Search:
Computing and Library Services - delivering an inspiring information environment

Brittle–ductile transition during diamond turning of single crystal silicon carbide

Goel, Saurav, Luo, Xichun, Comley, Paul, Reuben, Robert L and Cox, Andrew (2013) Brittle–ductile transition during diamond turning of single crystal silicon carbide. International Journal of Machine Tools and Manufacture, 65. pp. 15-21. ISSN 08906955

Metadata only available from this repository.

Abstract

In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/s on an ultra-precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM FIB- FEI Quanta 3D FEG) was used to examine the cutting tool before and after the machining. A surface finish of Ra=9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon, germanium, etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which are normally considered as a prerequisite to ductile-regime machining, may not be observed during ductile-regime machining of polycrystalline materials.

Item Type: Article
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Schools: School of Computing and Engineering
School of Computing and Engineering > Centre for Precision Technologies
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 15 Nov 2012 12:25
Last Modified: 15 Nov 2012 12:25
URI: http://eprints.hud.ac.uk/id/eprint/16102

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©