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DYNAMIC BEHAVIOR OF CABLE SYSTEMS WITH
SPACERS FOLLOWING ICE SHEDDING

Laszl6 E. Kollar and Masoud Farzaneh
NSERC/Hydro-Québec/UQAC Industrial Chair on Atmospheric Icing of Power Network
Equipment (CIGELE) and Canada Research Chair on Atmospheric Icing Engineering of
Power Network (INGIVRE) at the University of Québec at Chicoutimi, 555 Boulevard de

I'Universiteé, Chicoutimi, Québec G7H 2B1, Canada (http://www.cigele.ca)

ABSTRACT: The dynamic behavior of systems of two, three and four conductors with
spacers is examined in the present study. A finite element model of cable system is
constructed and is used to carry out modal analysis and to simulate vibrations following
ice shedding from one subconductor. The modal analysis calculates the first few natural
frequencies and provides the damping performance of the system. Solutions are
compared with those obtained for single bare and iced cables. The results of simulations
show how the resistance of cable systems against the dynamic effects of vibrations
following ice shedding increases with the application of spacers and with increasing
number of subconductors in the bundle.

1. INTRODUCTION

Ice accretion on cables of overhead transmission lines is a serious and frequently arising
problem in cold regions. The accreted ice leads to heavy static load, while ice shedding
may result in high-amplitude vibrations which are usually associated with excessive
transient dynamic forces. The types of damages which may appear due to vibrations
following ice shedding are short-circuit, insulator damage, hardware breakage and tower
damage. A solution for this problem is the application of spacers in conductor bundles,
which had electrical reasons originally, but they also help to reduce the severity of cable
vibrations. A recent survey on spacers including types, materials, design characteristics,
test methods and field experience is presented in CIGRE [1].

High-amplitude cable vibrations have been studied in a vast number of publications.
A numerical tool applied effectively to simulate cable motion due to ice shedding, wind
effect or conductor breakage is the finite element method. Ice-shedding induced vibration
of single cables was examined numerically in Jamaleddine et al [2], Roshan Fekr &
McClure [3], Kollar & Farzaneh [4] and Kalman et a/ [5]. The models presented in these
studies were constructed using the finite element analysis software ADINA [6].

The present study considers cable systems with spacers, which are applied in

overhead transmission lines, and investigates their dynamic behavior. In order to achieve



this goal, a finite element model of one span of bundled conductors is constructed. Modal
analysis is implemented using ADINA, and the first 18 natural frequencies together with
the damping ratios are determined. Simulation results of different ice-shedding scenarios
are also presented; and the main achievements are summarized in Conclusions.

2. CONSTRUCTION OF MODEL OF CABLE SYSTEM
The equations of motion of the bundle are based on the principle of virtual work, which
takes the following form for the assemblage of finite elements (Bathe [7]):

z jg(k)TT(k)dV(k) :Z Iﬁ(k)TfB(k)dV(k)-i-z jﬁs(k)TfS(k)ds(k)+ZﬁiTRiC (1)
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where the u are the virtual displacements, € is the corresponding virtual strain, T is

stress, f” and f* are body force and surface traction over the surface area S, Sl(k’, e
Sf]k) are part of S, R, are concentrated loads with i denoting the point of load

application, and & refers to element k. The virtual displacement of element & at any point,
u“) | is assumed to be a function of the virtual displacement at the nodal points, U :

" (x,y,2)=H" (x,y,2)U 2)
where H is the displacement interpolation matrix, while the corresponding virtual
element strain as well as the element stress are obtained as

£9(x,1,2)=B®(x,y,z)U and 1% =EWe® 4¢'® (3)
with B and E being the strain-displacement matrix and stress-strain material matrix,
respectively, and T’ denoting initial stress due to initial strain. Substituting Equations
(2)-(3) into Equation (1), the equation of static equilibrium may be obtained:

KU =R 4)
where K is the stiffness matrix:
K= z J‘B(k)TE(/f)B(k)dV(k) (5)
k V(k)

and R is the load vector including the effects of element body forces, element surface
forces, element initial stresses, and the nodal concentrated loads. In a dynamic problem

involving inertia and damping forces, the equilibrium equation is written as:

MU +CU+KU =R (6)
The mass matrix, M, and the damping matrix, C, are expressed as follows:
M= pPHYTHPAY®  and C= kOHOTH® Ay ® (7)
; V.([‘ ; VI[‘)

with p and x being the density and damping property parameter.
The ice-shedding phenomenon is simulated in two steps in the ADINA
implementation. The static analysis determines the static equilibrium of the iced cable



system; while the dynamic analysis simulates vibrations due to ice shedding. The cable is
modeled by two-node isoparametric truss elements with three translational degrees of
freedom at each end, the spacers are modeled by two-dimensional beam elements, while
the ice load is considered by increasing cable density (Jamaleddine et al [2]). Thus, the
density of ice-shedding cable, p, is different in the static and dynamic analysis, which
induces vibrations. The initial strain, &', is obtained from the equilibrium of the unloaded
cable in the form &' =T' /(AE), where T is the initial tension, 4 is cross-section, and £
is Young’s modulus. In what follows, the matrices H, B and E (and consequently M, C
and K) will be calculated for truss and beam elements (Bathe [7]).

The spatial coordinates and the element displacements of two-node truss elements
are determined by the nodal coordinates and nodal displacements, respectively
x.(r)= hlx_ll. + hgxf and u; (r)= hlu_lj + hzu?, j=123 (8)

J

where h, =(1-7)/2 and h,=(1+7)/2 are interpolation functions and re[~1;1]. The

only strain is the longitudinal strain in truss elements:

_dxj duj +lduj duj

& = )
ds ds 2 ds ds
with s denoting arc length. The vectors of element coordinates and displacements are:
x' = [xll xyoxi ox) x; x32] and u’ = [ul' T T TR The u}z] (10)

The interpolation matrix is written as H = [hlI3 h213] with I, being the 3x3 identity
matrix, and then

B,=(/")(xH'H,+u"H'H,) and B, =J'H, (11)
where B, and B,, appear in the linear, K, , and nonlinear, K,, , stiffness matrix,
respectively, and J ' =dr/ds. The only nonzero stress component is S,,, which is a

function of &, ; the stress-strain relationship is therefore

oS
C1111 :8_”
€

Material properties are defined for not allowing compression and assuming Hookian

(12)

small strain behavior in tension, which implies nonlinear relationship in Equation (12).

To determine the matrices in the equations describing the motion of two-dimensional
beam elements, the principle of virtual work is expressed in terms of the transverse
displacement, w, and the rotation of the plane originally normal to the neutral axis, 6.
These parameters are determined with the nodal displacements and nodal rotations:

w=hw +h,w, and 6@=h06 +h,0, (13)

for two-node elements. Defining



u’ = [Wl w, 6 92] (14)
and J=0x/0r, and applying the interpolation matrices H, = [h, h, 0 0] and
H,=[0 0 A h,],the matrices B, and B, may be obtained as:

B,=s| P g o) ang B,=s0 0 P T (15)
or  or or  or

Then the mass and stiffness matrices and the loading vector for beam elements may be
determined if geometrical and material properties are known (Bathe [7]).

A 200-m-long span of an overhead transmission line with 6 m sag is considered in
the model. End points are assumed to be fixed, thus, no displacement and no rotation are
allowed at the corresponding nodes of cable elements near the suspension. The Bersfort
ACSR 48/7 conductor is assumed in the simulations; its geometrical and material data are
provided in Figure 1. Spacers are assumed to be made of aluminum and to have a height
of 8 cm and width of 4 cm. The distance between bare cables of a bundle in equilibrium
is 0.5 m. Four configurations are examined: single cable, twin bundle in vertical plane,
triple bundle and quad bundle. Figure 1 shows the sketch of twin bundle with three
spacers.

d=35.6 mm
. cables spacers fixed end A=747.1 mm’
ﬂ% y& m_=2.37 kg/m
T / p=3171 kg/m’

E=67.6GPa

Figure 1: Sketch of twin bundle with three spacers including cable data (d is diameter,
m, is mass per unit length, other parameters are defined before)

3. MODAL ANALYSIS
Natural frequencies and modal damping ratios are determined in the modal analysis. The
natural frequencies of a single cable are calculated from the following equations:

H .
o f = % —, n=123,... in the transverse (out-of-plane) modes, (16)
m
n |H . . .
e f. = T\ n=123,... in the antisymmetric in-plane modes, and (17)
mC
3
. (ﬁLJ ﬁ—%(ﬁ;] in the symmetric in-plane modes with (18)

. _(mgl) B4 _ifds)
B= 24\/7 p) [ )LHL and Le—l(dxjdx



where f is natural frequency, L is span length, H is horizontal tension, and g is
gravitational acceleration. Equations (16)-(18) may be derived by solving the boundary
value problem describing the corresponding motion (Irvine & Caughey [8] and Irvine
[9]). The natural frequencies of bundled conductors are determined by solving the
eigenvalue problem of system (6) numerically (ADINA [6] and Bathe [7]). When
investigating ice-loaded cables in the modal analysis ice load is modeled separately from
the cable by two-dimensional plane-stress isobeam elements in parallel with each cable
element (Kalman et al [5]). 50-mm-thick ice load is assumed with density of 900 kg/m?,

Young’s modulus of 10 GPa, initial yield stress of 2 MPa and Poisson’s ratio of 0.33.
Three spacers are installed in the span under examination, thus, the distance between
adjacent spacers is 50 m.

The nth modal damping ratio is defined by the modal energy dissipation, D, , and the
modal potential energy, U, (Yamaguchi & Nagahawatta [10]):

D
__ 19
" 4nU ; (19)

The modal energy dissipation, D, , may be calculated from the strain energy caused by

the modal vibration, V'

n?o

D, =2xnV, (20)

after introducing the loss factor 7:

The modal potential energy of the cable system, U, , is the sum of modal potential energy

due to the initial cable tension, U, , and the modal strain energy, V' :

n?> n

L d d L
U =U, +V, :jl Rl ds+j L pagnds Q1)
27 "ds ds (2

where o, is the initial stress, and ¢ is strain associated with modal vibration, and it is

defined by Equation (9). Using Equations (19)-(21), the modal damping of a cable system
consisting of'/ components may be expressed as follows:

IS (22)

4. RESULTS

4.1 Natural frequencies

Natural frequencies of the four configurations mentioned in Section 2 were calculated
using ADINA. Figure 2(a) compares the first 18 natural frequencies. For a single cable
the smallest natural frequency is that of the first out-of-plane mode, and then frequencies
appear in pair except in mode-6 to mode-8. One of the two frequencies in each pair



corresponds to an in-plane mode, while the other one corresponds to an out-of-plane
mode. The natural frequencies of the single iced cable are slightly lower than those of the
bare one, which is mainly explained by the fact that the mass per unit length increases to
a greater extent than the cable tension as ice load is considered on the cable. For bundled
conductors several nearly equal frequencies appear in higher modes. Yamaguchi et al
[11] presented natural frequencies of a cable system with two main cables and a
secondary cable, all of which individually had similar natural frequencies, thus, they
observed groups of three closely spaced frequencies. The case of bundled conductors,
however, is different due to the spacers. The number of closely spaced frequencies is
changeable; furthermore, complicated shapes occur in higher modes.

(@) (b)
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Figure 2: (a) natural frequencies (b) damping ratios of first out-of-plane mode
4.2 Modal damping ratios

The modal damping ratios of the first out-of-plane mode and the first in-plane mode were
determined as a function of vibration amplitude. Figure 2(b) shows damping ratios of the
first out-of-plane mode for single bare and iced cables as well as for iced bundled
conductors with one bare subconductor. The loss factor was chosen to be equal to 0.04
and 0.2 for bare cable and for iced cable, respectively. The asymptotes at 2% and 10%
represent the corresponding maximum value of damping, which were the proposed values
of damping constants in Roshan Fekr & McClure [3]. The damping ratio of bundled
conductors increases to a low extent with the number of subconductors in the bundle, and
tends to that of a single iced cable, because only one bare cable is assumed in each
bundle, while all the other cables are iced. This tendency is more observable for the first
out-of-plane mode than for the first in-plane mode. The influence of damping ratio of
spacers is negligible, since spacers store much less energy than the cables. After ice
shedding, however, the higher damping ratio is not the only reason for the lower-
amplitude vibration of bundles with greater number of subconductors (see Section 4.3).
When ice sheds from one subconductor, the same amount of energy is distributed, which

causes less severe vibration in a more complex cable system.



4.3 Results of ice-shedding simulations
Several ice-shedding scenarios were simulated with different ice thickness and with
different distances between adjacent spacers. Ice thickness was varied between 10 and 60
mm, and Figure 3(a) compares the maximum jump heights of the ice-shedding cable
above its unloaded position for different configurations. The jump height decreases to a
great degree as a second cable is connected to the ice-shedding one. Further increase in
the number of cables in the bundle decreases jump height to a significantly less extent,
the difference between results obtained for triple and quad bundle is almost negligible.
The maximum jump height as a function of distance between adjacent spacers is
drawn in Figure 3(b). This distance varies between 33 m and 100 m, i.e. the number of
spacers changes between 5 and 1, respectively. Again, jump height decreases with
increasing number of subconductors in the bundle, but the difference between results
obtained for triple and quad bundle is negligible. More detailed discussion of the
vibration of bundled conductors after ice shedding is provided in Kollar & Farzaneh [12].
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Figure 3: Jump height of ice-shedding cable above unloaded position: (a) distance
between adjacent spacers is 50 m, (b) ice thickness is 50 mm

5. CONCLUSIONS

Dynamics of bundled conductors has been studied in this paper. A finite element model
was constructed and applied to calculate the natural frequencies and modal damping
ratios as well as to simulate vibrations following ice shedding. Groups of closely spaced
natural frequencies occur in higher modes as the number of subconductors in the bundle
increases. The number of nearly equal frequencies in these groups is changeable,
contrarily to the case of cable systems with two main cables and a secondary cable, which
was examined in a former publication (Yamaguchi et al [11]). Also, the damping ratio
does not increase significantly due to the application of spacers, which facts are explained
by the difference between the effects of spacers and secondary cables. The vibration of
the ice-shedding cable, however, becomes less severe in a conductor bundle, because the
same amount of energy is dissipated in a more complex cable system.
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