Search:
Computing and Library Services - delivering an inspiring information environment

Shear instability of nanocrystalline silicon carbide during nanometric cutting

Goel, Saurav, Luo, Xichun and Reuben, Robert L. (2012) Shear instability of nanocrystalline silicon carbide during nanometric cutting. Applied Physics Letters, 100 (23). p. 231902. ISSN 0003-6951

Metadata only available from this repository.

Abstract

The shear instability of the nanoscrystalline 3C-SiC during nanometric cutting at a cutting speed of 100 m/s has been investigated using molecular dynamics simulation. The deviatoric stress in the cutting zone was found to cause sp3-sp2 disorder resulting in the local formation of SiC-graphene and Herzfeld-Mott transitions of 3C-SiC at much lower transition pressures than that required under pure compression. Besides explaining the ductility of SiC at 1500 K, this is a promising phenomenon in general nanoscale engineering of SiC. It shows that modifying the tetrahedral bonding of 3C-SiC, which would otherwise require sophisticated pressure cells, can be achieved more easily by introducing non-hydrostatic stress conditions.

Item Type: Article
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Schools: School of Computing and Engineering
School of Computing and Engineering > Centre for Precision Technologies
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 15 Nov 2012 12:21
Last Modified: 15 Nov 2012 12:21
URI: http://eprints.hud.ac.uk/id/eprint/16101

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©