was usually in the order of tenths of seconds (rarely
in the order of seconds) per one domain.

Cumulative results of the evaluation are presented in Ta-
ble 1, with the macro technique compared to the existing re-
formulation technique of inner entanglements, and the orig-
inal problem formulation. Values are computed according
to rules used in IPC-7 learning track2. The score for ev-
ery solved problem is computed according to the formula
(1/(1+log10(T/T ∗))) for time or (N∗/N) for quality. T is
a running time of a certain planner for a certain (original or
reformulated) problem, N is the length of the solution, T ∗
is the minimum running time achieved by a certain planner
on either the original problem or any of its reformulations.
Similarly,N∗ is the shortest solution. The score for unsolved
problems is zero. Note that in the Satellite domain we iden-
tified only ‘trivial’ inner entanglements, so the reformulated
domain (and problems) model was the same as the original
one, hence the ‘N/A’ value for inner entanglements.

2http://www.plg.inf.uc3m.es/ipc2011-learning/Rules

Discussion of Results
It is well known that using macros tends to reduce the depth
of the search at the cost of increasing the branching factor.
In the BW, Depots and TPP domains, Generated macros al-
ways replaced both the primitive operators in the Depots and
TPP domains, and in one case in the BW domain. Therefore,
the branching factor did not increase much (note that macros
often have more instances than the primitive operator it is as-
sembled from), resulting in an overall improvement across
those planning engines that could cope with the hard learn-
ing track problems. Indeed, Metric-FF and Mp were able to
find solutions to almost all the problems in the BW domain
which was not previously possible without the aid of macro
reformulation. In other cases macro reformulation achieved
mixed results, often worse than original or inner entangle-
ment encodings. In these cases, generated macros replaced
only one of the primitive operators causing increase of the
branching factor which often had a negative impact on plan-
ners’ performance. The technique of using inner entangle-
ments to reformulate domains can reduce the search branch-
ing factor, but does so at the cost of introducing supplemen-
tary predicates, which causes an increase of the size of prob-
lem representation. Using inner entanglements brings some
improvement against the original encodings in about half of
the cases. However, using macros generated from inner en-
tanglements outperforms the inner entanglement encodings
in the majority of cases. Good results were achieved for this
technique in the Zeno domain because the size of the rep-
resentation increased only marginally. Interestingly, in some
cases using the inner entanglements encodings resulted in
getting much better plans (in terms of quality).

LPG uses greedy local search on the Planning Graph
which might not work well in situations where the branching
factor is large. Therefore, LPG seems to exploit more origi-
nal or inner entanglement reformulations. On the other hand,
LPG achieved very good results in BW, Matching-BW and
TPP when using macro reformulation. Probe’s performance
improves with either inner entanglement or macro reformu-
lations. Probe uses ‘causal commitments’ which are simi-
lar to ‘causal links’ in plan space planning and, therefore, it
seems to better exploit inner entanglements which determine
exclusivity of ‘causal links’ between operators. Probe also
seems to be less vulnerable to larger branching factor, there-
fore, it can exploit macros as well. Metric-FF and LAMA,
which are based on heuristic search, tend to perform better
with macros than inner entanglements (except Gold-miner).
It seems that in this case, having more actions, which even-
tually reduce the depth of the search, is better than having
more atoms (facts). SatPlan and Mp, which are based on
SAT, achieved mixed results. Mp seems to exploit macros
better than SatPlan. In the SatPlan case, reformulations lead
to more complex SAT formulae which might slow-down the
planning process despite pruning some unpromising search
alternatives. In the Mp case, it seems that more compact SAT
formulae reduces the negative impact of having more opera-
tor or predicate instances.

Although neither the original inner entanglement tech-
nique, or the macro replacement technique, are generally
effective, we found out some interesting outcomes. If gen-



+MA -O
Metric-FF LPG Probe LAMA SatPlan Mp

Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr

BW (60) 2 3
Time 0.0 0.0 60.0 21.1 35.8 60.0 29.3 33.1 50.0 21.1 15.8 59.0 0.0 0.0 0.0 0.0 0.0 57.0
Quality 0.0 0.0 60.0 30.0 59.8 55.1 39.3 49.2 49.2 17.9 14.0 58.9 0.0 0.0 0.0 0.0 0.0 57.0

Depots (60) 2 4
Time 15.1 24.0 42.8 39.5 26.9 32.7 49.8 55.9 50.2 17.5 20.0 51.9 7.4 6.6 13.3 33.2 24.3 35.4
Quality 22.1 23.9 42.5 40.2 45.0 37.2 54.0 57.6 52.5 18.6 20.9 51.1 6.3 9.3 14.0 30.6 36.8 39.6

Zeno (20) 1 1
Time 17.6 19.3 17.7 19.8 14.2 6.6 18.0 19.6 18.9 18.1 17.0 19.8 15.1 15.3 9.7 18.2 19.2 19.1
Quality 20.0 19.9 16.9 16.6 17.7 9.0 19.0 19.7 16.8 19.6 18.8 18.1 13.9 15.3 11.8 18.3 19.7 17.5

DriverLog (20) 1 1
Time 14.6 13.7 15.7 16.8 17.8 17.6 19.5 18.3 19.1 19.1 16.6 18.7 14.6 15.1 14.4 18.9 18.6 18.2
Quality 16.3 16.0 16.5 17.3 16.2 18.4 18.5 18.2 19.3 18.1 18.1 18.5 14.2 15.7 13.8 19.4 19.2 15.4

Gold-miner (60) 1 1
Time 37.6 52.6 33.0 60.0 33.0 48.3 55.1 34.4 57.0 44.2 53.2 56.4 60.0 54.9 53.4 60.0 32.6 49.9
Quality 54.0 58.5 53.6 60.0 45.3 46.6 56.7 58.6 55.0 54.4 57.7 22.9 58.9 58.9 58.6 54.8 56.8 50.2

Matching-BW (60) 1 1
Time 23.0 8.1 17.9 28.8 21.7 43.4 15.5 25.1 29.8 45.2 11.6 20.6 41.0 27.3 36.7 1.0 1.7 5.8
Quality 24.3 9.5 20.4 31.3 34.4 33.2 20.1 27.8 28.4 42.8 18.0 15.4 41.0 33.8 35.0 0.8 1.8 6.0

TPP (60) 1 2
Time 18.5 17.7 31.9 12.2 23.2 60.0 30.7 1.2 51.0 25.5 19.4 56.8 29.8 34.5 31.7 9.4 14.4 27.0
Quality 27.2 28.7 32.6 15.4 30.0 24.5 37.3 3.0 50.6 37.5 33.8 52.5 26.7 36.8 41.9 13.0 17.4 26.3

Satellite (60) 1 1
Time 28.0 N/A 16.9 60.0 N/A 51.8 20.6 N/A 30.0 27.4 N/A 29.7 7.0 N/A 4.2 25.0 N/A 22.5
Quality 27.5 N/A 24.5 60.0 N/A 54.6 25.4 N/A 29.2 31.8 N/A 26.9 6.9 N/A 4.5 24.6 N/A 23.9

Table 1: Cumulative results for typed strips IPC benchmarks (problem numbers are in brackets). +MA stands for the number of
generated macros. -O stands for the number of removed primitive operators. Values are computed according to scoring in IPC
learning track (2011). Orig - original PDDL domain encoding, IE - inner entanglements, Mcr - Macros

erated macros replace both the primitive operators, then
the results suggest that this reformulation will outperform
both original and inner entanglement encodings. Planners
based on heuristic search (e.g. Metric-FF, LAMA) incline
to exploit macros more efficiently than inner entanglements.
Probe tends to perform better using either inner entangle-
ments (except Matching-BW) or macros than in the original
domain encodings.

Related Works
Synthesising macros to aid AI plan generation has been a
popular research area dating back to 1970s, in systems such
as STRIPS (Fikes and Nilsson 1971) and REFLECT (Daw-
son and Siklóssy 1977). Some work has concentrated on “of-
fline” problem independent macro generation using domain
model analysis (McCluskey and Porteous 1997). A recent
example of off-line macro generation is WIZARD (New-
ton et al. 2007; Newton and Levine 2010), which gener-
ates a useful set of macros using genetic algorithms, with
generation and validation time of several hours for a given
domain. Work (Alhossaini and Beck 2009) learns a set of
domain-specific macros by WIZARD and then selects the
most promising ones for a given problem in this domain
by analyzing problem features (e.g. numbers of objects). In
fact, this approach provides problem-specific macros rather
than domain specific which resulted in significant improve-
ment of planning process in some domains. From this per-
spective, it seems to be reasonable to consider such an idea
for improving our method since (inner) entanglements are
also problem-specific, although we can identify the same
entanglements for a whole class of ‘typical’ problems in a
given domain.

Another line of work concentrates on specific planning
engine techniques, and treats macro-generation as integrated
with the planning process itself. For instance Macro-FF
(SOL-EP) (Botea et al. 2005) and Marvin (Coles, Fox, and

Smith 2007) exploit macros in order to help an FF-type plan-
ner escape plateaus. Our work fits into this area of “online”
macro generation, but is aimed at providing a reformulation
stage for input domain and problem specification, acting as a
preprocessor (or “wrapper”) for a range of planning engines
and domains. The “CA-ED” technique of Macro-FF (Botea
et al. 2005), involving learning macros via analysis of static
predicates, is related but complementary to the inner entan-
glement approach. It is potentially useful for unifying some
arguments of operators before generating a macro (e.g. lift
and load are applied in the same location since the involved
hoist can be only at one location), or by analysing succes-
sive actions in plans. Later work by Chrpa (2010b) extended
the idea of macro-generation from adjacent actions in a so-
lution, to non-adjacent actions which can be made adjacent
in some valid plan permutation. His work utilised the idea of
removing unnecessary primitive operators, though in an ad-
hoc manner. In future, we should provide a rigorous compar-
ison of this and our method in order to identify whether and
how much are these methods complementary or competitive.

‘Tunnel macros’ (Coles and Coles 2010) refers to situa-
tions where given operators must be in a certain sequence.
‘Tunnel macros’ are related to ‘trivial’ inner entanglements,
which can be easily determined without necessity for apply-
ing the approximation method, as these provide connections
which must hold between ‘adjacent’ operators in such a spe-
cific sequence.

Given the potential for macros to degrade perfor-
mance (McCluskey 1987), other work has emphasised
the need for guiding heuristics and pruning techniques,
and is largely complementary to our approach. Expansion
Cores (Chen and Yao 2009), for example, restricts action use
only to relevant domain transition graphs during the node
expansion. Outer entanglements (Chrpa and Barták 2009),
relations between operators and initial or goal atoms, are
used for pruning unpromising operator instances. Combin-



ing macros and outer entanglements, even done in an ad-hoc
way, provided very promising results (Chrpa 2010a).

Conclusions
In this paper we studied how inner entanglements, relations
capturing exclusivity of predicate achievement or require-
ment between planning operators, can be exploited in order
to generate macros. We provided a theoretical investigation
resulting in a set of conditions under which operators in-
volved in an inner entanglement relation can be assembled
into macros and, moreover, which of the primitive operators
(or both) can be removed. In doing this we also extended the
original technique to include indirect inner entanglements.

Our approach was evaluated empirically with eight IPC
benchmark domains, which lead to 400 problem instances,
using six state-of-the-art domain-independent planning en-
gines. The results show that while the technique is not suc-
cessful across all domains, it shows potential to be used as
a reformulation technique for domains where a macro can
replace two operator schema.

In the future we plan to extend our approach with ideas
which have been applied in related works on macros (see
the previous section). In particular we aim to investigate the
possibility of combining our technique with action pruning
(e.g Expansion Cores, Outer Entanglements) which should
prevent generation of unpromising instances of macros.

References
Alhossaini, M., and Beck, J. C. 2009. Learning instance-
specific macros. In ICAPS Workshop on Planning and
Learning.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333–377.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In Proceedings of IJCAI,
1659–1664.
Chrpa, L., and Barták, R. 2009. Reformulating planning
problems by eliminating unpromising actions. In Proceed-
ings of SARA, 50–57.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of ECAI, 240–245.
Chrpa, L. 2010a. Combining learning techniques for clas-
sical planning: Macro-operators and entanglements. In Pro-
ceedings of ICTAI, volume 2, 79–86.
Chrpa, L. 2010b. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.

Coles, A. J., and Coles, A. I. 2010. Completeness-preserving
pruning for optimal planning. In Proceedings of ECAI, 965–
966.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In Proceedings of
ICAPS, 97–104.
Dawson, C., and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of IJCAI,
465–471.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. In Proceedings of the fifth IPC.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proceedings of ICAPS.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artificial Intelligence 95(1):1–65.
McCluskey, T. L. 1987. Combining weak learning heuristics
in general problem solvers. In Proceedings of IJCAI, 331–
333.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical Re-
port TR-98-003, Yale Center for Computational Vision and
Control,.
Newton, M. A. H., and Levine, J. 2010. Implicit learning
of compiled macro-actions for planning. In Proceedings of
ECAI, 323–328.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of ICAPS, 256–263.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2012. Engineering efficient planners with SAT.
In Proceedings of ECAI, 684–689.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.


