Search:
Computing and Library Services - delivering an inspiring information environment

LHV Predication Models and LHV Effect on the Performance of CI Engine Running with Biodiesel Blends

Tesfa, Belachew, Gu, Fengshou, Mishra, Rakesh and Ball, Andrew (2013) LHV Predication Models and LHV Effect on the Performance of CI Engine Running with Biodiesel Blends. Energy Conversion and Management, 71. pp. 217-226. ISSN 0196-8904

[img] PDF - Accepted Version
Download (255kB)
[img] Microsoft Word - Accepted Version
Restricted to Repository staff only

Download (249kB)

Abstract

The heating value of fuel is one of its most important physical properties, and is used for the design and numerical simulation of combustion processes within internal combustion (IC) engines. Recently, there has been a significant increase in the use of dual fuel and blended fuels in compression ignition (CI) engines. Most of the blended fuels include biodiesel as one of the constituents and hence the objective of this study is to investigate the effect of biodiesel content to lower heating value (LHV) and to develop new LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity. Furthermore, this study also investigated the effects of the LHV on CI engines performance parameters experimentally. To achieve the above mentioned objectives density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc) were measured as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine experimental work was conducted on a four-cylinder, four -stroke, direct injection (DI) and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on the experimental results, models were developed which have the capability to predict the LHV corresponding to different fractions, densities and viscosities of biodiesel. The models are shown to produce consistent results with experimentally measured ones and compared with previous researches’ models. Furthermore the effects of LHV on brake specific fuel consumption (BSFC) and thermal efficiency were analysed and it has been seen that for the neat biodiesel which its LHV is lower by 8% than diesel resulted in an increment of BSFC and thermal efficiency by 18% and 25% respectively.

Item Type: Article
Additional Information: NOTICE: this is the author’s version of a work that was accepted for publication in Energy Conversion and Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.
Subjects: T Technology > TJ Mechanical engineering and machinery
Schools: School of Computing and Engineering
School of Computing and Engineering > Automotive Engineering Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre
School of Computing and Engineering > Diagnostic Engineering Research Centre > Energy, Emissions and the Environment Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre > Machinery Condition and Performance Monitoring Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre > Measurement System and Signal Processing Research Group
School of Computing and Engineering > High-Performance Intelligent Computing
School of Computing and Engineering > High-Performance Intelligent Computing > Information and Systems Engineering Group
School of Computing and Engineering > Pedagogical Research Group
Related URLs:
Depositing User: Belachew Tesfa
Date Deposited: 16 Apr 2013 10:31
Last Modified: 02 Dec 2016 00:19
URI: http://eprints.hud.ac.uk/id/eprint/17195

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©