
University of Huddersfield Repository

Chrpa, Lukáš, McCluskey, T.L. and Osborne, Hugh

Determining Redundant Actions in Sequential Plans

Original Citation

Chrpa, Lukáš, McCluskey, T.L. and Osborne, Hugh (2012) Determining Redundant Actions in
Sequential Plans. In: Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International
Conference on. IEEE, pp. 484-491. ISBN 9781479902279

This version is available at http://eprints.hud.ac.uk/id/eprint/16949/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Determining Redundant Actions in Sequential Plans
Luká̌s Chrpa, Thomas Leo McCluskey, Hugh Osborne

Knowledge Engineering and Intelligent Interfaces Research Group
School of Computing and Engineering

University of Huddersfield
Email: {l.chrpa, t.l.mccluskey, h.r.osborne}@hud.ac.uk

Abstract—Automated planning even in its simplest form, clas-
sical planning, is a computationally hard problem. With the
increasing involvement of intelligent systems in everyday life
there is a need for more and more advanced planning techniques
able to solve planning problems in little (or real) time. However,
planners designed to solve planning problems as fast as possible
often provide solution plans of low quality. The quality of solution
plans can be improved by their post-planning analysis by which
redundant actions or optimizable subplans can be identified. In
this paper, we present techniques for determining redundancy of
actions in plans. Especially, we present techniques for efficient
redundancy checking of pairs of inverse actions. These techniques
are accompanied with necessary theoretical foundations and are
also empirically evaluated using existing planning systems and
standard planning benchmarks.

Keywords-sequential plans; post-planning plan optimization;
redundant actions; inverse actions

I. I NTRODUCTION

Automated planning [1] even in its simplest form, classi-
cal planning, is intractable (PSPACE-complete) [2]. Optimal
planning, in classical planning finding the shortest plans,is
generally harder than satisfying planning (i.e. finding any
solution) [3], [4]. Therefore it is not surprising that post-
planning plan optimization in generally NP-hard [5].

Nowadays intelligent systems are becoming ubiquitous
which requires the development of more and more advanced
planning systems which are able to operate in almost real-
time. For instance, sometimes it is necessary to provide a
solution very quickly to avoid imminent danger for a robot and
prevent significant financial losses. There are planning engines
which focus on speed of the planning process rather than the
quality of solutions. A good example is LPG [6], a planner
which performs a greedy local search in a Planning Graph [7].
FF [8] and LAMA [9] should also be mentioned which use
weighted A∗ with an inadmissible but well informed heuristic.
In optimal planning, there is GAMER [10], a planner based
on exploring Binary Decision Diagrams.

In this paper we focus on determining redundant actions
in plans which can then be safely removed from the plans.
This work is an extension of our previous work [11] where
we presented some basic foundations related to determining
redundant actions. Here, we present an efficient method for
redundancy checking of pairs of inverse actions which sig-
nificantly reduces the necessity for re-checking the pairs for
redundancy once again. Moreover, we present a technique for
determining ‘grouped’ pairs of inverse actions which might

be redundant only all together (and not on their own). Despite
the fact that dealing with pairs of ‘grouped’ pairs of inverse
actions does not cover all possibly redundant actions we
believe that our approach in the most cases is able to determine
most of these redundant actions. The presented techniques for
determining redundant actions are accompanied by necessary
theoretical foundations and are also empirically evaluated
using existing planning systems, which successfully competed
at the International Planning Competition (IPC)1, and standard
planning benchmarks. Our approach can be understood as a
supporting technique for the state-of-the-art plan optimization
techniques (Neighborhood Graph [12], AIRS [13] — see
Section II) rather than their competitor. This is because our
approach can identify and remove redundant actions in a very
short time (as discussed in Section IX) and therefore enable
the state-of-the-art techniques to be more efficient.

II. RELATED WORKS

Approaches to plan optimization using genetic program-
ming are promising, though the relation between plan genera-
tion time and optimization time is unclear [14]. The recent
related work [12] proposes a Neighborhood Graph search
technique for plan optimization. It expands a limited number of
nodes around each state along the plan to a produce a Neigh-
borhood Graph and then, by applying Dijsktra’s algorithm, it
finds a shortest path within the neighborhood. The most recent
work [13] presents AIRS, an algorithm for plan optimization.
AIRS heuristically investigates whether two states along the
plan might be closer (i.e., a smaller number of actions is
needed to move from one state to the other one). If such
states are found then optimal or nearly-optimal planner is
applied to re-plan. However, these methods are restricted to
local optimality and do not exploit the information within the
plan structure (e.g some actions might lie far from each other
in a plan but can be adjacent in some permutation of the plan).

III. PRELIMINARIES

Classical planning (in state space) deals with finding a
sequence of actions transforming the static, deterministic and
fully observable environment from some initial state to a
desired goal state [1].

In the set-theoretic representationatoms, which describe
the environment, are propositions.Statesare defined as sets of

1http://ipc.icaps-conference.org

propositions.Actions are specified via sets of atoms specifying
their preconditions, negative and positive effects (i.e.,a =
(pre(a),eff−(a),eff+(a))). An actiona is applicable in a state
s iff pre(a) ⊆ s. Application of a in s results in a state(s \
eff−(a)) ∪ eff+(a) if a is applicable ins, otherwise the result
of the application is undefined.

In the classical representation atoms are predicates. A
Planning operator o = (name(o),pre(o),eff−(o),eff+(o)) is
a generalized action (i.e. an action is a grounded instance of the
operator), wherename(o) = op name(x1, . . . , xk) (op name
is an unique operator name andx1, . . . xk are variable symbols
(arguments) appearing in the operator) andpre(o),eff−(o) and
eff+(o) are sets of (unground) predicates. The set-theoretic
representation can be obtained from the classical representa-
tion by grounding.

A planning domain is specified via sets of predicates and
planning operators (alternatively propositions and actions). A
planning problem is specified via a planning domain, initial
state and set of goal atoms. Aplan is a sequence of actions.
A plan is asolution of a planning problem if and only if a
consecutive application of the actions in the plan (starting in
the initial state) results in a state, where all the goal atoms are
satisfied. A solutionπ of a given problem isoptimal if for
any solutionπ′ of the given problem|π| ≤ |π′|.

In sequential classical (STRIPS) planning it is not necessary
for an atom to be present in both negative and positive effects
of an action or operator because applying the action (operator)
always results in a state where the atom is present. On the other
hand, in parallel planning keeping an atom in both negative and
positive effects might be useful because it prevents unwanted
parallel execution of certain actions. Similarly, in sequential
classical planning it is not necessary to have an atom in both
the precondition and positive effects of an action because the
atom must be already present before the action can be applied.
Henceforth, we will assume that every action or planning
operatora satisfies the following conditions:

eff−(a) ∩ eff+(a) = ∅ (1)

pre(a) ∩ eff+(a) = ∅ (2)

In sequential classical planning we can easily show that every
planning domain has its equivalent which follows constraints
(1) and (2). If (1) is not satisfied for an actiona, then
a is modified by removingeff−(a) ∩ eff+(a) from eff−(a).
Similarly, if (2) is not satisfied, thena is modified by removing
pre(a)∩eff+(a) from eff+(a). Note that if both conditions are
violated then the action must be modified to satisfy first (1)
and then (2).

IV. REDUNDANT ACTIONS

In non-optimal planning, solution plans may contain actions
which are not necessary and can be omitted. We call these
actions redundant actions when their removal from a solution
plan still results in a solution plan. This is formalized below.

Definition 1. Let Π be a planning problem andπ its solution
plan. We say that actionsax1

, . . . , axk
∈ π are redundant in π

if and only ifπ′ = π \ {ax1
, . . . , axk

} is a solution plan ofΠ.
Henceforth,{ax1

, . . . , axk
} is denoted as a set of redundant

actions inπ. �

Remark 1. Note that if a set of actionsAx is redundant in
π, then a set of actionsAy such thatAy ⊂ Ax might not
be redundant inπ. In literature [12], a planπ′ obtained by
removing redundant actions fromπ is called a reduction of
π.

Definition 2. Let Π be a planning problem andπ its solution
plan. We say that a set of redundant actionsAx in π is
maximal if and only if for every set of redundant actionsAz

in π holds that|Ax| ≥ |Az|. �

Finding a maximal set of redundant actions is desirable for
optimizing plans. However, it has been proven that the problem
of determining the existence ofπ′, a reduction ofπ, such that
|π′| ≤ k for a given constantk is NP-hard [12]. Consequently,
finding a minimal reduction, i.e., a shortest planπ′ which is
a reduction ofπ, is NP-hard as well. This is summarized in
the following theorem.

Theorem 1. Determining a maximal set of redundant actions
Ax in a given planπ is NP-hard.

Proof: This is analogous to the problem of finding a
minimal reduction which is NP-hard [12].

Despite the NP-hardness of the problem of determining
a maximal set of redundant actions in many cases a lot of
redundant actions can be determined in polynomial time. We
will therefore focus on situations where redundant actions(e.g.
pairs of inverse actions) can be identified easily (in polynomial
time) which, we believe, reveals most of the redundant actions.

V. ACTION DEPENDENCIES

Actions ordered in plans influence each other. An action
achieves atoms which are preconditions for some actions
but on the other hand ‘clobber’ atoms required by other
actions [15]. Recalling constraints (1), (2) (Section III)we can
see that actions violating constraint (1) are ‘false clobberers’
while actions violating constraint (2) are ‘false achievers’.
Inspired by the meaning of causal links known in plan-space
planning, we can identify dependencies between the actions
in a given sequence (plan) in terms of which actions achieve
atoms to other actions that need them as their precondi-
tion [16]. The formal definition follows.

Definition 3. Let 〈a1, . . . , an〉 be an ordered sequence of
actions. An actionaj is directly dependent on an ac-
tion ai (denoted asai → aj) if and only if i < j,
(eff+(ai) ∩ pre(aj)) 6= ∅ and (eff+(ai) ∩ pre(aj)) 6⊆
⋃j−1

t=i+1
eff+(at).

An action aj is dependent on an actionai if and only if
ai →

∗ aj where→∗ is the reflexive transitive closure of the
relation →.
9 denotes that actions are not directly dependent and9

∗

denotes that actions are not dependent. �

To obtain a complete model of these relations in solution
plans we have to use two special actions:a0 = (∅, ∅, I) (I is
an initial state for a given problem) andag = (G, ∅, ∅) (G is
a set of goal atoms for a given problem). Relations of action
direct dependencies and dependencies can be found inO(n2)
steps (n is a length of a plan) [16].

Given the action dependence relation it is easy to identify
which actions do not contribute to the goal (i.e. the special
goal actionag is not dependent on them). Such actions are
redundant. This is formalized in the following proposition(for
the proof, see [11]).

Proposition 1. Let π = 〈a1, . . . , an〉 be a solution plan of a
planning problemΠ and ag = {G, ∅, ∅} (G is a set of goal
atoms inΠ) be an action. LetA− = {ai | ai ∈ π, ai 9

∗ ag}
be a set of actions on which the goal is not dependent. Then
all actions inA− are redundant inπ.

VI. I NVERSEACTIONS

In planning, action effects are often reversible. For example,
picking a block up from the table can be reversed by putting
the block down on the table. Informally, if an application of
an actiona in a states results in a states′ and an application
of some actiona′ in the states′ results back in the states or
its subset, thena′ reverts the effects of the actiona. In other
words, the actiona′ is inverse to the actiona. The formal
definition follows.

Definition 4. We say that actiona and a′ are inverse if and
only if a consecutive application ofa and a′ in any states
wherea is applicable results in a states′ such thats′ ⊆ s. �

The above definition might look too general. Basically,
actions with interchanged positive and negative effect are
inverse if also their preconditions contain all atoms presented
in their negative effects. This is formalized in the following
lemma.

Lemma 1. Let a, a′ be actions. If eff−(a) ⊆ pre(a),
eff−(a′) ⊆ pre(a′), eff+(a) = eff−(a′) and eff−(a) = eff+(a′)
then the actionsa and a′ are inverse.

Proof: Without loss of generality we assume that ac-
tions a and a′ can be consecutively applied in a states.
Then the result of such an application is:(((s \ eff−(a)) ∪
eff+(a)) \ eff−(a′)) ∪ eff+(a′). From the assumption we get:
(((s \ eff−(a)) ∪ eff+(a)) \ eff+(a)) ∪ eff−(a) ⊆ s (from the
assumption can be easily obtained thateff−(a) ⊆ s). The proof
is done analogously for a consecutive application ofa′ anda
in some states.

Pairs of inverse actions, which are potentially redundant,
might influence each other in plans. Therefore, it is useful
to analyze positions of pairs of inverse actions in plans
because then we can identify potential interferences between
particular pairs of inverse actions. Informally, by interferences
we mean situations when some pair of inverse actions cannot
be removed from a plan before some other pair of inverse
actions is removed. This is discussed more thoroughly in

Section VII. We can formally define four ways in which pairs
of inverse actions can be placed within a given plan (for
illustration, see Figure 1).

Definition 5. Let x, x′, y and y′ be indices such thatx < x′,
y < y′ andx ≤ y. Letπ be some plan andax, ax′ , ay, ay′ ∈ π

be actions such that(ax, ax′) and(ay, ay′) are pairs of inverse
actions. For indicesi, j such that actionsai, aj ∈ π it holds
that i < j if and only if ai is applied beforeaj in π. We say
that:

1) the pairs(ax, ax′) and(ay, ay′) are independent if x′ <

y,
2) the pairs(ax, ax′) and (ay, ay′) are nested if y′ < x′,
3) the pairs(ax, ax′) and (ay, ay′) are interleaving if y <

x′ and x′ < y′,
4) the pairs(ax, ax′) and (ay, ay′) are shared if x = y or

x′ = y or x′ = y′.

�

VII. I DENTIFYING REDUNDANT INVERSEACTIONS IN

PLANS

Inverse actions are obviously redundant if they are executed
successively. However, inverse actions might not be necessar-
ily adjacent in plans but still be redundant. For example, if
some plan contains a sequencepickup(a) (pick up a block
a from the table),move(r,l1,l2) (move a robotr from a
locationl1 to l2), putdown(a) (put the blocka on the table),
then the inverse actionspickup(a) and putdown(a)
are redundant because the actionmove(r,l1,l2) is not
influenced by any of them. On the other hand, if some plan
consists a sequencepickup(a), paint(a,red) (paint
a block a by red paint), putdown(a), then the inverse
actionspickup(a) and putdown(a) are not redundant
because the actionpaint(a,red) requires the blocka to be
held by the robotic hand. Distinguishing between these cases
can be done by analyzing action dependencies in plans. In
the following proposition we show that if no action placed
between inverse actionsa and a′ in a given plan is directly
dependent ona or ‘clobbers’ an atom given back bya′, then
actionsa anda′ are redundant in the given plan.

Proposition 2. Let π = 〈a1, . . . , an〉 be a plan. Letai, aj ∈
π, i < j be inverse actions. If there is no actionak (i < k < j)
such thatai → ak or eff−(ak)∩eff+(aj) 6= ∅, thenai andaj
are redundant inπ.

Proof: See [11].
The previous proposition gives an insight into how we can

detect redundant inverse actions. For a pair of inverse actions
we need (at worst)O(l) steps (l is the number of actions
placed between the inverse ones) to decide whether they are
redundant or not. A naive approach for deciding redundant
actions and eliminating them from a plan [11] works in the
following way:

1) Construct action (direct) dependencies and identify pairs
of inverse actions

ax

ax’

ay

ay’

ax

ax’

ay

ay’

ax

ax’

ay

ay’

ax

ax’

ax’’

(a) (b) (c) (d)

Fig. 1. Ways of placement of inverse actions in plans: (a) independent, (b) nested, (c) interleaving, (d) shared

2) For each pair of inverse actions decide whether they are
redundant (according to Proposition 2).

3) Remove redundant actions from the plan. If no action
has been removed then terminate otherwise go to step
1).

As mentioned before step 1) can be done inO(n2) steps (n
is the length of the plan). Step 2) can be done in at worst
O(kl) steps wherek is the number of pairs of inverse actions
and l is the highest number of actions placed between any
pair of inverse actions. In the worst case we may repeat the
whole processk times, hence the (worst case) complexity is
O(k(n2 + kl)).

For example, if some plan contains a sequence
unstack(a,b), putdown(a), pickup(a),
stack(a,b) we can see that pairs of inverse actions
(unstack(a,b), stack(a,b)) and (putdown(a),
pickup(a)) are nested. Using common sense we have
to remove the inner pair (putdown(a), pickup(a))
before trying to remove the outer pair (unstack(a,b),
stack(a,b)). However, using the above approach we may
try to remove the outer pair at first which is not possible since
putdown(a) is directly dependent onunstack(a,b).
We have to therefore try again to remove the outer pair in
the following iterations which will succeed if and only if the
inner pair is removed.

The above example gives an insight into in which order
we should check pairs of inverse actions for redundancy.
Straightforwardly, the order in which independent or shared
pairs of inverse actions are checked for redundancy is not
crucial, i.e., if no action from one pair of inverse actions
lies between an independent pair of inverse actions (situation
(a) in Figure 1) the first pair cannot influence the results of
the redundancy check of the second pair. For shared pairs of
inverse actions it is obvious that at most one of the pairs canbe

removed because after that only one action remains (situation
(d) in Figure 1). Nested pairs of inverse actions (situation(b)
in Figure 1) should be checked for redundancy, as indicated in
the example above, in such a way that the inner pair of inverse
actions is checked before the outer pair. Interleaving pairs of
inverse actions (situation (c) in Figure 1) are the most ‘tricky’
case because we can find two contradictory situations where
one of the orderings is wrong while the other is correct and
vice versa. Let(ax, ax′) and (ay, ay′) be interleaving pairs
of inverse actions such thatx < y < x′ < y′. If ax → ay
and another action placed betweenax and ax′ violates the
conditions in Proposition 2, then(ax, ax′) can be removed
only after(ay, ay′) is removed. On the other hand, ifay → ax′

and another action placed betweenay and ay′ violates the
conditions in Proposition 2, then(ay, ay′) can be removed
only after(ax, ax′) is removed. This shows that in general we
cannot find an ordering in which we check pairs of inverse
actions for redundancy.

Despite the above findings the pairs of inverse actions can be
efficiently ordered prior to their redundancy check. If(ax, ax′)
and(ay, ay′) are pairs of inverse actions then(ax, ax′) will be
checked for redundancy before(ay, ay′) if x > y (i.e. ax is
applied afteray in a given plan). The formal definition follows.

Definition 6. Letπ be a plan such that ifai, aj ∈ π and i < j

then and only thenai is applied beforeaj in π. We define a
relation≺ between pairs of inverse actions such that(ay, ay′)
(ax, ax′) ≺ (ay, ay′) if and only if x ≥ y. �

Using≺ for ordering pairs of inverse actions, however, does
not guarantee that some pairs of inverse actions do not have
to be re-checked for redundancy. On the other hand, we can
identify under which conditions we do not have to perform re-
checking for redundancy, i.e., every pair of inverse actions is
checked for redundancy at most once. These conditions draw

from the above example where we showed that when dealing
with interleaving pairs of inverse actions there is generally no
given order in which we can check the pairs for redundancy.
This is formalized in the following theorem.

Theorem 2. Let 〈(ax1
, ax′

1
), . . . , (axm

, ax′

m
)〉 be an ordered

sequence of pairs of inverse actions (all actions are present in
a given planπ) such that∀i, j : i < j, (axi

, ax′

i
) ≺ (axj

, ax′

j
).

If pairs of inverse actions are checked for redundancy in
sequence, then re-checking these pairs will only reveal new
information (i.e. mark a pair of inverse actions as redundant)
if and only if there are interleaving pairs of inverse actions
(axi

, ax′

i
), (axj

, ax′

j
) such that(axi

, ax′

i
) ≺ (axj

, ax′

j
) and

there is just onek such thatxi < k < x′

i, ak → axi
∨

eff−(ak) ∩ eff+(ax′

i
) 6= ∅ and k = x′

j .

Proof: Without loss of generality let (axp
, ax′

p
),

(axq
, ax′

q
) (1 ≤ p < q ≤ m) be pairs of inverse actions.

From the assumption we get that(axp
, ax′

p
) ≺ (axq

, ax′

q
)

and therefore(axp
, ax′

p
) is checked for redundancy before

(axq
, ax′

q
). There are four situations which can occur:

1) (axp
, ax′

p
) and(axq

, ax′

q
) areindependent. Proposition 2

says that only actions placed betweenaxp
and ax′

p
or

axq
and ax′

q
respectively can influence the decision as

to whetheraxp
andax′

p
or axq

andax′

q
respectively are

redundant. According to Definition 5 none of the actions
axq

, ax′

q
is placed betweenaxp

, ax′

p
or vice versa. Hence

the result of the redundancy check for(axp
, ax′

p
) cannot

be influenced by the result of the redundancy check for
(axq

, ax′

q
).

2) (axp
, ax′

p
) and(axq

, ax′

q
) areshared. According to Def-

inition 5 if either of the pair is redundant and removed
then the other one is no longer a pair of inverse actions
(it consists of only one action), e.g ifx′

q = xp and
(axp

, ax′

p
) is redundant and going to be removed, then

only the actionaxq
remains in the other ‘pair’. Hence,

if (axq
, ax′

q
) is redundant and going to be removed, then

(axp
, ax′

p
) is not redundant (after(axq

, ax′

q
) is removed).

3) (axp
, ax′

p
) and(axq

, ax′

q
) arenested. Given Definition 5

and the relation≺ we can see that the pair(axp
, ax′

p
)

is placed in between the pair(axq
, ax′

q
). From this

and Proposition 2 we can see that the result of the
redundancy check for(axp

, ax′

p
) cannot be influenced by

the result of the redundancy check for(axq
, ax′

q
). Note

that the result of the redundancy check for(axq
, ax′

q
)

may be influenced by the result of the redundancy check
for (axp

, ax′

p
), therefore it is necessary to check for

redundancy in the order given by≺.
4) (axp

, ax′

p
) and (axq

, ax′

q
) are interleaving. Given Defi-

nition 5 and the relation≺ we can see thataxp
is placed

in between the pair(axq
, ax′

q
) and ax′

q
in between the

pair (axp
, ax′

p
). The result of the redundancy check for

(axp
, ax′

p
) may be influenced by the result of redundancy

check for(axq
, ax′

q
) if and only if ax′

q
is the only action

which prevents the redundancy check for(axp
, ax′

p
)

to be successful (see Proposition 2). However, such

a specific case is reflected in the assumption of the
theorem and in other cases the result of the redundancy
check for(axp

, ax′

p
) cannot be influenced by the result

of the redundancy check for(axq
, ax′

q
).

In summary, we do not have to re-check the pair(axp
, ax′

p
)

after the pair(axq
, ax′

q
) is found to be redundant.

Taking into account ordering pairs of inverse actions given
by the relation≺, then the anticipated complexity of deter-
mining redundancy of these pair of actions isO(n2 + kl) (n
is the length of the plan,k is the number of pairs of inverse
actions andl is the highest number of actions placed between
any pair of inverse actions). This reflects the nonnecessity
for re-checking some pairs of inverse actions for redundancy,
however, in an unlikely case where some interleaving pairs of
inverse actions violate the assumption in Theorem 2 we have
to re-check remaining pairs of inverse actions for redundancy.

A. Grouping Nested Inverse Actions

Consider an example wherepickup(a), stack(a,b),
pickup(c), stack(c,d), unstack(a,b),
putdown(a) is a subsequence of some plan. We can
identify nested pairs of inverse actionsstack(a,b),
unstack(a,b) and pickup(a), putdown(a).
However, If pickup(c) is essential in the plan, then
the pairstack(a,b), unstack(a,b) cannot be removed
according to Proposition 2 becausepickup(c) is directly
dependent onstack(a,b) (stack(a,b) frees the robotic
hand for pickup(c)). On closer inspection, we can find
out that considered together the actionsstack(a,b),
unstack(a,b) and pickup(a), putdown(a) are
redundant in the plan but when considered on their own (as
a pair) the actionsstack(a,b), unstack(a,b) are not
redundant in the plan. Therefore it seems to be useful to
extend Proposition 2 for nested pairs of inverse actions.

The idea of ‘grouping’ nested pairs of inverse actions is
based upon an observation (indicated in the example above)
that sometimes the whole group of nested pairs of inverse
actions is redundant but a single pair of inverse actions is
not redundant. Let(ax, ax′) and (ay, ay′) be nested pairs
of inverse actions wherey > x and ax → ay. If some
action az (y < z < y′) is directly dependent onay then we
cannot remove either(ay, ay′) or (ax, ax′). It might describe
a situation whereax removes some atoms whichay puts
back for az. Removing bothax and ay therefore might not
cause inapplicability ofaz. We formalize this in the following
proposition.

Proposition 3. Let (ax, ax′) and (ay, ay′) be nested pairs of
inverse actions in some planπ such thatx < y < y′ < x′. If
all the following hold:

1) for all k such thatx < k < x′, k 6= y, k 6= y′ we have
ax 9 ak and eff−(ak) ∩ eff+(ax′) = ∅

2) for all k such thatx < k < y we have eff−(ak) ∩
pre(ax) = ∅

3) for all k such thaty < k < y′ we have eff−(ak) ∩
eff+(ay′) = ∅

4) for all k such thaty < k < y′ and ay → ak we have
pre(ak) ∩ eff+(ay) ⊆ pre(ax)

5) for all k such thaty′ < k < x′ and ay′ → ak we have
eff+(ax) ∩ eff+(ay′) ∩ pre(ak) = ∅

then the actionsax, ax′ , ay and ay′ are redundant inπ.

Proof: Assume that the actionsax, ax′ , ay and ay′ are
removed fromπ, a solution of some problem. Then we have
to show thatπ \ {ax, ax′ , ay, ay′} is still a solution of the
problem. We will analyze all situations with respect to the
position of some actionak.

• k < x — Straightforwardly, applicability or outcome of
ak is not affected by removing actions positioned after
it.

• x < k < y — Given condition 1), then according to
Proposition 2ak is not affected by removingax andax′ .
Removingay and ay′ does not affectak becauseak is
placed before them.

• y < k < y′ — Given condition 1), then according to
Proposition 2ak is not affected by removingax andax′ .
Condition 3) ensures that atoms present in the positive
effects ofay′ are not removed because from Definition 4
it can be seen that these atoms must be present beforeay
is executed. If no action placed in betweenay and ay′

removes some of these atoms, then they will remain valid
for actions placed afteray′ . If ay 9 ak, then according to
Proposition 2ak is not affected by removingay anday′ .
If ay → ak, then condition 4) says that atoms achieved
by ay to ak are already present beforeax is executed (the
atoms are in its precondition). Condition 2) says that none
of these atoms can be removed by actions positioned in
betweenax anday. Hence,ak is not affected by removing
the actionsax, ax′ , ay anday′ .

• y′ < k < x′ — According to Proposition 2ak is not
affected by removingay anday′ . Condition 5) says that
ak cannot become directly dependent onax after ay′ is
removed. This together with condition 1) results in the
fact thatak is also not affected by removingax andax′ .

• k > x′ — Conditions 1) and 3) ensures that atoms present
before application ofax or ay remain valid even if the
actionsax, ax′ , ay anday′ are removed. Hence,ak cannot
be affected.

In summary, we have shown that the remaining actions in
the plan are still applicable and by taking into account alsoa
special goal action (having all goal atoms in its precondition)
we can find out thatπ \ {ax, ax′ , ay, ay′} is a solution of the
given problem.

Even though the above proposition deals only with two
nested pairs of inverse actions, we believe that the proposition
can be generalized for more pairs. On the other hand, in the
most of planning domains it is not necessary to take into
account more than two such pairs.

VIII. I MPLEMENTATION DETAILS

A high-level design of our post-planning plan optimization
algorithm is depicted in Algorithm 1. The optimization tech-

Algorithm 1 High-level design of our plan optimization
algorithm

1: Determine action direct dependencies and dependencies
2: Determine pairs of inverse actions and sort them with

respect to≺ (see Definition 6)
3: Mark such actions on which the goal is not dependent
4: repeat
5: Check pairs of inverse actions for redundancy and mark

actions if redundant
6: until No action has been marked or none of the inter-

leaving pairs of inverse actions violates the conditions of
Theorem 2

7: Check grouped nested pairs of inverse actions for redun-
dancy and mark actions if redundant

8: Remove marked actions from the plan

niques discussed in this paper are applied from the easiest one
to the most difficult one. This is because actions marked for
removal by easier techniques do not have to be considered
by more difficult techniques. This is obviously more efficient.
One technical detail which might not be obvious from the
theory given in the previous sections is in handling marked
(redundant) actions which are going to be removed. Marked
actions should be treated as actions which are no longer
in the plan. However, this might cause changes in direct
dependency relations. To avoid recomputation of action (di-
rect) dependencies every time some actions have been marked
we can use the following observation. Letax and ax′ be a
pair of inverse actions andak an action placed in between
them. If ak has been marked, then an actional placed in
betweenak andax′ may become directly dependent onax if
eff+(ax) ∩ eff+(ak) ∩ pre(al) 6= ∅. This follows directly from
Definition 3.

For illustration, the algorithm for checking redundancy of
pairs of inverse actions is depicted in Algorithm 2. Clearly,
we cannot remove the pair if one of its action has already
been marked (Line 2) since it refers to shared pairs of inverse
actions where one of them has been marked for removal.
Following the observation mentioned above,atoms (Line 9)
stands for atoms which are created byax (the first action in the
pair) and at least one of the marked actions. In other words,ax
might become an achiever for some other action and therefore
the other action might become directly dependent onax. This
is verified in Line 11, where besides verifying the conditions
of Proposition 2 we have to check whether a precondition
of a given action contains an atom (or atoms) fromatoms.
If so, then removing some actions in betweenax and the
given action would result in the given action becoming directly
dependent onax.

The same philosophy can be use when implementing the
other algorithms (Lines 6 and 7 in Algorithm 1) if we do not
want to recompute the direct dependency relation each time
we mark some action(s) for removal.

Domain no. of problems original optimized factor time goal not dep. inverse grouped inverse re-checks
LPG

Depots 22 1099 1029 6.4% 0.23s 0 68 8 0
Driverlog 20 1477 1251 15.3% 0.46s 0 226 0 0
Gold-miner 30 1370 1149 16.1% 0.43s 1 220 0 0
Matching-BW 11 909 805 11.4% 0.52s 0 40 64 0
Storage 27 5818 1676 71.2% 2.43s 0 3986 156 1
Zeno 20 958 946 1.3% 0.17s 0 12 0 0

Metric-FF
Depots 20 968 884 8.7% 0.28s 4 60 20 1
Driverlog 17 617 599 2.9% 0.23s 0 18 0 0
Gold-miner 28 738 738 0.0% 0.49s 0 0 0 0
Matching-BW 13 948 880 7.2% 0.40s 0 4 64 0
Storage 18 281 281 0.0% 0.16s 0 0 0 0
Zeno 20 632 631 0.2% 0.13s 1 0 0 0

LAMA
Depots 22 1310 1153 12.0% 0.48s 5 116 36 0
Driverlog 20 1315 1183 10.0% 0.51s 0 132 0 0
Gold-miner 30 2798 2798 0.0% 1.64s 0 0 0 0
Matching-BW 16 1512 1204 20.4% 0.59s 0 112 196 0
Storage 19 496 450 9.3% 0.28s 0 38 8 0
Zeno 20 692 686 0.9% 0.44s 6 0 0 0

TABLE I
EXPERIMENTAL RESULTS SHOW THE PERFORMANCE OF OUR PLAN OPTIMIZATION APPROACH.

Algorithm 2 Algorithm for checking pairs of inverse actions
for redundancy

1: for all (ax, ax′) in the sequence of pairs of inverse actions
ordered by≺ do

2: if ax or ax′ is markedthen
3: continue
4: end if
5: viol := false

6: atoms := {}
7: for k := x+ 1 to x′ − 1 do
8: if ak is markedthen
9: atoms := atoms ∪ (eff+(ax) ∩ eff+(ak))

10: else
11: viol := ak → ax ∨eff−(ak)∩eff+(ax′)∨atoms∩

pre(ak) 6= ∅
12: end if
13: if viol then
14: break
15: end if
16: end for
17: if ¬viol then
18: mark bothax andax′

19: end if
20: end for

IX. EXPERIMENTAL EVALUATION

For evaluation purposes we chose several IPC benchmarks
(typed strips), namely Depots, Zeno, DriverLog, Matching-
BlockWorld, Gold-Miner and Storage. As benchmarking plan-
ners we chose Metric-FF [17], LAMA 2011 [9] and LPG-
td [6]. All the planners successfully competed in the IPC. LPG
was optimized for speed and ran with a random seed set to
12345. LAMA was set to use lazy greedy best first search

accommodated by Landmark and FF heuristics. Metric-FF
ran in default settings. Only problems solved by the planners
within 1000s were considered.

Our method for plan optimization through looking for
redundant actions is implemented in C++. The method support
typed STRIPS representation in PDDL [18]. The experiments
were performed on Intel i5 2.8 GHz, 8GB RAM, where
Ubuntu Linux was used for running planners and Windows
7 for running our method.

Cumulative results (aggregated results of all problems con-
sidered in a particular domain) are presented in Table I.
“Factor” is the percentage by which the plans were shortened
(optimized) by our approach. “Time” is the time our method
needed for the optimization of all problems considered in
a given domain. “Re-checks” is the number of times the
conditions of Theorem 2 were violated, i.e., how many times
we had to re-check pairs of inverse actions for redundancy. The
best overall results were achieved for LPG, especially in the
Storage domain the plans were shortened by more than 70%!
LPG is a planner based on greedy local search techniques
and it is therefore to be expected that the solutions are often
obtained in a little time but their quality tends to be low. In
many cases (except the Zeno domain), these solutions can be
significantly improved by our method focused on eliminating
redundant inverse actions in a very little time (at most tens
of milliseconds per problem). Metric-FF, a successor of the
well known FF planner [8], uses best-first search techniques
accompanied by a heuristic which is inadmissible but quite
well informative. The solutions are not optimal but usually
are of higher quality. In this case, fair results were achieved
only in the Depots and Matching-BW domains. The state-
of-the-art planner LAMA uses greedy search accompanied
with Landmark and FF heuristic. The solutions are generally
obtained more quickly but their quality is lower. Our method

gained promising results (shortening the solutions by more
than ∼10%) in four domains. However, in the Gold-miner
domain our method was not able to identify any redundant
actions even though the solutions (of the problems in the
Gold-miner domain) are far from being optimal. The Gold-
miner domain is basically about finding a way through the
maze to find and collect gold. There are obstacles in the maze
which can be removed either by bomb or by laser. The specific
issue in this domain is that if we use a bomb, the bomb is
‘consumed‘ and we have to collect another one. On the other
hand, if we use a laser, the laser remains in the hand and
can be used again. Preferring bombs to lasers for removing
obstacles causes a significant growth of the solution length.
However, this strategy does not produce plans with redundant
inverse actions which makes our method inefficient.

It is not surprising that we were able to identify only a
few redundant actions by a simple analysis of the action
dependency relation (i.e., actions are redundant if the goal
is not dependent on them). Identifying redundant pairs of
inverse actions revealed most of the redundant actions. The
ordering in which pairs of inverse actions were checked for
redundancy (see Section VII) showed its efficiency since we
had to re-check the pairs for redundancy only in two cases
(∼0.5% of all the checks). Grouping nested pairs of inverse
actions (see Section VII-A) was beneficial especially in the
Depots and Matching-BW domains. This is because a single
hoist (or robotic hand) operates over more pallets (or spots)
on which objects (e.g crates) can be stacked, and we need two
actions to move an object from one stack to another using the
hoist (or robotic hand). As indicated in the example discussed
in Section VII-A, it might easily happen that in some plan
we move an objecta between some stacks, then an objectb

between two stacks on whicha has not been stacked, and then
movea back. Movinga somewhere and then back is obviously
redundant but we have to remove all four actions responsible
for this at once.

The presented techniques for determining redundant actions
in plans are focused on the most common situations but
cannot reveal all redundant actions. Our aim is to provide
a computationally easy method for determining redundant
actions. Due to the NP-hardness of the problem of determining
the maximal set of redundant actions in a given plan, we
cannot guarantee to find all of the redundant actions. Plan
optimization besides determining redundant actions is also
about determining whether some subsequence of actions in a
plan can be replaced by a shorter (or optimal) subsequence
of actions. Current techniques that have been mentioned
such as Neighborhood Graph search [12] and AIRS [13] are
addressing this issue. However, our method is complementary
to these techniques rather than a competitor. We believe that
our method can be used to ‘pre-optimize’ plans before more
sophisticated techniques (such as one of these) are applied.

X. CONCLUSIONS

In this paper we have presented techniques for determin-
ing redundant actions in plans, especially pairs or grouped

nested pairs of inverse actions. This can be used for post-
planning plan optimization since redundant actions can safely
be removed from plans. The efficiency of the process of
checking pairs of inverse actions for redundancy has also been
considered and we suggested in which order these pairs should
be checked. We have presented relevant theoretical founda-
tions and provided an empirical evaluation of the proposed
techniques for determining redundant actions. The empirical
evaluation then showed that plans can be fairly optimized
(shortened) in a very short time (tens of milliseconds).

In future we are going to investigate how we can efficiently
find non-optimal subsequences of actions (not necessarily
adjacent) in plans. This should deal with issues such as
LAMA’s non-optimal strategy in solving the Gold-miner prob-
lems (discussed in the previous section). Also we will study
how to extend our approach for non-classical planing (e.g.
temporal or probabilistic planning).

Acknowledgements

The research was funded by the UK EPSRC Autonomous
and Intelligent Systems Programme (grant no. EP/J011991/1).

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso,Automated planning, theory and
practice. Morgan Kaufmann Publishers, 2004.

[2] T. Bylander, “The computational complexity of propositional strips
planning,” Artificial Intelligence, vol. 69, pp. 165–204, 1994.

[3] M. Helmert, “Complexity results for standard benchmark domains in
planning,” Artificial Intelligence, vol. 143, no. 2, pp. 219–262, 2003.

[4] M. Helmert, “New complexity results for classical planning bench-
marks,” in Proceedings of ICAPS 2006, 2006, pp. 52–62.

[5] E. Fink and Q. Yang, “Formalizing plan justifications,” inIn Proceedings
of the Ninth Conference of the Canadian Society for Computational
Studies of Intelligence, 1992, pp. 9–14.

[6] A. Gerevini, A. Saetti, and I. Serina, “Planning in pddl2.2 domains with
lpg-td,” in Proceedings of the fourth IPC, 2004.

[7] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
Artificial Intelligence, vol. 90, no. 1-2, pp. 281–300, 1997.

[8] J. Hoffmann and B. Nebel, “The FF planning system: Fast plangenera-
tion through heuristic search,”Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[9] S. Richter and M. Westphal, “The lama planner: guiding cost-based any-
time planning with landmarks,”Journal Artificial Intelligence Research
(JAIR), vol. 39, pp. 127–177, 2010.

[10] S. Edelkamp and P. Kissmann, “Gamer: Bridging planning andgeneral
game playing with symbolic search,” inProceedings of the sixth IPC,
2008.

[11] L. Chrpa, T. L. McCluskey, and H. Osborne, “Optimizing plans through
analysis of action dependencies and independencies,” inProceedings of
ICAPS, 2012, 338–342.

[12] H. Nakhost and M. M̈uller, “Action elimination and plan neighborhood
graph search: Two algorithms for plan improvement,” inProceedings of
ICAPS, 2010, pp. 121–128.

[13] S. J. Estrem and K. D. Krebsbach, “Airs: Anytime iterative refinement
of a solution,” inProceedings of FLAIRS, 2012, pp. 26–31.

[14] C. H. Westerberg and J. Levine, “Optimising plans using genetic
programming,” inProceedings of ECP, 2001, pp. 423–428.

[15] D. Chapman, “Planning for conjunctive goals,”Artificial Intelligence,
vol. 32, no. 3, pp. 333–377, 1987.

[16] L. Chrpa, “Generation of macro-operators via investigation of action
dependencies in plans,”Knowledge Engineering Review, vol. 25, no. 3,
pp. 281–297, 2010.

[17] J. Hoffmann, “The metric-ff planning system: Translating”ignoring
delete lists” to numeric state variables,”Journal Artificial Intelligence
Research (JAIR), vol. 20, pp. 291–341, 2003.

[18] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, and D. Weld,
“Pddl - the planning domain definition language,” Tech. Rep.,1998.

