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Abstract In tribological functions high peaks (summits) in the surface topography play a dominant 

role in that they determine the position of first contact and how the contact will occur. Both 

statistic based methods and feature based methods address the characterization of a single surface 

while neglecting the interacting surface. A morphological method is proposed to simulate the 

contact of two mating surfaces. The surface under evaluation is rolled by a ball with radius meant 

to simulate the largest reasonable peak curvature at a contact. In such a situation the contact points 

of the rolling ball may serve as an identification of those surface portions that are in real contact. 

The morphological closing operation could then be applied to detect the contact points of the 

rolling ball, however, the traditional computation method does not lead to an accurate result. To 

overcome this deficiency, a geometrical computation approach has been developed to capture the 

contact points based on four searching procedures. The resulting method has been verified through 

experimentation and then applied to a case study in which the underlying form of the surface of a 

hip replacement taper junction is analyzed to remove the effect of the dominant threaded structure. 

 

Keywords: surface topography; rough surface; contact point; morphological 

operations 

 

1. Introduction 

The surface of a component is an interface which limits the body of the component and 

separates it from the surrounding medium [1]. It governs the functional behaviour of the product, 

whether that be a mechanical, thermal, chemical or biological property, all of which are of 

tremendous importance in the tribology of any system. Within a tribological system, contact 

mechanisms are fundamental and the geometry of contact depends strongly on the surface 

topography [2]. 

In many engineering applications, the contact between two surfaces is non-conforming, i.e., 

the contact area is very small when compared with the geometry of the bodies in contact. Even in 

situations between conforming contacts, the contact between the asperities that compose the 
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surface topography is known to be non-conforming [3]. Historically, statistical models have been 

used to predict contact parameters which have contained many assumptions about asperity 

geometry and height distributions, and in which the asperities on a rough surface were modeled as 

an array of hemisphere or paraboloid bumps [4-6]. These models are highly conceptual and thus a 

geometrically complicated surface is usually represented by a few statistical parameters. Although 

the statistical modes result in simple relationships and are able to predict important trends in the 

effect of surface properties on the real area of contact, they are limited because of over simplifying 

assumptions about asperity geometry and height distributions, the difficulty in determination of 

statistical roughness parameters [7, 8]. 

In the 1970s, Nayak [9] and Sayles & Thomas [10] initially used the five nearest-neighbour 

ordinates in areal surface data to define a peak or pit. In order to investigate contact phenomena of 

random surfaces, Whitehouse & Phillips [11] also initially defined three areal parameters: summit 

density, summit height and summit curvature. These definitions, however, depended on sampling 

density, and the results could be distorted by measurement noise. In the 1990s an integrated 

method for the areal characterization of surfaces was explored by Stout et al [12], which led to the 

so-called “Birmingham 14 parameters”. Although these parameters could provide a general 

description of the rough surface in a statistical sense, they neglect the local complexity of surface 

geometries, which determines the actual contact areas. The last decade saw more novel methods 

focusing on topographical features [13, 14]. The surface is treated as a collection of Maxwellian 

features, such as hills, dales, saddle points, ridge lines and course lines and it is partitioned into a 

series of regions that contains individual topographically significant features. The segmented 

geometrical features can then be analyzed individually or statistically. 

The segmentation method is a major progress in characterizing surface geometry and a useful 

tool in analyzing contact phenomena. However this method, in common with statistical methods, 

only addresses a single independent surface, whereas contact clearly involves the interaction of 

two mating surfaces. It therefore follows that the influence of the opposite surface should be taken 

into account while evaluating the master surface. This paper proposes a novel morphological 

method to simulate the contact of two interacting surfaces. The interaction is simulated by rolling a 

ball with a given radius, which is sized to simulate the largest reasonable radius at a contact e.g. 

peak curvature, upon the underlying surface. The contact points of the rolling ball against the 

rolled surface are then captured. This serves as an indication of surface summits and surface 

portions which are in real contact.  

 

2. Morphological operations 

2.1 Morphological operations in image processing 

Mathematical morphology is a mathematical discipline which aims at extracting the shape and 

form of objects in an image by probing the image with the structuring element [15].  

Four basic morphological operations, namely dilation, erosion, opening and closing, form the 

foundation of mathematical morphology. Dilation combines two sets using the vector addition of 

set elements. The dilation of  A  by B  is: 
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( , )D A B A B
∨

= ⊕ .                                                        (1) 

where B
∨

 is the reflection of B  through the origin of B . 

Erosion is the morphological dual to dilation. It combines two sets using the vector 

subtraction of set elements: 

( , )     E A B A B
∨

= ,       (2) 

where 

    A B A B= + .                                                            (3) 

 

Opening and closing are dilation and erosion combined pairs in sequence. The closing of A  

by B  is obtained by applying the dilation followed by the erosion, 

( , ) ( ( , ), )C A B E D A B B
∨

= .                                                (4) 

The reverse order generates the opening:  

( , ) ( ( , ), )O A B D E A B B
∨

= .    (5) 

 

2.2 Morphological operations in surface metrology 

Morphological operations are universal in the field of surface metrology. The scanning of a 

workpiece surface using a tactile probe is a very common practice in geometrical measurement 

and a hardware implementation of morphological dilation operations [16]. The workpiece surface 

as the input set is dilated by the structuring element, in this case the spherical probe tip, to generate 

the morphological output, the measured surface, see Figure 1.  

 

 

Figure 1.  The dilation of the workpiece surface by a spherical tip. 

 

It could be noticed that the measured data are not the real surface data, but the tip centre data. 

To reconstruct the real surface, an ideal sphere with the same size to the probe tip is employed to 

roll over the dilated profile, the locus of the sphere centre is treated as the real mechanical surface. 

See Figure 2. This treatment is in essence a morphological erosion operation. The two operations, 
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a dilation followed by an erosion, are combined to yield a single effect, i.e. the closing operation. 

The resulted closing envelope overlaps with the profile peaks while it hovers over the profile 

valleys where the surface local curvature is smaller than that of the tip. 

 

 

Figure 2.  The closing of the workpiece surface by a spherical tip. 

 

3. Contact points and their search procedures 

3.1 Contact points 

In physics, the contact points are those points on the surface which are in contact with the 

rolling ball. These points give an indication that their neighborhood surface portions are most 

likely to be active in contact phenomenon. By identifying the contact points, those areas of a 

surface that may be especially susceptible to wear at process start-up can be readily identified and 

remedial action taken if necessary. From a point of view of mathematical morphology, the contact 

points are those points on the surface that remain constant with the morphological closing 

operation, see Figure 2. Therefore these points might be captured by computing the closing 

envelope and comparing it with the original surface. The overlapping portions are the contact 

points. This solution, however, is impractical due to the fact that the numerical comparison is 

sensitive to round off errors in calculation and this situation is even compounded by sampling the 

structuring element discretely. As a consequence, a capable algorithm is required in order to detect 

contact points in a robust fashion. 

 

3.2 Searching procedures 

In stead of computing the dilation and erosion to yield the closing, the developed method 

computes the contact points in a geometrical manner. A valuable property which could be of 

paramount value in searching for contact points is the containment relationship of the contact 

points in response to diverse ball radii [17]. Given a surface, two balls with different sizes are 

rolled over the underlying surface, one with a large radius and the other one with a small radius. 

The contact points of the large ball are contained within the boundaries of those of the small ball. 

This property establishes the searching sequence for the contact points. The large ball radius is 
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utilized first for ease of computation. The searching routine then downscales the rolling ball until it 

reaches the given radius settled for simulating the largest curvature of the interacting surface. The 

following procedures demonstrate the details of searching operations. In the context of the 

statements below, a  and b  are two known contact points, e.g. two end points of a surface profile,  

r  is the given radius of the ball (disk). 

 

Procedure 1: If there are sample points lying above ab
���

 (left/positive side of ab
���

), then the 

contact point is the furthest sample point orthogonal to ab
���

. 

As illustrated in Figure 3, there are a number of sample points between a  and b . The 

furthest point from ab
���

 is 5p , which in fact is a point on the convex hull of the point set 

{ }1 6, , , ,a b p p⋯  above ab
���

. This searching procedure is suggested by the computation of the 

convex hull [18] and corresponds to rolling a disk with an infinitely large radius over the surface 

profile. 

 

Figure 3. Search the furthest point orthogonal to ab
���

. 

 

Procedure 2: If there are no sample points lying above ab
���

 and sample points { }
i

p  exist in the 

circular section �ab  of the ball with radius 1
2max{ , }r abα = , then the contact point is that of 

{ }
i

p  in �ab , which has the largest radius among the circumscribed circles of the simplices 

{ }
iabp

σ . 

This procedure includes two different cases, 2ab r≤  and 2ab r> . For the first case, see 

Figure 4(a), the disk with the given radius r  is not empty because it encloses two sample points, 

in this case 1p  and c . From this, it follows that some sample points between ab
���

 must be contact 

points. Next the circumscribed circle of { }
iabp

σ  is calculated. It is obvious that the circumcircle 

of 
abc

σ  is empty, while other circumcircles are not, and its radius is the largest so far calculated. 

The second case where 2ab r>  is presented in Figure 4(b), and from this we can find a similar 

result. 
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Figure 4. Search the contact point within the area �ab : (a) 2ab r≤ ; (b) 2ab r> . 

 

Procedure 3: If 2ab r> , no sample points lie above 
ab

σ  and no points lie within the circular 

section �ab  of the ball which has a radius 1
2 abα = , then the contact point is identified as that 

which has the smallest radius among the circumscribed circles of { }
iabp

σ .  

See Figure 5. Among the calculated circumcircles, only 
abc

σ  contains no sample points and 

furthermore has the smallest radius.  

 

 

Figure 5. Search the contact point within the area �ab  with 2ab r> . 

 

Both Procedure 3 and Procedure 4 calculate the circumscribed circles. The difference is that 

the former takes the largest circumcircle and the later takes the smallest one. However the two 

situations can be unified by the use of the signed circumcircle radius. 

If there are sample points { }ip  lying below 
ab

σ  (right/negative side of ab
���

) and no point 

above, the simplex 
iabp

σ  has an unique circumscribed circle with radius α . If the centre of the 

circumscribed circle is on the positive side of 
ab

σ , then the circle has the positive radius α+ , 
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otherwise the negative radius α− . In Figure 6, 
1abp

σ  has its circumcircle centre 1o  above 
ab

σ , 

thus it has a positive radius. Conversely, the centre of the circumcircle of 
2abp

σ  lies below 
ab

σ , 

therefore its radius is negative. The critical case is that of 
abp

σ  which has its circumcircle centre 

o  at the centrepoint of 
ab

σ . In this case it is taken that the radius is positive. With the signed 

circumscribed circle radius, Procedure 2 and Procedure 3 are unified and both take the largest 

circumcircle radius. 

 

 

Figure 6. Signed circumscribed circle radius. 

 

Procedure 4: If 2ab r≤ , no sample points lie above 
ab

σ and no sample points lie within the 

circular section �ab  of the given disk with radius r , meaning that the disk is empty, then there are 

no contact points between 
ab

σ  and the searching procedure exits. 

 

 

Figure 7. Sampled points distribution below ab . 
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To determine the termination of the searching procedure, Procedure 4 suggests three 

conditions. These conditions can be calculated by examining the sampled point distribution below 

ab
σ , see Figure 7. First of all, ab  has to be equal or smaller than 2r , which means the given 

disk is larger than the smallest circumcircle of 
ab

σ . In Figure 7, there are 7 sample points between 

a  and b . They fall into three categories: 

(1) Points lying within the circular section �ab  of the ball with the given radius, such as 3p  and 

7p , and may be contact points. They are featured by the positive radius { }iρ  of the 

circumcircle of { }
iabp

σ  and 
i

rρ >= . 

(2) Points lying in the circular section �ab  of the smallest circumcircle of 
ab

σ , but that are not in 

category (1), such as 1p , 4p  and 5p . These points cannot be contact points as they have 

positive radii { }iρ  of the circumcircle of { }
iabp

σ , but 
i

rρ < . Thus in this case 

0
i

rρ≤ < . 

(3) Points not contained in categories (1) and (2), such as 2p  and 6p , and cannot be contact 

points. These points have negative radii { }iρ  of the circumcircle of { }
iabp

σ , i.e., 0
i

ρ < . 

To sum up, the searching procedure terminates when no points lie above 
ab

σ , 2ab r≤  and 

i
rρ < . 

 

3.3 Searching algorithm 

A practical recursive algorithm has been constructed based on the above searching 

procedures. The pseudocode of the algorithm to compute contact points on the surface profile is 

presented in Figure 8. The algorithm starts with the left end sample point a  and the right end 

sample point b  of the measured profile, which are guaranteed to be the initial contact points as 

they are on the convex hull. The algorithm then starts to search the contact points between a  and 

b  in sequence by applying procedures 1 to 4. Once a contact point is found, such as a point c , it 

can be treated as a partition point and the profile ( , )a b  is partitioned into two segments ( , )a c  

and ( , )c b . The algorithm keeps partitioning the segments into smaller ones until the segment 

being evaluated satisfies the condition specified by Procedure 4 and that segment is accepted as the 

boundary facet. The vertices of all final boundary facets are then defined as the contact points. 
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Figure 8. Recursive algorithm for searching contact points on the surface profile. 

 

The searching procedures for profile data also hold for areal data if the disk is replaced by a 

ball and the circumcircle is replaced by a circumsphere. In such a case instead of starting with the 

left and right profile ends in the scenario of profiles, it is easier to start with the convex hull faces 

for areal data and thereafter repeat the partition for each convex hull face. Figure 9(a) illustrates an 

example surface with 50 ×  50 points on which the convex hull faces are presented as the 

triangular meshes. The algorithm searches for contact points by computing signed circumsphere 

radii and partitions each convex hull face. For instance, starting with a convex hull face 
abc

σ , a 

contact point d  is found by seeking the largest circumsphere radius of { }
iabcp

σ , where { }ip  are 

the sample points inside the circumsphere of 
abc

σ . Then 
abc

σ  is partitioned into three new 

simplices 
abd

σ , 
bcd

σ  and 
cad

σ . The partition process is repeated on each new generated simplex 

until it can hold an empty circumsphere. The highlighted triangle in Figure 9(a) denotes one of 

convex hull faces. The resulting boundary facets are highlighted in Figure 9(b). When the 

searching procedure is completed, the vertices of the obtained boundary facets are the desired 

contact points, as shown in Figure 9(c). 

Algorithm ContactPoints(S, r) 

{Given a profile S and the chosen disk radius r,}  

{ computes the contact points Contacts.} 

 

a ← the left end point of S. 

b ← the right end point of S. 

Partition(a, b); 

 

Procedure Partition (a, b) 

if {pi} above ab 

 c ←  the furthest point from ab in {pi}; 

else 

 calculate the signed circumcircles radii R of 

{ab pi } ; 

 c  the point with max(R); 
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(a) 

 

(b) 

 

(c) 

Figure 9. Partition procedure on an areal data. (a) Convex hull faces of the areal data; (b) 

Boundary facets generated by partitioning one of the convex hull face; (c) Final boundary facets. 

 

3.4 Verification 

For the purpose of verifying the proposed method, it is applied to an experimental profile and 

a surface respectively. The profile is 1.25 mm in length with sampling interval of 5 µm and applied 

by the morphological method using disks with radius 5 mm and 0.5 mm respectively. Figure 10 

illustrates the contact points of the profile. It is clearly shown in the figure that the contact points 

of the 5 mm disk idenfity significant profile peaks while those of the 0.5 mm disk involve less 
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significant peaks. Furthermore, the contact points of the 5 mm disk are contained in those of the 

0.5 mm disk. The experimental surface illustrated in Figure 11 is 0.495*0.495 mm
2
 in size with 

sampling interval of 5 µm in both X direction and Y direction. A similar result can also be found 

on the surface, using balls with radius 5 mm and 1 mm respectively.  

 

 

(a) 

 

(b) 

Figure 10. The contact points of an experimental profile. (a) Disk radius 5 mm; (b) Disk radius 0.5 

mm. 

 

  

(a)                                                                (b) 

Figure 11. The contact points of an experimental surface. (a) Ball radius 5 mm; (b) Ball radius 1 

mm. 
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4. Case study 

In hip replacement, the introduction of modular large head metal-on-metal (LHMoM) hips 

promised low wear rates and reduce chances of dislocation couple with an increase range of 

motion compared to the conventional metal-on-metal hips. The clinical experience of the use of 

LHMoM hip replacements shows that they exhibit a significantly higher revision rate compared to 

other types of implant, at 5 years the revision rate is 7.8% compared to 6.3% for hip resurfacings 

and 2% for conventional cemented implants [19].  The difference in revision rate between 

resurfacings and LHMoM hips has been attributed to the neck/taper junction [20, 21], thus the 

specification and measurement of this area of the component is key to the understanding of the 

operation of the implant and the failure mechanisms at this interface.   

The interlocking male taper surface that mates with the femoral head female counterpart has a 

structured micro-threaded surface, see Figure 12. The specification of such surfaces is not well 

understood but has been shown to be important as possible corrosion and wear at this interface 

have been identified as a possible source of debris that could cause tissue reaction and progress to 

implant failure. Analysis of this structured conical surface requires the extraction and examination 

of the conical form and contact. In this example vertical measurements are performed axially 

relative to the aligned component axis such that the outputted value of profile straightness can then 

be used as a measure of conical form. 

 

 

Figure 12. Total hip replacement femoral stem with highlighted micro-threaded taper surface. 

 

The combined effect of form and roughness has long been recognized in the measurement of 

the form of machined rough surfaces [22].  The effect of the surface structure on the resulting form 

value can be disproportionate, thus the size of the probe relative to texture spacing has to be large 

[23, 24]. Current industry practice in the measurement of hip stem tapers is to attempt to perform 

this task through use of mechanical filtering, by using a large diameter ruby stylus on a CMM.  

However, this is largely performed on a trial and error basis and makes no account of how much 

useful data is being discounted or erroneous data included through the bridging of surface contact 

points. Furthermore the use of such a large stylus method is suboptimal as the required component 

accuracy is on the limit of that of the CMM (< 1 µm). This coupled with the difficulties in locating 

data points when using a prohibitively large measurement stylus means that this method is far 

from ideal. 

To overcome the deficits of mechanically traversing the stylus on CMM, the morphological 

method is employed to improve measurement accuracy and extract the contact points. To achieve 

this, a number of new hip replacement femoral stems were measured, a series of linear 
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measurements are performed on each component, axially along the neck taper. The measurements 

were performed using a Talyrond 365 roundness machine (Taylor Hobson, UK) with a 5 µm 

diamond stylus. Figure 13(a) presents such an example profile with sampling length 8 mm and 

sampling interval 0.25 µm. For convenience of visualization, the profile was translated and 

rotated, see Figure 13(b). The contact points with disk radius 5 mm are then extracted from the 

profile texture. Finally the form error of the straightness of the profile was calculated by applying 

the minimum zone method to the contact point set. The obtained straightness is 1.434 µm in the 

example. 

 

 

(a) 

 

(b) 

Figure 13. Form evaluation of an experimental taper junction: (a) Surface profile measured along 

the neck taper; (b) The extracted contact points and the minimum zone for straightness. 

 

The morphological method searching for contact points on the surface allows for the 

optimisation of mechanical traversing process by the determination of what equivalent stylus size 

would be required to perform this task. The use of a roundness machine and the proposed 

morphological method enable the data to be captured at a higher density and accuracy (Gauge 

resolution ~30 nm) with a greater level of control in the extraction of the true envelope profile. 

 

5. Conclusion 

In the contact phenomenon of interacting surfaces, peak features on surfaces play a dominate role 

in that they determine the position of first contact and how the contact will occur. Both statistics 

based methods and feature based methods address the characterization of a single independent 
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surface while neglecting the influence of the mating surface. This paper proposes a method of 

using the morphological method to simulate the interaction of two mating surfaces, which is 

carried out by rolling a ball with radius equal to the largest curvature of the slave surface at a 

contact upon the underlying surface. 

The contact points of the rolling ball may serve as an identification of those surface areas that 

are in real contact and the morphological closing operation can be used to detect contact points. 

However an accurate solution cannot be reach by using the traditional computation method. A 

geometrical algorithm is developed for both profile and areal data based on four searching 

procedures. This method can accurately capture the contact points and has been verified by 

application to an experimental profile and a surface. 

The contact points are employed to evaluate the underlying form of the textured surface of hip 

replacement taper junction. The use of surface texture instrument and the proposed morphological 

method guarantees the precision of measurement and accuracy of evaluation and allows for more 

accurate specification of component form which has been shown to be of prime importance to 

component performance. 
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