H

University of
HUDDERSFIELD

University of Huddersfield Repository
Chrpa, Lukas, McCluskey, T.L. and Osborne, Hugh
Determining Redundant Actions in Sequential Plans
Original Citation

Chrpa, Lukas, McCluskey, T.L. and Osborne, Hugh (2012) Determining Redundant Actions in
Sequential Plans. In: Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International
Conference on. IEEE, pp. 484-491. ISBN 9781479902279

This version is available at http://eprints.hud.ac.uk/id/eprint/16949/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Determining Redundant Actions in Sequential Plans

Lukas Chrpa, Thomas Leo McCluskey, Hugh Osborne
Knowledge Engineering and Intelligent Interfaces Rede&@moup
School of Computing and Engineering
University of Huddersfield
Email: {I.chrpa, t.l.mccluskey, h.r.osborp@hud.ac.uk

_ Abstract—Automated planning even in its simplest form, clas- be redundant only all together (and not on their own). Despit
sical planning, is a computationally hard problem. With the the fact that dealing with pairs of ‘grouped’ pairs of invers
increasing involvement of intelligent systems in everyday life actions does not cover all possibly redundant actions we

there is a need for more and more advanced planning techniques beli that hin th ¢ is able to det .
able to solve planning problems in little (or real) time. However, elieve that our approach in the most cases IS able to determi

planners designed to solve planning problems as fast as possiblemost of these redundant actions. The presented techniques f
often provide solution plans of low quality. The quality of solution ~ determining redundant actions are accompanied by negessar
plans can be improved by their post-planning analysis by which theoretical foundations and are also empirically evalliate
redundant actions or optimizable subplans can be identified. In using existing planning systems, which successfully cdege

this paper, we present techniques for determining redundancy of . . .
actions in plans. Especially, we present techniques for efficient at the International Planning Competition (Iljcand standard

redundancy checking of pairs of inverse actions. These technigge Planning benchmarks. Our approach can be understood as a
are accompanied with necessary theoretical foundations and are supporting technique for the state-of-the-art plan optation

also empirically evaluated using existing planning systems and techniques (Neighborhood Graph [12], AIRS [13] — see

standard planning benchmarks. Section Il) rather than their competitor. This is because ou
Keywords-sequential plans; post-planning plan optimization; approach can identify and remove redundant actions in a very
redundant actions; inverse actions short time (as discussed in Section 1X) and therefore enable

the state-of-the-art techniques to be more efficient.
|. INTRODUCTION

Automated planning [1] even in its simplest form, classi- Il. RELATED WORKS
cal planning, is intractable (PSPACE-complete) [2]. Optim Approaches to plan optimization using genetic program-
planning, in classical planning finding the shortest plass, ming are promising, though the relation between plan genera
generally harder than satisfying planning (i.e. finding angon time and optimization time is unclear [14]. The recent
solution) [3], [4]. Therefore it is not surprising that pestrelated work [12] proposes a Neighborhood Graph search
planning plan optimization in generally NP-hard [5]. technique for plan optimization. It expands a limited nuntfe

Nowadays intelligent systems are becoming ubiquitoudes around each state along the plan to a produce a Neigh-
which requires the development of more and more advandgsthood Graph and then, by applying Dijsktra’s algorithin, i
planning systems which are able to operate in almost refihds a shortest path within the neighborhood. The most tecen
time. For instance, sometimes it is necessary to providewark [13] presents AIRS, an algorithm for plan optimization
solution very quickly to avoid imminent danger for a robotlanAIRS heuristically investigates whether two states alomg t
prevent significant financial losses. There are planningnesg plan might be closer (i.e., a smaller number of actions is
which focus on speed of the planning process rather than #geded to move from one state to the other one). If such
quality of solutions. A good example is LPG [6], a plannestates are found then optimal or nearly-optimal planner is
which performs a greedy local search in a Planning Graph [gpplied to re-plan. However, these methods are restricted t
FF [8] and LAMA [9] should also be mentioned which usegocal optimality and do not exploit the information withihet
weighted A« with an inadmissible but well informed heuristic.plan structure (e.g some actions might lie far from eachrothe
In optimal planning, there is GAMER [10], a planner basegh a plan but can be adjacent in some permutation of the plan).
on exploring Binary Decision Diagrams.

In this paper we focus on determining redundant actions lIl. PRELIMINARIES
in plans which can then be safely removed from the plans.cjassical planning (in state space) deals with finding a
This work is an extension of our previous work [11] whergequence of actions transforming the static, determinéstid
we presented some basic foundations related to determinfafly observable environment from some initial state to a
redundant actions. Here, we present an efficient method f¥sired goal state [1].
redundancy checking of pairs of inverse actions which sig-|n the set-theoretic representatiamoms which describe

nificantly reduces the necessity for re-checking the pairs fthe environment, are propositiorBtatesare defined as sets of
redundancy once again. Moreover, we present a technique for

determining ‘grouped’ pairs of inverse actions which might !http://ipc.icaps-conference.org

propositionsActions are specified via sets of atoms specifying and only if7’ = 7\ {ay,, ..., as,} iS a solution plan ofl.
their preconditions, negative and positive effects (ie.= Henceforth,{a,,,...,a,,} is denoted as a set of redundant
(pre(a), eff (a), efft (a))). An actiona is applicable in a state actions in.]

s iff pre(a) C s. Application ofa in s results in a statés \
— L : . ; Remark 1. Note that if a set of actions!, is redundant in
ff ff* (a) if licabl th th It) ® .

eff (a)) Ueff" (a) if ais applicable ins, otherwise the resu m, then a set of actionsl, such thatA, C A, might not

of the application is undefined. . .) .
In the classical representation atoms are predicates.bﬁ redundant inr. In literature [12], a plan" obtained by

Planning operator o — (naméo), pre(o), eff (o), eff* (o)) is removing redundant actions from is called areduction of
a generalized action (i.e. an action is a grounded instaite o i

operator), whersmameo) = op_namezy,...,zx) (Op_name Definition 2. LetII be a planning problem and its solution
is an unique operator name angl . .. x; are variable symbols plan. We say that a set of redundant actioAs in = is
(arguments) appearing in the operator) @nelo), eff (o) and maximal if and only if for every set of redundant actions
eff’ (o) are sets of (unground) predicates. The set-theoreiicr holds that|A,| > |A.]. |

representation can be obtained from the classical repgiesen , . : .
tion by grounding. Finding a maximal set of redundant actions is desirable for

A planning domain is specified via sets of predicates an@Ptimizing plans. However, it has been proven that the jerbl

planning operators (alternatively propositions and asjoA of/determining_the existence .m’(, a reduction ofr, such that
planning problem is specified via a planning domain, initiall™ | < & for @ given constant is NP-hard [12]. Consequently,

state and set of goal atoms. plan is a sequence of actions.Nding & minimal reduction, i.e., a shortest plahwhich is
A plan is asolution of a planning problem if and only if a a reduction ofr, is NP-hard as well. This is summarized in

consecutive application of the actions in the plan (stgrtm e following theorem.
the initial state) results in a state, where all the goal atane Theorem 1. Determining a maximal set of redundant actions
satisfied. A solutionr of a given problem isoptimal if for 4 in a given planr is NP-hard.
any solutions’ of the given problemr| < |7’|. o o

In sequential classical (STRIPS) planning it is not neagssa Proof: This is analogous to the problem of finding a
for an atom to be present in both negative and positive effe@@inimal reduction which is NP-hard [12]. =
of an action or operator because applying the action (opgrat Despite the NP-hardness of the problem of determining
always results in a state where the atom is present. On tee oth maximal set of redundant actions in many cases a lot of
hand, in parallel planning keeping an atom in both negatik aredundant actions can be determined in polynomial time. We
positive effects might be useful because it prevents ureeaniVill therefore focus on situations where redundant act{ens.
parallel execution of certain actions. Similarly, in seotid Pairs of inverse actions) can be identified easily (in pohred
classical planning it is not necessary to have an atom in bdtfe) which, we believe, reveals most of the redundant astio
the precondition and positive effects of an action becahse t
atom must be already present before the action can be applied V. ACTION DEPENDENCIES

Henceforth, we will assume that every action or planning actions ordered in plans influence each other. An action

operatore satisfies the following conditions: achieves atoms which are preconditions for some actions

eff (a) N eff" (a) 0 @ but_ on [t1h5e] gherllhand ‘clob_ber’ (f)to(rg)s(gequ_iredwgy other
actions [15]. Recalling constraints (1), ection R can

pre(a) Neff’(a) = 0 (2) see that actions violating constraint (1) are ‘false clobls

In sequential classical planning we can easily show thatyevavhile actions violating constraint (2) are ‘false achiever

planning domain has its equivalent which follows constsainInspired by the meaning of causal links known in plan-space

(1) and (2). If (1) is not satisfied for an actiom then planning, we can identify dependencies between the actions

a is modified by removingeff™ (a) N efff (a) from eff (a). in a given sequence (plan) in terms of which actions achieve

Similarly, if (2) is not satisfied, thea is modified by removing atoms to other actions that need them as their precondi-

pre(a) Neff" (a) from efft (). Note that if both conditions are tion [16]. The formal definition follows.

violated then the action must be modified to satisfy first (:Befinition 3. Let

and then (2).

(ay,...,a,) be an ordered sequence of

actions. An actiona; is directly dependent on an ac-
IV. REDUNDANT ACTIONS tion q; (denoted asa; — aj) if and Only if i < 7
In non-optimal planning, solution plans may contain actio (eﬁ:(ai) N pre(a;) # @ and (eff"(a;) N pre(a;)) &

]
which are not necessary and can be omitted. We call th éFiH.eﬁJr(at.)' . . .
. . . -An action a; is dependent on an actiona; if and only if
actions redundant actions when their removal from a saiutio :

. .) o . a; —* a; where —* is the reflexive transitive closure of the
plan still results in a solution plan. This is formalized del rélation ;

Definition 1. LetII be a planning problem and its solution -~ denotes that actions are not directly dependent and
plan. We say that actions,,, ..., a,, € wareredundantin = denotes that actions are not dependent. |

To obtain a complete model of these relations in solutidBection VII. We can formally define four ways in which pairs
plans we have to use two special actioms:= (0,0,) (I is of inverse actions can be placed within a given plan (for
an initial state for a given problem) ang, = (G,0,0) (G is illustration, see Figure 1).

a set of goal atoms for a given problem). Relations of acti

direct dependencies and dependencies can be fouitif
P D Orin) y <y"andz < y. Letw be some plan and,, a,/,ay,a, €7

te [length of a pl 16]. . . .
steps Lis a 9 a plan) [16] o . .Pe actions such thdu,, a,/) and(a,, a,/) are pairs of inverse
Given the action dependence relation it is easy to |dent|3/ tions. For indices. 1 such that actionss,. a. ¢ it holds

which actions do not contribute to the goal (i.e. the speciﬁf ' > J v

goal actiona, is not dependent on them). Such actions ar ati < j if and only ifa; is applied befores; in 7. We say

Befinition 5. Letz, 2/, y andy’ be indices such that < 2,

redundant. This is formalized in the following propositigar at

the proof, see [11]). 1) the pairs(a,, a,/) and(ay, a,/) areindependent if =’ <
Proposition 1. Letw = (a1,...,a,) be a sqlut|0n planof a 2y the pairs(ay, a,/) and (ay,a,) are nested if y < 2,
plannm_g problemIT and ag ={G,0,0} (G is a set of goal 3) the pairs(a,, ay’) and (ay, a,) are interleaving if y <
atoms inII) be an action. Letd™ = {a; | a; € m,a; »* a4} o and 2’ </,

be a set of actions on which the goal is not dependent. Them) the pairs(a,, a,+) and (ay, a,) are shared if o =y or

all actions in A~ are redundant inr. o =yoraz =y

VI. INVERSEACTIONS .

In planning, action effects are often reversible. For eX@amp v/||. | bENTIFYING REDUNDANT INVERSEACTIONS IN
picking a block up from the table can be reversed by putting PLANS

the block down on the table. Informally, if an application of)) .
an actiona in a states results in a state’ and an application Inverse actions are obviously redundant if they are exelcute

its subset, them’ reverts the effects of the actian In other ily adjacent in plans but still be redundant. For example, if

words, the actiord’ is inverse to the actiom. The formal SOmMe plan contains a sequermeckup(a) (pick up a block
definition follows. a from the table)nove(r, | 1,12) (move a robot- from a

o _ _ _ locationi1 to [2), put down(a) (put the blocka on the table),
Definition 4. We say that actiom and o’ are inverse if and then the inverse actionpi ckup(a) and put down(a)
only if a consecutive application of and o’ in any states are redundant because the actimove(r,|1,12) is not
wherea is applicable results in a state’ such thats’ C s. B influenced by any of them. On the other hand, if some plan

The above definition might look too general. BasicallfONSIStS @ sequencei ckup(a), paint(a, red) (paint
actions with interchanged positive and negative effect afiePlock a by red paint), put down(a), then the inverse

inverse if also their preconditions contain all atoms pnesg 2ctionspi ckup(a) and put down(a) are not redundant
in their negative effects. This is formalized in the follagi P€cause the actiqmai nt (a, r ed) requires the block to be
lemma. held by the robotic hand. Distinguishing between thesescase

can be done by analyzing action dependencies in plans. In
Lemma 1. Let a,a’ be actions. If eff(a) C pre(a), the following proposition we show that if no action placed
eff (') C pre(d’), eff (a) = eff"(«) and eff (a) = eff" (¢’) petween inverse actions anda’ in a given plan is directly
then the actions: and o’ are inverse. dependent om or ‘clobbers’ an atom given back by, then

.) .)
Proof: Without loss of generality we assume that acictionsa anda’ are redundant in the given plan.

tions a and ' can be consecutively applied in a state Pproposition 2. Let w = (ay,...,a,) be a plan. Leta;,a; €
Thfn the result of SUCJ: an application ig{s \ eff (a)) U 7 i < j be inverse actions. If there is no actiop (i < k < j)
eff’ (a)) \ eff (a’)) U eff" (a’). From the assumption we get:such thata; — ay. or eff (a) Nefft (a;) # 0, thena; and a;

(((s \ eff (a)) U eff" (a)) \ eff" (a)) U eff (a) C s (from the are redundant inv.
assumption can be easily obtained thfit (a) C s). The proof

is done analogously for a consecutive applicatiom/oénd a Proof: See [11]. o u
in some states. u The previous proposition gives an insight into how we can

Pairs of inverse actions, which are potentially redundartietect redundant inverse actions._ For a pair of inversa.rm:ti
might influence each other in plans. Therefore, it is useffe need (at worstO(l) steps { is the number of actions
to analyze positions of pairs of inverse actions in phauﬂ@aced between the inverse ones) to decide yv_hether they are
because then we can identify potential interferences stwgdundant or not. A naive approach for deciding redundant
particular pairs of inverse actions. Informally, by ineménces actions and eliminating them from a plan [11] works in the
we mean situations when some pair of inverse actions canfjtowing way:
be removed from a plan before some other pair of inversel) Construct action (direct) dependencies and identifyspai
actions is removed. This is discussed more thoroughly in of inverse actions

(@) (b) (© (d)

Fig. 1. Ways of placement of inverse actions in plans: (a) pedeent, (b) nested, (c) interleaving, (d) shared

2) For each pair of inverse actions decide whether they ammoved because after that only one action remains (situati
redundant (according to Proposition 2). (d) in Figure 1). Nested pairs of inverse actions (situafion

3) Remove redundant actions from the plan. If no actian Figure 1) should be checked for redundancy, as indicated i
has been removed then terminate otherwise go to stiye example above, in such a way that the inner pair of inverse
1). actions is checked before the outer pair. Interleavingspafir

As mentioned before step 1) can be done’in?) steps 6 inverse actions (situatior_1 (c) in Figure 1) are thg mo_sd:kyl

is the length of the plan). Step 2) can be done in at worg#Se because we can find two cqntradlctory S|'tuat|ons where
O(kl) steps wheré: is the number of pairs of inverse action®N€ of the orderings is wrong while the _other is _correcf[and
and [is the highest number of actions placed between aMife versa. Let(a;,a,s) and (ay,a,) be interleaving pairs
pair of inverse actions. In the worst case we may repeat tiinverse actions such that < y < a2’ <y If a, — a,
whole process: times, hence the (worst case) complexity i§nd another action placed between and a,: violates the
O(k(n? + kl)). conditions in Proposition 2, thefu,,a,/) can be removed

For example, if some plan contains a sequen&!"y after(ay,ay,)_ is removed. On the other hanc_jai; — Qg
unst ack(a, b) put down(a) pi ckup(a) and another action placed betweep and a, violates the
stack(a, b) we can see that pairs of inverse action§onditions in Proposition 2, thefu,,a,) can be removed
(unst ack(a, b), stack(a, b)) and utdown(a) only after(a,, a,s) is removed. This shows that in general we
pi ckup(a)) are nested. Using common sense we haf@nnot find an ordering in which we check pairs of inverse
to remove the inner pairpQt down(a), pickup(a)) actions for redundancy.
before trying to remove the outer paiur(st ack(a, b), Despite the above findings the pairs of inverse actions can be
stack(a, b)). However, using the above approach we ma§fficiently ordered prior to their redundancy check(df, a.)
try to remove the outer pair at first which is not possible sinénd(ay, a,) are pairs of inverse actions thém,, a.) will be
put down(a) is directly dependent orunstack(a, b). checked for redundancy befofe,, a,) if z > y (i.e. a, is
We have to therefore try again to remove the outer pair fPplied aftew,, in a given plan). The formal definition follows.

the following iterations which will succeed if and only ifeh Definition 6. Let be a plan such that if;, a; € « andi < j

inner pair is removed. then and only them; is applied befores; in 7. We define a

The above example gives an insight into in which orderiion - petween pairs of inverse actions such tha, a,)
we should check pairs of inverse actions for redundanc()& ay) < (ay,a,) if and only ifz > y
xy g’ y s Uy’ = Y-

Straightforwardly, the order in which independent or stare
pairs of inverse actions are checked for redundancy is notUsing < for ordering pairs of inverse actions, however, does
crucial, i.e., if no action from one pair of inverse actiongot guarantee that some pairs of inverse actions do not have
lies between an independent pair of inverse actions (&tuatto be re-checked for redundancy. On the other hand, we can
(a) in Figure 1) the first pair cannot influence the results adentify under which conditions we do not have to perform re-
the redundancy check of the second pair. For shared pairschécking for redundancy, i.e., every pair of inverse adimn
inverse actions it is obvious that at most one of the pairsdoeanchecked for redundancy at most once. These conditions draw

from the above example where we showed that when dealing a specific case is reflected in the assumption of the

with interleaving pairs of inverse actions there is gergnab theorem and in other cases the result of the redundancy
given order in which we can check the pairs for redundancy. check for(a,,, a%) cannot be influenced by the result
This is formalized in the following theorem. of the redundancy check fdr,, , .,).

Theorem 2. Let ((as,.ay), . . (as,,,a,) be an ordered In summary, we do not have to re-check the qu,aw,p)

sequence of pairs of inverse actions (all actions are presen after the pair(a%’a‘%) is found to be redundant. .
a qiven IamrF)) such thatvi, j : i < j, (as,, ay) < (a 2) Taking into account ordering pairs of inverse actions given
9 P g Gz, Gz} NEAONEA kr)1y the relation=<, then the anticipated complexity of deter-

If pairs of inverse actions are checked for redundancy ify. .) : 5
sequence, then re-checking these pairs will only reveal ndW!ng redundancy of these pair of actionstin” + kl) (n

information (i.e. mark a pair of inverse actions as redunk;ianIS t_he Iength_ of the _planlg Is the number .Of pairs of inverse
. . ;) . . . __actions and is the highest number of actions placed between
if and only if there are interleaving pairs of inverse action

any pair of inverse actions). This reflects the nonnecessity
(ag,,a4), (az.,a,) such that(a,,,ar) < (az,,a,) and .) .)
Jidn NI T i S AT for re-checking some pairs of inverse actions for redunglanc
there is just onek such thatz; < k < zjax — g, V h i likely case where some interleaving pdirs o
eff (ax) Nefft (ay) # 0 andk = 2. NIOWEVET, I an Unfikely I gp
i J inverse actions violate the assumption in Theorem 2 we have
Proof: Without loss of generality let (am,,, aIL)1 to re-check remaining pairs of inverse actions for redungan
(az,,aqz;) (1 < p < g < m) be pairs of inverse actions.
From the assumption we get thédz_tp,a%) < (azq,amg) _ .
and therefore(a,,,a,,) is checked for redundancy before Consider an example whep ckup(a), stack(a, b),
(az,, a5). There are four situations which can occur: pi ckup(c), stack(c, d), unstack(a, b),
! _ N put down(a) is a subsequence of some plan. We can
1) (az,,aq;) and(as,, a;,) areindependentProposition 2 jqentify nested pairs of inverse actionst ack(a, b),
says that only actiqns placeq betweey, and gz OF ynst ack(a, b) and pickup(a), putdown(a).
ag, and Qa, respectively can influence the QeC|S|on aBjowever, If pi ckup(c) is essential in the plan, then
to whethera,, anda,, or a,, anda,, respectively are the pairst ack(a, b) , unst ack(a, b) cannot be removed
redunda_nt. According to Definition 5 none of the aCtionﬁccording to Proposition 2 becaupéckup(c) is directly
Az, Az 1S placed betweea,, , a,; Or vice versa. Hence gependent ost ack(a, b) (st ack(a, b) frees the robotic
the result of the redundancy check far, ., a.;) cannot hang for pi ckup(c)). On closer inspection, we can find
be influenced by the result of the redundancy check fg{; that considered together the actiossack(a, b),
(axq,am;)-) unstack(a, b) and pickup(a), putdown(a) are
2) (az,,aq;,) and(a,,, a,;) areshared According to Def- requndant in the plan but when considered on their own (as
inition 5 if either of the pair is redundant and removeg pair) the actionst ack(a, b) , unst ack(a, b) are not
then the other one is no longer a pair of inverse actiopggundant in the plan. Therefore it seems to be useful to
(it consists of only one action), e.g if; = z, and extend Proposition 2 for nested pairs of inverse actions.
(aa,,0a4;) is redundant and going to be removed, then The jdea of ‘grouping’ nested pairs of inverse actions is
only the actiona,,, remains in the other ‘pair'. Hence, pased upon an observation (indicated in the example above)
if (az,,a.;) is redundant and going to be removed, thefhat sometimes the whole group of nested pairs of inverse
(@a,,, az;) is not redundant (afte, , a.;) is removed). actions is redundant but a single pair of inverse actions is
3) (az,,as;) and(az,, a,,) arenested Given Definition 5 ot redundant. Let(a,,a,) and (a,,a,) be nested pairs
and the relation< we can see that the palitz,. a.;) of inverse actions wherg > = and a, — a,. If some
is placed in between the paifu;,,as;,). From this actiona, (y < = < ') is directly dependent on,, then we
and Proposition 2 we can see that the result of thennot remove eithefa,, a,/) Of (g, a,). It might describe
redundancy check fdiu.,, a.;) cannot be influenced by 5 sjtyation wheren, removes some atoms which, puts
the result of the redundancy check far;,, a.;). Not€ pack for a,. Removing botha, and a, therefore might not

that the result of the redundancy check fat.,, a.;) cause inapplicability of... We formalize this in the following
may be influenced by the result of the redundancy cheglgposition.

for (a.,,a.:), therefore it is necessary to check for - _

redundanci in the order given by PrOpOSItlon 3. Let (az, am/) and (ay,ay/) be nested pairs of
4) (ag,,a,) and (a,,,a,) areinterleaving Given Defi- inverse actions in some plan such thatr < y <y’ < 2/. If

nition 5 and the relation we can see that, is placed all the following hold:

in between the pai(a,,,a.;) anda,, in between the 1) for all k such thatz < k < 2’k # y,k # y' we have

pair (az,,, as;). The result of the redundancy check for az = ap and eff (ay) Neff (ay) = 0

(az,,as,) may be influenced by the result of redundancy 2) for all k£ such thatz < k < y we have eff(a;) N

check for(ay,, a,;) if and only if a,, is the only action pre(a,) =0

which prevents the redundancy check f(zrmp,az;) 3) for all k such thaty < k < ¢’ we have eff(a;) N

to be successful (see Proposition 2). However, such eff(a,) =10

A. Grouping Nested Inverse Actions

4) for all k such thaty < k < ¢’ and a, — a; we have Algorithm 1 High-level design of our plan optimization

pre(ax) N efft (a,) C pre(a,) algorithm
5) for all £ such thaty’ < k < 2’ anda,, — a; we have 1: Determine action direct dependencies and dependencies
efft (a,) N efft (a,) N pre(ay) = 0 2: Determine pairs of inverse actions and sort them with
then the actions,, a,-, a,, and a,, are redundant inr. respect to< (see Definition 6)

) 3: Mark such actions on which the goal is not dependent
Proof: Assume that the actions,, a./,a, anda, are 4 repeat

removed fromm, a solution of some problem. Then we haves. check pairs of inverse actions for redundancy and mark

to show thatr \ {as,as,ay, a,} is still a solution of the actions if redundant
problem. We will analyze all situations with respect to theg. yntii No action has been marked or none of the inter-
position of some actiom. leaving pairs of inverse actions violates the conditions of

o k < x — Straightforwardly, applicability or outcome of = Theorem 2
ay is not affected by removing actions positioned after7: Check grouped nested pairs of inverse actions for redun-
it. dancy and mark actions if redundant

e z < k < y — Given condition 1), then according to 8: Remove marked actions from the plan
Proposition 2a; is not affected by removing, anda,.
Removinga, anda, does not affecty, becauses is
placed before them.

« y < k <y’ — Given condition 1), then according 0o es discussed in this paper are applied from the easiest o
Proposition 2u, is not affected by removing, anda.'. 15 the most difficult one. This is because actions marked for
Condition 3) ensures that atoms present in the positiygnqya| by easier techniques do not have to be considered
effects ofa, are not removed because from Definition 4, \qre gifficult techniques. This is obviously more effidien
it can be seen that these atoms must be present beforege technical detail which might not be obvious from the
is executed. If no action placed in betwegp and %’ theory given in the previous sections is in handling marked
removes some of these atoms, then they will remain valith 4 ndant) actions which are going to be removed. Marked
for actions placed after, . If a, - a, then according 1o 5¢tions should be treated as actions which are no longer
Proposition 2u;, is not affected by removing, anda,'. i, the plan. However, this might cause changes in direct
If a, — ay, then condition 4) says that atoms achievefenendency relations. To avoid recomputation of action (di
by a, to a), are already present befoug is executed (the roc) gependencies every time some actions have been marked
atoms are in its precondition). Condition 2) says that NOREs can use the following observation. Let and a, be a

of these atoms can be removed by actions positioned g of inverse actions and; an action placed in between
between:, anda,. Henceyy is not affected by removing them |f 4, has been marked, then an actian placed in

the actionsu,, a,:, ay anda,:. betweena;, anda, may become directly dependent ap if

ey <k < — Apcording to Propos.if[ion &y, is not efft (a,) N efft (ax) N pre(a;) # 0. This follows directly from
affected by removing:, anda, . Condition 5) says that pginition 3.

aj cannot become directly dependent @p after a, is) . . .
removed. This together with condition 1) results in the FOr illustration, the algorithm for checking redundancy of
fact thatay, is also not affected by removing, anda,.. pairs of inverse actions is depicted in Algorithm 2. Clearly

« k> 2/ — Conditions 1) and 3) ensures that atoms preseff€ cannot remove the pair if one of its action has already
before application of:, or a, remain valid even if the been marked (Line 2) since it refers to shared pairs of imvers

actionsa,, a,, a, anda,, are removed. Hence;, cannot actions where one of them has been marked for removal.
be affected. Following the observation mentioned abowgpms (Line 9)
ﬂl.ands for atoms which are createddgy(the first action in the
pair) and at least one of the marked actions. In other waigs,
might become an achiever for some other action and therefore
the other action might become directly dependent.gnThis

In summary, we have shown that the remaining actions
the plan are still applicable and by taking into account @so
special goal action (having all goal atoms in its precooditi

Wi n fin h / i lution of the . . e o
e can find out thatr \ {a.., @/, ay, a,} Is & solution of the is verified in Line 11, where besides verifying the condition

given problem. L o
Even though the above proposition deals only with tw8f Proposition 2 we have to check whether a precondition

nested pairs of inverse actions, we believe that the proposi of a given action pontalns an aFom (or atoms) fratmms.
Iﬁeso, then removing some actions in betweep and the

can be generalized for more pairs. On the other hand, in & iven action would result in the given action becoming diyec
most of planning domains it is not necessary to take in%) 9 g ke

account more than two such pairs. ependent o,
The same philosophy can be use when implementing the
other algorithms (Lines 6 and 7 in Algorithm 1) if we do not
A high-level design of our post-planning plan optimizatiomvant to recompute the direct dependency relation each time
algorithm is depicted in Algorithm 1. The optimization techwe mark some action(s) for removal.

VIIl. | MPLEMENTATION DETAILS

Domain [no. of problems] original [optimized | factor [time | goal not dep.] inverse [grouped inverse| re-checks
LPG
Depots 22 1099 1029 6.4% | 0.23s 0 68 8 0
Driverlog 20 1477 1251 15.3% | 0.46s 0 226 0 0
Gold-miner 30 1370 1149 16.1% | 0.43s 1 220 0 0
Matching-BW 11 909 805 11.4% | 0.52s 0 40 64 0
Storage 27 5818 1676 71.2% | 2.43s 0 3986 156 1
Zeno 20 958 946 1.3% | 0.17s 0 12 0 0
Metric-FF
Depots 20 968 884 8.7% | 0.28s 4 60 20 1
Driverlog 17 617 599 2.9% | 0.23s 0 18 0 0
Gold-miner 28 738 738 0.0% | 0.49s 0 0 0 0
Matching-BW 13 948 880 7.2% | 0.40s 0 4 64 0
Storage 18 281 281 0.0% | 0.16s 0 0 0 0
Zeno 20 632 631 0.2% | 0.13s 1 0 0 0
LAMA
Depots 22 1310 1153 12.0% | 0.48s 5 116 36 0
Driverlog 20 1315 1183 10.0% | 0.51s 0 132 0 0
Gold-miner 30 2798 2798 0.0% | 1.64s 0 0 0 0
Matching-BW 16 1512 1204 20.4% | 0.59s 0 112 196 0
Storage 19 496 450 9.3% | 0.28s 0 38 8 0
Zeno 20 692 686 0.9% | 0.44s 6 0 0 0
TABLE |

EXPERIMENTAL RESULTS SHOW THE PERFORMANCE OF OUR PLAN OPTIMATION APPROACH.

Algorithm 2 Algorithm for checking pairs of inverse actionsagccommodated by Landmark and FF heuristics. Metric-FF

for redundancy

ran in default settings. Only problems solved by the plasiner

1: for all (a,,a,’) in the sequence of pairs of inverse actionwithin 1000s were considered.

ordered by< do

2. if a, or ay is markedthen

3: continue

4: end if

5. wiol := false

6: atoms:={}

7. fork:=xz+1toz’ —1do

8: if a;, is markedthen

o: atoms := atoms U (eff" (a,) N efft (ay))

10: else

11: viol := aj, — a, \V eff (az,) Nefft (ay) Vatomsn
preay) # 0

12: end if

13: if viol then

14: break

15: end if

16: end for

17: if —wiol then

18: mark botha, anda,:

19: end if

20: end for

IX. EXPERIMENTAL EVALUATION

Our method for plan optimization through looking for
redundant actions is implemented in C++. The method support
typed STRIPS representation in PDDL [18]. The experiments
were performed on Intel i5 2.8 GHz, 8GB RAM, where
Ubuntu Linux was used for running planners and Windows
7 for running our method.

Cumulative results (aggregated results of all problems con
sidered in a particular domain) are presented in Table I.
“Factor” is the percentage by which the plans were shortened
(optimized) by our approach. “Time” is the time our method
needed for the optimization of all problems considered in
a given domain. “Re-checks” is the number of times the
conditions of Theorem 2 were violated, i.e., how many times
we had to re-check pairs of inverse actions for redundaroy. T
best overall results were achieved for LPG, especially & th
Storage domain the plans were shortened by more than 70%!
LPG is a planner based on greedy local search techniques
and it is therefore to be expected that the solutions aren ofte
obtained in a little time but their quality tends to be low. In
many cases (except the Zeno domain), these solutions can be
significantly improved by our method focused on eliminating
redundant inverse actions in a very little time (at most tens
of milliseconds per problem). Metric-FF, a successor of the
well known FF planner [8], uses best-first search techniques

For evaluation purposes we chose several IPC benchmaaksompanied by a heuristic which is inadmissible but quite
(typed strips), namely Depots, Zeno, DriverLog, Matchingwell informative. The solutions are not optimal but usually
BlockWorld, Gold-Miner and Storage. As benchmarking plarare of higher quality. In this case, fair results were adikev
ners we chose Metric-FF [17], LAMA 2011 [9] and LPG-only in the Depots and Matching-BW domains. The state-

td [6]. All the planners successfully competed in the IPCGLP

of-the-art planner LAMA uses greedy search accompanied

was optimized for speed and ran with a random seed setwiith Landmark and FF heuristic. The solutions are generally
12345. LAMA was set to use lazy greedy best first searaitained more quickly but their quality is lower. Our method

gained promising results (shortening the solutions by monested pairs of inverse actions. This can be used for post-
than ~10%) in four domains. However, in the Gold-minemplanning plan optimization since redundant actions caalgaf
domain our method was not able to identify any redundabe removed from plans. The efficiency of the process of
actions even though the solutions (of the problems in tldecking pairs of inverse actions for redundancy has alsa be
Gold-miner domain) are far from being optimal. The Goldeonsidered and we suggested in which order these pairsashoul
miner domain is basically about finding a way through thee checked. We have presented relevant theoretical founda-
maze to find and collect gold. There are obstacles in the mam:s and provided an empirical evaluation of the proposed
which can be removed either by bomb or by laser. The specifechniques for determining redundant actions. The engbiric
issue in this domain is that if we use a bomb, the bomb &valuation then showed that plans can be fairly optimized
‘consumed’ and we have to collect another one. On the otighortened) in a very short time (tens of milliseconds).
hand, if we use a laser, the laser remains in the hand andn future we are going to investigate how we can efficiently
can be used again. Preferring bombs to lasers for removifigd non-optimal subsequences of actions (not necessarily
obstacles causes a significant growth of the solution lengtdjacent) in plans. This should deal with issues such as
However, this strategy does not produce plans with redunda®\MA's non-optimal strategy in solving the Gold-miner prob
inverse actions which makes our method inefficient. lems (discussed in the previous section). Also we will study

It is not surprising that we were able to identify only énow to extend our approach for non-classical planing (e.g.
few redundant actions by a simple analysis of the actidamporal or probabilistic planning).
dependency relation (i.e., actions are redundant if thd g
is not dependent on them). Identifying redundant pairs o
inverse actions revealed most of the redundant actions. Thd he research was funded by the UK EPSRC Autonomous
ordering in which pairs of inverse actions were checked f@"d Intelligent Systems Programme (grant no. EP/J011p91/1
redundancy (see Section VII) showed its efficiency since we REEERENCES
had to re-check the pairs for red.undancy Ol’l|y.ln tW(? case] M. Ghallab, D. Nau, and P. Traversdutomated planning, theory and
(~0.5% of all the checks). Grouping nested pairs of inverse” practice Morgan Kaufmann Publishers, 2004.
actions (see Section VII-A) was beneficial especially in the€2] T. Bylander, “The computational complexity of proposital strips
Depots and Matching-BW domains. This is because a Singg planning,” Artificial Intelligence vol. 69, pp. 165-204, 1994.

. . i] M. Helmert, “Complexity results for standard benchmark dorsan
hoist (or robotic hand) operates over more pallets (or $3potS™ pjanning.” Artificial Intelligence vol. 143, no. 2, pp. 219262, 2003.
on which objects (e.g crates) can be stacked, and we need twp M. Helmert, “New complexity results for classical plangirbench-
actions to move an object from one stack to another using tqa marks,” in Proceedings of ICAPS 200@006, pp. 52-62. .

. . . L . . E. Fink and Q. Yang, “Formalizing plan justifications,”imn Proceedings
hoist (or robotic hand). As indicated in the example disedss of the Ninth Conference of the Canadian Society for Comijmutak
in Section VII-A, it might easily happen that in some plan Studies of Intelligence1992, pp. 9-14. o _ _
we move an object between some stacks, then an object [6] A. Gerﬂeylnl, A. Saetti, and I. Serina, “Planning in pddi2Ziomains with

. Ipg-td,” in Proceedings of the fourth IRQ004.

between two stacks on whiehhas not been stacked, and then7; A Blum and M. Furst, “Fast planning through planning ghaanalysis,”
movea back. Movinga somewhere and then back is obviously Artificial Intelligence vol. 90, no. 1-2, pp. 281-300, 1997.

redundant but we have to remove all four actions responsiblél J- Hoffmann and B. Nebel, “The FF planning system: Fast plemera-
. tion through heuristic searchjournal of Artificial Intelligence Research
for this at once. _ . __vol. 14, pp. 253-302, 2001.
The presented techniques for determining redundant &ctiof®] S. Richter and M. Westphal, “The lama planner: guidingtdwsed any-
in plans are focused on the most common situations but E'J”A?RF;""\‘/’;T”;QQWSS '223’_“1?5528‘;[)”"" Artificial Intelligence Research
cannot reveal all redundant actions. Our aim is to proviggy s. Edelkamp and P. Kissmann, “Gamer: Bridging planning gexeral

a computationally easy method for determining redundant game playing with symbolic search,” iroceedings of the sixth IRC
actions. Due to the NP-hardness of the problem of determinipy,, 2098

. . . . 1] L. Chrpa, T. L. McCluskey, and H. Osborne, “Optimizingap$ through
the maximal set of redundant actions in a given plan, We" anaysis of action dependencies and independencie®idoeedings of

cannot guarantee to find all of the redundant actions. Plan ICAPS 2012, 338-342.

optimization besides determining redundant actions is alé2] H- Nakhost and M. Niller, "Action elimination and plan neighborhood
graph search: Two algorithms for plan improvement,Pimceedings of

about determining whether some subsequence of actions in a |caps 2010, pp. 121-128.
plan can be replaced by a shorter (or optimal) subsequelit®} S. J. Estrem and K. D. Krebsbach, “Airs: Anytime iteratirefinement
of actions. Current techniques that have been mention[?g] of a solution,” inProceedings of FLAIRS2012, pp. 26-31.

are

. C. H. Westerberg and J. Levine, “Optimising plans usinenegic
such as Neighborhood Graph search [12] and AIRS [13] programming,” inProceedings of ECP2001, pp. 423-428.

addressing this issue. However, our method is complementéiis] D. Chapman, “Planning for conjunctive goalgittificial Intelligence

to these techniques rather than a competitor. We believte tha, VO 32. no. 3, pp. 333-377, 1987. o _
. L L. Chrpa, “Generation of macro-operators via invedtga of action
our method can be used to ‘pre-optimize’ plans before more” gependencies in plans¢nowledge Engineering Reviewol. 25, no. 3,

sophisticated techniques (such as one of these) are applied pp. 281-297, 2010.
[17] J. Hoffmann, “The metric-ff planning system: Translatitignoring
X. CONCLUSIONS delete lists” to numeric state variabledfurnal Artificial Intelligence
Research (JAIR)vol. 20, pp. 291-341, 2003.

In this paper we have presented techniques for determimg] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sunddb. Weld,

ing redundant actions in plans, especially pairs or grouped Pdd! - the planning domain definition language,” Tech. R&S98.

knowledgements

