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Abstract 

Machine fault prognosis techniques have been profoundly considered in the recent time due 

to their substantial profit for reducing unexpected faults or unscheduled maintenance. With 

those techniques, the working conditions of components, the trending of fault propagation, and 

the time-to-failure are precisely forecasted before they reach the failure thresholds. In this work, 

we propose an approach of Least Square Regression Tree (LSRT), which is an extension of the 

Classification and Regression Tree (CART), in association with one-step ahead prediction of 

time-series forecasting techniques to predict the future condition of machine. In this technique, 

the number of available observations is firstly determined by using Cao’s method and LSRT is 

employed as prediction model in the next step. The proposed approach is evaluated by real data 

of low methane compressor. Furthermore, a comparison of the predicted results obtained from 

CART and LSRT are carried out to prove the accuracy. The predicted results show that LSRT 

offers a potential for machine condition prognosis. 

 

Keywords: Least square method; Embedding dimension; Regression trees; Prognosis; Time-

series forecasting 

 

 

1. Introduction 

Most of the components in machine are degraded condition during operation due to wear 

which is the major reason causing machine breakdown. Maintenance is the set of activities 

performed on a machine to sustain it on operable condition. The most common maintenance 

strategy is the corrective maintenance which almost means fix it when it breaks. However, this 

strategy considerably reduces the availability of machine and high unscheduled downtime. 

Condition-based maintenance (CBM) which involves diagnostic module and prognostic module 

is an alternative. Prognosis is the ability to predict accurately the future health states and failure 

modes based on current health assessment and historical trends [1]. There are two main 

functions of machine prognosis: failure prediction and remaining useful life (RUL) estimation. 



 3

Failure prediction, which is addressed in this paper, allows pending failures to be early 

identified before they come to be more serious failures that result in machine breakdown and 

repair costs. RUL is the time left for the normal operation of machine before the breakdown 

occurs or machine condition reaches the critical failure threshold. However, prognosis is a 

relatively new area and becomes a significant part of CBM [2]. Various approaches in prognosis 

which range in fidelity from simple historical failure rate models to high-fidelity physics-based 

models have been developed. Fig. 1 illustrates the hierarchy of potential prognostic approaches 

related to their applicability and relative accuracy as well as their complexity. Each of them has 

advantages and limitations in application. For example, experience-based prognosis is the least 

complex, however, it is only utilized in situations where the prognostic model is not warranted 

due to low failure occurrence rate; trend-based prognosis may be implemented on the 

subsystems with slow degradation type faults [3]. 

 

Fig. 1 Fidelity of prognostic approaches 

 

In these approaches, data-driven based and model-based are the most considered because 

they provide higher accuracy and reliability. Nevertheless, model-based techniques require 

accurate mathematical models of failure modes and are merely applied in some specific 

components in which each of them needs different model. Furthermore, a suitable mathematical 

model is also difficult to establish and changes in structural dynamics can affect the 

mathematical model which is impossible to mimic the behavior of systems. Meanwhile, data-

driven techniques utilize and require a large amount of historical data to build a prognostic 

model. Most of these techniques use artificial intelligence which can generate the flexible and 

appropriate models for almost failure modes. Consequently, data-driven approaches that some of 

those have been proposed in references [4-7] are firstly examined. 

In order to predict the conditions of machine, the number of future predicting values and the 

number of observations, so-called embedding dimension d, used for prediction model are two 

the necessary problems to be considered. In the first issue, one-step ahead or multi-step ahead 

prediction of time-series forecasting techniques is frequently used. They imply that the 

prognostic system utilizes available observations to forecast one value or multiple values at the 

definite future time. Unlike the one-step ahead prediction, multi-step ahead prediction is 

typically faced with growing uncertainties arising from various sources such as the 

accumulation of errors and the lack of information. Therefore, the more the steps ahead are, the 

less reliable the forecasting operation is [7]. In the second issue, the embedding dimension 

should be chosen large enough so that the prediction model can accurately forecast the future 
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value and not too large to avoid the unnecessary increase in computational complexity. False 

nearest neighbor method (FNN) [8] and Cao’s method [9] are commonly used to determine this 

value. However, FNN method not only depends on chosen parameters and the number of 

available observations but also is sensitive to additional noise. Cao’s method overcomes the 

shortcomings of the FNN approach and therefore, it is chosen in this study. 

Classification and regression trees (CART) [10] handle multivariate regression methods to 

obtain models. These models have proven to be quite interpretable and competitive predictive 

accuracy. Moreover, these models can be obtained through a computational efficiency that 

hardly has parallel in competitive approaches, turning these models into a good choice for a 

large variety of data mining problems where these features play a major role [11]. CART is 

widely implemented in machine fault diagnosis. In the prediction techniques, CART is also 

applied to forecast the short-term load of the power system [12] and predict the future 

conditions of machines [13]. Nevertheless, the average value of samples in each terminal node 

used as predicted result is the reason for reducing the accuracy of CART. Several approaches 

have been proposed to ameliorate that CART’s limitation [14-16]. In this paper, least square 

method [17] to improve the prediction capability of CART model is proposed. This improved 

model is then used to predict the conditions of machine. 

 

2. Background knowledge 

2.1. Determine the embedding dimension 

Assuming a time-series of x1, x2, …, xN. The time delay vector is defined as follows [13]: 

τττ )1(...,,2,1,],...,,[ )1()( −−==
−++

dNixxxy
diiidi

    (1) 

where τ is the time delay and d is the embedding dimension.  

Defining the quantity as follows: 
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where ||⋅|| is the Euclidian distance and is given by the maximum norm, yi(d) means the ith 

reconstructed vector and n(i, d) is an integer so that yn(i,d)(d) is the nearest neighbor of yi(d) in 

the embedding dimension d.  

In order to avoid the problems encountered in FNN method, a new quantity is defined as the 

mean value of all a(i, d)’s: 
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E(d) is only dependent on the dimension d and the time delay τ. To investigate its variation 

from d to d+1, the parameter E1 is given by 
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By increasing the value of d, the value E1(d) is also increased and it stops increasing when 

the time series comes to a deterministic process. If a plateau is observed for d � d0 then d0 + 1 is 

the minimum embedding dimension. 

The Cao’s method also introduced another quantity E2(d) to overcome the problem in 

practical computations where E1(d) is slowly increasing or has stopped changing if d is large 

enough: 
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According to [8], for purely random process, E2(d) is independent of d and equal to 1 for any 

of d. However, for deterministic time-series, E2(d) is related to d. Consequently, there must exist 

some d’s so that E2(d) � 1. 

 

2.2. Least square regression trees (LSRT) 

A regression tree models are sometimes called piecewise constant regression models. 

Regression trees are constructed using a recursive partitioning algorithm. Assuming that a 

learning set comprised n couples of observation ),(),...,,( 11 nnyy xx , where ),...,( 1 idii xx=x is a set 

of independent variables and Ryi ∈  is a response associated with xi. The regression tree is 

constructed by using recursively partitioning process of this learning set into two descendant 

subsets which are as homogeneous as possible until the terminal nodes are achieved. 

The split values for partitioning process are chosen so that the sums of square errors are 

minimized. The sum of square error of the tth subset is expressed as: 

( )( )
2

,

1
( )

i i

i

y t

R t y y t
n ∈

= −�
x

 (7) 

where ( )y t and n are the mean value of response and the number of samples in that subset, 
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respectively. At each terminal node, the predicted response is estimated by the average ( )y t of 

all values y of the response variables associated to that node. This issue is the reason why the 

prediction accuracy is significantly reduced. 

To improve the accuracy of predicted response, the mean value ( )y t of response at any node 

in LSRT is replaced by the local model ),( if x� , which shows the relationship between the 

response yi and a set of independent variable xi. Hence, the sum of square error of the tth node 

(subset) in Eq. (7) can be rewritten as: 

( )
2

,

1
( ) ( , )

i i

i i

y t

R t y f
n ∈

= −�
x

� x  (8) 

where θθθθ is a set of parameters. The local models ),( if x�  can be either linear or non-linear 

model in which the forms are known with unknown values of parameters as shown in Table 1. 

 

Table 1 Local model types in LSRT 

 

In LSRT, those local models are organized as a set of models. At any node, an appropriate 

model ),( if x� is chosen to fit the independent variable xi. The values of parameters θθθθ of each 

model are initially calculated by using least square method [17]: 

1[ ]T T
yθ −

= X X X  (9) 

where 1[ ,..., ]T

n
y y y= is the response , 1[ ,..., ]T T T

n
=X x x is a matrix of independent variables. 

Furthermore, there could be several appropriate local models that are found, the best model are 

subsequently chosen based on the minimum of the sum of squares due to error (SSE) and the 

root mean squared error (RMSE) criterions: 
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where yi and iŷ  are response value and predicted value given by local model at that node, 

respectively. By this improvement, the outputs of terminal nodes are local models that lead to 

more accurate prediction. 

Similarly to CART, LSRT needs to be pruned and carried out cross-validation in order to 

avoid the over-fitting and complicated problems. These processes are implemented as in 

references [13].  

 

3. Proposed system 

 

Normally, when a fault occurs in a machine, the conditions of machine can be identified by 

the change in vibration amplitude. In order to predict the future state based on available 
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vibration data, the proposed system as shown in Fig. 2 is proposed. This system consists of four 

procedures sequentially: data acquisition, data splitting, training-validating model and 

predicting. The role of each procedure is explained as follows: 

 

Fig. 2 Proposed system for machine fault prognosis 

 

Step 1 Data acquisition: acquiring vibration signal during the running process of the machine 

until faults occur. 

Step 2 Data splitting: the trending data is split into two parts: training data for building the 

model and testing data for testing the validated model. 

Step 3 Training-validating: determining the embedding dimension based on Cao’s method, 

building the model and validating the model for measuring the performance capability. 

Step 4 Predicting: one-step-ahead prediction is used to forecast the future value. The 

predicted result is measured by the error between predicted value and actual value in the testing 

data. If the prediction is successful, the result obtained from this procedure is the prognosis 

system. 

 

4. Experiments and results 

The proposed method is applied to real system to predict the trending data of a low methane 

compressor of a petrochemical plant. This compressor shown in Fig. 3 and is driven by a 440 

kW motor, 6600 volt, 2 poles and operating at a speed of 3565 rpm. Other information of the 

system is summarized in Table 2. 

 

Fig. 3 Low methane compressor  

Table 2 Description of system  

 

The condition monitoring system of this compressor consists of two types, namely off-line 

and on-line. In the off-line system, accelerometers were installed along axial, vertical, and 

horizontal directions at various locations of drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. In the on-line system, accelerometers were located 

at the same positions as in the off-line system but only in the horizontal direction. 

The trending data was recorded from August 2005 to November 2005 which included peak 

acceleration and envelope acceleration data. The average recording duration was 6 hours during 

the data acquisition process. Each data record consisted of approximately 1200 data points as 

shown in Figures 4 and 5, and contained information of machine history with respect to time 

sequence (vibration amplitude). Consequently, it can be classified as time-series data. 
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Fig. 4 The entire of peak acceleration data of low methane compressor  

Fig. 5 The entire of envelope acceleration data of low methane compressor  

 

These figures show that the machine was in normal condition during the first 300 points of 

the time sequence. After that time, the condition of the machine suddenly changed. This 

indicates possible faults occurring in the machine. By disassembling and inspecting, these faults 

were identified as the damage of main bearings of the compressor (notation Thrust: 7321 BDB) 

due to insufficient lubrication. Consequently, the surfaces of these bearings were overheated and 

delaminated [13]. 

With the aim of forecasting the change of machine condition, the first 300 points are used to 

train the system. Before being used to generate the prediction models, the time delay and the 

embedding dimension are initially determined. The time delay is chosen as 1 for the reason that 

one step-ahead is implemented in all datasets, whilst the embedding dimension is calculated 

according to the method mentioned in section 2.1. Theoretically, the minimum embedding 

dimension is chosen as E1(d) obtains a plateau. In Fig.6, the embedding dimension is chosen as 

6 for the reason that the values of E1(d) reaches its saturation. 

 

Fig. 6 The values of E
1 
and E

2 
of peak acceleration data of low methane compressor 

 

Subsequent to determining the time delay and embedding dimension, the process of 

generating the prediction model is carried out. It is noted that during the process of building the 

prediction model (regression tree model), the number of response values for each terminal node 

in tree growing process is 5 and the number of cross-validations is chosen as 10 to select the 

best tree in tree pruning. Furthermore, in order to evaluate the predicting performance, the 

RMSE value given in Eq. (10) is utilized. Fig. 7 depicts the training and validating results of 

LSRT for peak acceleration data. The actual values and predicted values are almost identical 

with very small RMSE of 0.00118. It indicates that the learning capability of LSRT model is 

tremendously positive. 

 

Fig. 7 Training and validating results of peak acceleration data 

 

The prediction models obtained from training process are evaluated by using an independent 

data set. This data set begins at the end point used for training set (from the 300th point) and 

contains the changing machine condition. Fig. 8 shows the actual-like predicted results of LSRT 
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for peak acceleration data with the small RMSE error of 0.049. Moreover, it can closely track 

with the changes of the operating condition of machine that is impossible to be obtain with 

CART as shown in Fig. 9. This is of crucial importance in industrial application for pending 

failures of equipments. 

Fig. 8 Predicted results of peak acceleration data using LSRT  

Fig. 9 Predicted results of peak acceleration data using CART 

 

Table 3 shows the remaining results of applying LSRT on envelop acceleration data. It is also 

depicts the comparison of the RSME between CART and LSRT. According to Table 3, training 

results of CART are sometimes slightly smaller than those of LSRT but the testing results of 

CART are always larger. This indicates the superiority of LSRT in aspect of machine condition 

prognosis. 

 

Table 3 The RMSE of CART and LSRT 

 

5. Conclusions 

 

Machine condition prognosis is extremely significant in foretelling the degradation of 

working condition and trends of fault propagation before they reach the alarm. In this study, the 

machine prognosis system based on one-step-ahead of time-series techniques and least square 

regression trees has been investigated. The proposed method is validated by predicting future 

state conditions of a low methane compressor wherein the peak acceleration and envelope 

acceleration have been examined. The predicted results of the LSRT are also compared with 

those of traditional CART. From the predicted results, the LSRT model performance is vastly 

superior to the traditional model, especially in testing process. Additionally, the predicted results 

of LSRT are capable of tracking the change of machines’ operating conditions with high 

accuracy. The tracking-change capability of operating conditions is of crucial importance in 

pending failures of industrial equipments. The results confirm that the proposed method offers a 

potential for machine condition prognosis with one-step-ahead prediction.  
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Fig. 1 Fidelity of prognostic approaches 

 

 

 

Fig. 2 Proposed system for machine fault prognosis 

 



 12

���
�������
���������	
�������	
�������������

����
�����
�������� ����
�����
����������

�������
��������!


����������!�"��� ����
�����
�"���

���#���
������	

�����
$%�&$%
����������

�����
$%�&$%
��������

�����
$%�&$%
�"���

���
��'����
���������	
�������	
������������

�����
�����������  

Fig. 3 Low methane compressor 
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Fig. 4 The entire peak acceleration data of low methane compressor 
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Fig. 5 The entire envelope acceleration data of low methane compressor 
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Fig. 6 The values of E1 and E2 of peak acceleration data of low methane compressor. 
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Fig. 7 Training and validating results of peak acceleration data. 

 

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of data

A
c
c
e
le

ra
ti
o
n
 (

g
)

 

 

RMSE = 0.049027

Actual

Predicted

 
Fig. 8 Predicted results of peak acceleration data using LSRT.  
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Fig. 9 Predicted results of peak acceleration data using CART. 
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Table 1 Description of system 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 
Lobe 

Male rotor (4 lobes) 

Pole 2 Pole Female rotor (6 lobes) 

Bearing NDE:#6216, DE:#6216 
Bearing 

Thrust: 7321 BDB 

RPM 3565 rpm Radial: Sleeve type 
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Table 3 The RMSE of CART and LSRT 

Data type 
Training Testing 

CART LSRT CART LSRT 

Peak 

acceleration 
0.00062 0.0011 0.1855 0.049 

Envelop 

acceleration 
0.00028 0.00015 0.1429 0.101 

 


