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Abstract 10 

The initiation of wet-snow shedding from overhead cables with negligible sag due to 11 

natural processes was modeled experimentally and theoretically. The experiments were 12 

carried out in a cold chamber where wet-snow sleeves were prepared on a suspended 13 

cable, and then exposed to natural processes leading to snow shedding: air temperature 14 

above freezing point, wind effect, and heat radiation. The theoretical model is based on 15 

heat balance, and simulates water migration in the cross section at the end of the snow 16 

sleeve from the top half toward the bottom half. The model calculates the time history of 17 

liquid water content and density of snow in the end section, predicts the deflection of the 18 

same section and its shedding when it is completely detached from the cable. The 19 

theoretical and experimental results provide the time of snow shedding under different 20 

ambient conditions, together with time dependence of liquid water content and density of 21 

snow during the time interval modeled.  22 
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 25 

1 Introduction 26 

Wet snow accumulates on overhead transmission lines at air temperatures slightly above 27 

freezing point. The accretion may grow under favorable conditions and the accreted snow 28 

may persist long time on the cable before shedding occurs at such a point that it 29 

endangers the transmission line. The shedding of the accreted wet snow involves a further 30 

danger, because it causes unbalanced load on the line. Therefore, predicting the time 31 

duration of snow persistence on the cable and understanding the initiation and 32 

propagation of wet-snow shedding are particularly important from the point of view of 33 

line design. An essential condition for thick accretion to be formed is the presence of 34 

liquid water, because this factor is responsible for strong adhesion of wet snow to the 35 

cable. However, a further increase of liquid water content (LWC) weakens cohesive and 36 

adhesive forces, and leads to snow shedding. Natural processes such as solar radiation, or 37 

free or forced convection due to air temperature above freezing point with or without 38 

wind effects, cause solid ice particles to melt in wet snow, thus increasing LWC, and 39 

eventually resulting in snow shedding naturally under the effect of gravity or wind.  40 

 41 

Since wet-snow shedding is rarely observed, it is a challenging problem, and it is not 42 

surprising that less research has been carried out in this specific field than on the 43 

problems caused by glaze or rime ice. Wet-snow accretion on overhead wires was 44 

observed mainly in Japan (Wakahama et al., 1977), in France (Admirat and Lapeyre, 45 
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1986; Admirat et al., 1990) and in Iceland (Eliasson and Thorsteins, 2000), although this 46 

phenomenon is not limited to these countries. The field observations of Admirat and 47 

Lapeyre, 1986 suggest that snow shedding occurs first where axial growth took place. 48 

They observed that snow accretion was absent near the towers where cable rotation was 49 

reduced due to its high torsional rigidity. Eliasson and Thorsteins, 2000 observed the 50 

results of snow shedding, and studied fallen snow samples. Snow shedding under 51 

experimental conditions was observed in wind tunnel experiments which were carried out 52 

to study wet-snow accretion, but where shedding also occurred in some tests (Sakamoto 53 

et al., 1988; Wakahama et al., 1977). The main findings of former experiments and 54 

observations on wet-snow shedding are summarized in Sakamoto et al., 2005.  55 

 56 

Sophisticated theoretical models for wet-snow shedding have not been developed until 57 

now. Admirat et al., 1988 constructed a model for wet-snow accretion including a 58 

condition for shedding. They proposed that snow sleeves broke up when the LWC 59 

reached 40%. This condition was also applied in the wet-snow accretion models 60 

developed in Poots and Skelton, 1994 and in Poots and Skelton, 1995. All of these 61 

authors expressed LWC as a percentage of the mass of liquid water divided by the total 62 

mass of snow, which will also be done throughout the present paper. 63 

 64 

The lack of knowledge on the mechanism of wet-snow shedding was at the source of a 65 

research program at CIGELE, where an inexpensive technique was developed by 66 

Roberge, 2006 to reproduce wet-snow sleeves in a cold chamber. With that technique, he 67 

was able to study wet-snow shedding experimentally, and developed a numerical model 68 
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to simulate the dynamic effects of snow shedding on the cable. However, he did not vary 69 

the atmospheric parameters to examine their influence on snow shedding. The present 70 

study aims at determining the effects of natural processes, (i) air temperature above 71 

freezing point, (ii) wind, and (iii) solar radiation, on the initiation of wet-snow shedding. 72 

In order to achieve this goal, the variation of LWC in the end section of the snow sleeve 73 

has to be estimated together with water migration toward the bottom of snow sleeve and 74 

with the subsequent deflection of the same section. This is the procedure which precedes 75 

the detachment of the end section from the snow sleeve. Former models calculated only 76 

the variation of the average LWC in the snow sleeve during the accretion process. 77 

Therefore, cold-chamber experiments were conducted in the present research to observe 78 

the effects of the parameters mentioned above; furthermore, a two-dimensional (2D) 79 

thermodynamic model was developed to simulate the process leading to wet-snow 80 

shedding from taut cables under different ambient conditions. Such a model also 81 

contributes for line designers to fill the need to predict the time during wet snow persists 82 

on the transmission line cable. 83 

 84 

2 Experimental Setup and Procedure 85 

This section describes the experimental setup, the procedure for preparing the snow 86 

sleeve, the measurement techniques, and the ambient conditions. 87 

 88 

2.1 Experimental Setup and Preparation of Snow Sleeve 89 

The experiments were carried out in a cold chamber of the CIGELE laboratories. Snow 90 

shedding was simulated from a 5-m-long cable (ALCAN Pigeon ACSR) of diameter 91 
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12.75 mm suspended approximately 1 m above the floor. The cable was tensioned so that 92 

the sag was reduced to a value so small that its effect was negligible and the cable was 93 

considered horizontal. 94 

 95 

Wet snow was prepared following the technique proposed by Roberge, 2006. Fresh dry 96 

snow available outdoor was collected and spread in the cold chamber where the 97 

temperature was kept above freezing point, until the snow reached a LWC value 98 

representative for wet snow and became wet enough to stick onto the test cable to form a 99 

cylindrical accretion. Admirat et al., 1990 observed the LWC of wet snow between 0 and 100 

14%. Successful snow sleeve preparation required snow sticking firmly enough onto the 101 

cable with a LWC of at least 8-10%. So, the goal was to raise the LWC to the range of 10 102 

to 15%. In spite of regular verification of snow quality during this period, the LWC of 103 

snow sleeve was sometimes found to exceed 15%, because it is difficult to estimate to 104 

what extent the LWC can increase when the snow is compressed to form the snow sleeve. 105 

Ideally, the snow density should also be constant at the beginning of each experiment; 106 

however, the change in the quality of snow available outdoor caused the variation of 107 

initial density in the range of 400-600 3kg/m . 108 

 109 

The snow sleeve was fixed on the cable using a semi-cylindrical mold and a semi-110 

cylindrical hand tool. The mold was placed below the cable and raised until the cable 111 

coincided with the axis of the mold. The snow was put in the mold and compressed with 112 

the hand tool so that it formed a cylindrical snow sleeve around the cable. Finally, the 113 

mold was carefully removed so as not to damage the snow sleeve. Figure 1 shows a 114 
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resulting snow sleeve with a diameter and length of 9.5 cm and 4.5 m, respectively. The 115 

LWC and density were assumed constant initially along the whole length. 116 

 117 

2.2 Measurement Techniques 118 

The LWC of snow was measured by the melting calorimetry method. The material used 119 

included an adiabatic container whose heat capacity was initially determined, a digital 120 

thermocouple to measure temperature, a digital scale to weigh the snow sample, and a 121 

measuring glass with scale to measure the volume of water. The procedure begins with 122 

measuring 500 ml of hot water (which corresponds to a mass of 500=wm g), pouring it 123 

into the container, and measuring its temperature, 
wT . Then, a snow sample of mass, 

sm , 124 

comparable with that of water is dropped into the hot water quickly. Since the snow is 125 

wet, its temperature is assumed C0o=sT . The sample melts in about one minute, and 126 

then the mixture temperature, mT , is measured. Once the temperature and mass data are 127 

known, the LWC may be calculated from the heat balance of the system including water, 128 

wet snow and container. This is a simple calculation which is provided in details in 129 

Roberge, 2006.  130 

 131 

The precision of this measurement is determined by the precisions of the measuring glass, 132 

the scale, the digital thermocouple and the handling procedure when snow is put into 133 

container and when some snow or water droplet may fall outside the container. These 134 

precisions determine the maximum errors in the parameters which are used in the heat 135 

balance of the water-snow-container system ( wm , wT , sm , and mT ). In order to find the 136 

maximum error in the LWC for the variation of each parameter, the maximum errors 137 
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were applied in the heat balance for each parameter in the range where they appeared in 138 

the measurements ( 500=wm g, C90C70 oo ≤≤ wT , 200 g / 400 g ≤≤ sm 500 g, and 139 

C30C10 oo ≤≤ mT ). The two lower limits for sm  are explained by the conditions in the 140 

different phases of the experiments. The mass of snow sample was kept close to that of 141 

the hot water at the beginning of experiment (lower limit: 400 g). However, it was 142 

difficult to take a big sample from the top of accumulation at the end of experiments 143 

when most of the snow was turned below the cable at the end of the snow sleeve (see 144 

Section 4.1 for details of the snow shedding mechanism). In this phase of the experiments 145 

the LWC was quite high (20% or more) even on the top part of the accumulation. Thus, 146 

in the error analysis, the lower limit sm = 200 g was considered for higher values of 147 

LWC, whereas the lower limit sm = 400 g was taken into account when the LWC was 148 

lower. Table 1 lists the precisions of the tools and of the handling procedure, the 149 

maximum error in each parameter, and the resulting maximum error in the LWC value. 150 

The measurement is most sensitive for the variation of mixture temperature, and higher 151 

error values arise when snow LWC is low. The worst-case scenario considering errors in 152 

all the four parameters means a total error of about 22% of the LWC value. 153 

 154 

The density of snow was simply obtained by measuring the mass of snow samples taken 155 

with a cylindrical piece of known volume. 156 

 157 

2.3 Ambient Conditions 158 

As mentioned in Section 1, the present study examines the effects of three parameters: air 159 

temperature, wind speed, and solar radiation. The air temperature of the cold chamber 160 
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was kept constant during the experiments, and the value of this constant was chosen 161 

between C1o  and C5o . The air velocity was limited to 4 m/s in the cold chamber. The 162 

experiments were carried out with three velocities; 4 m/s, 2 m/s, and without wind. It 163 

should be noted that in the case of no wind air circulation was still observed in the cold 164 

chamber due to cooling, and a speed of about 0.6 m/s was measured. This value was 165 

applied in the simulations with no wind. Solar radiation was simulated using three 166 

halogen lamps. These lamps were positioned in such a way that the illumination from the 167 

middle one covered the entire snow sleeve, whereas both of the two other lamps 168 

illuminated half of the snow sleeve (see Fig. 1). Thereby the light from two lamps 169 

overlapped along the snow sleeve when all three lamps were switched on, and the 170 

illumination of the light was doubled (see Fig. 2). The average illumination along the 171 

span was measured to be 450 lx and 900 lx, respectively, when one lamp and three lamps 172 

were switched on. Compared to the radiation data measured in Quebec province, Canada, 173 

at a latitude of o45  (Atmospheric Environment Service, 1984), the simulated illumination 174 

corresponds to the radiation after sunrise or before sunset on a winter day under overcast 175 

conditions. The illumination at noon on the same day is 2-3 times greater, and it may be 176 

up to 40 times greater at midday on a sunny winter day. However, since the luminous 177 

efficiency of the sun is greater than that of halogen lamps, the radiation heat flux from the 178 

halogen lamps in the experiments corresponds to that originating from the sun at midday 179 

on a cloudy winter day, and it is an order of magnitude less than that originating from the 180 

sun at midday on a sunny winter day. The latter condition was not modeled in the 181 

experiments due to the power limitation of halogen lamps. 182 

 183 
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3 Construction of the 2D Thermodynamic Model 184 

This section describes a 2D thermodynamic model which uses heat balance to determine 185 

the mass of melted water in the vertical section at the end of the snow sleeve on a 186 

horizontal cable, and simulates water migration toward the bottom of the section 187 

assuming that no water dripping occurs. The modeled mass transfer leads to deflection of 188 

the vertical section, and the process terminates by snow shedding. The computation 189 

consists of two main steps. The mass of melted water due to heat convection and heat 190 

radiation is calculated in the first step, from which the average LWC and density of the 191 

section may be determined. Then, water percolation and the deflection of end section are 192 

simulated in the second part, and the variations of LWC and density are calculated for the 193 

fractions of the snow sleeve end section which are above and below the line passing 194 

through the midpoint of cable. This line, indicated in Fig. 3, will henceforth be called 195 

centerline for the sake of simplicity. The second part of the model also predicts to what 196 

extent the end section is deflected; when the whole section moved below the centerline, 197 

shedding is assumed to have happened and simulation is terminated. The first part of this 198 

model and existing snow-accretion models (Grenier et al., 1986; Poots and Skelton, 1994; 199 

Poots and Skelton, 1995; Sakamoto, 2000) differ in two main points: (i) the present 200 

model assumes that snow accretion has already been ended before the beginning of 201 

simulation; (ii) the effect of solar radiation was neglected in accretion models due to 202 

cloudy conditions, which is not always the case during shedding; therefore this effect is 203 

taken into account in the present model. The second part of this model was not at all 204 

considered in accretion models, but it is essential for the understanding of the shedding 205 

mechanism. 206 
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 207 

3.1 Heat Balance of Wet Snow Sleeve 208 

The heat balance has been applied in several models of snow accumulation (Grenier et 209 

al., 1986; Poots and Skelton, 1994; Poots and Skelton, 1995; Sakamoto, 2000). The 210 

present model, assuming that wet-snow accumulation has already been terminated, 211 

simulates thermodynamic processes occurring in the snow sleeve until it sheds. The terms 212 

which appear in the heat balance in the mentioned models together with heat radiation are 213 

considered here, without assuming snow precipitation: 214 

Jrecf QQQQQ +++=  (1) 215 

where fQ (W) is the latent heat required to melt the snow, cQ (W) is the convective heat, 216 

eQ (W) is the heat transfer due to evaporation or condensation, rQ (W) is the heat gained 217 

from radiation, and JQ (W) is the heat generated by the current. 218 

 219 

Since no accumulation is assumed during the process simulated, the heat required to melt 220 

the snow is simply calculated as follows: 221 

t

M
LQ

f

ff d

d
=  (2) 222 

where fM (kg) is the mass of melted water within the snow matrix, t (s) is time, and 223 

fL (J/kg) is the latent heat of fusion. 224 

 225 

The convective heat transfer between the ambient air and the snow layer is expressed by 226 

( )sacc TThAQ −=  (3) 227 
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with h ( )( )Km/W 2 ×  standing for heat transfer coefficient, cA ( 2m ) denoting the 228 

circumferential surface area of exchange, whereas aT ( Co ) and sT ( Co ) denote 229 

temperature of air and snow surface, respectively. The heat transfer coefficient is related 230 

to the Nusselt number, Nu, as follows: 231 

D

k
h a Nu

=  (4) 232 

where ak  ( )( )KmW/ ×  is the thermal conductivity of air, and D (m) is the diameter of 233 

accreted snow. For free convection, the Nusselt number is related to the Grashof number, 234 

( ) 23 /Gr asaa DTTg νβ −= , and the Prandtl number, apa kc /Pr µ= , with the parameters, g 235 

( 2m/s ), gravitational constant, aβ  (1/K ), thermal expansion coefficient of air, aν ( /sm2 ) 236 

and aµ ( )( )smkg/ × , kinematic and dynamic viscosity of air, respectively, and 237 

pc ( )( )KkgJ/ × , specific heat of air at constant pressure. The following correlation was 238 

proposed by Bird et al., 1960 to calculate Nusselt number for free convection when 239 

410GrPr > : 240 

( ) 4/1GrPr525.0Nu =fr  (5) 241 

In case of forced convection, the Nusselt number depends on the Reynolds number, 242 

aaa DU µρ /Re = , where 
aρ ( 3kg/m ) is air density, and 

aU (m/s) is wind speed. The 243 

correlation proposed by Makkonen, 1984 in the range of 54 109Re107 ×<<×  was 244 

applied in this model: 245 

85.0Re032.0Nu =fo  (6) 246 

 247 
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The heat transfer due to evaporation of liquid water or condensation of water vapor is 248 

obtained from the formula: 249 

p

e
hA

c

L
MQ w

c

p

v
awe

∆








=

63.0

, Sc

Pr
 (7) 250 

where 622.0, =awM  is the ratio of the molar weights of water vapor and air, 251 

awa D ,/Sc ν=  is the Schmidt number, awD , ( /sm2 ) is the diffusion coefficient of water 252 

vapor in air, vL ( J/kg ) is the latent heat of vaporization, Pa101325=p  is the 253 

atmospheric pressure, and ( ) ( )swaww TeTee −=∆ ϕ  is the difference between vapor 254 

pressure in the air and at the snow surface with ( )Tew
 (Pa) and ϕ, which denote 255 

saturation vapor pressure at temperature T and relative humidity of air, respectively. The 256 

relative humidity of air was assumed constant in the experiments: ϕ = 0.8. 257 

 258 

The heat gained from radiation is the sum of short-wave radiation originating from the 259 

halogen lamps and long-wave radiation between the snow and the chamber walls. Both 260 

short-wave and long-wave radiations are also present in natural processes, originating 261 

from the Sun and the atmosphere, respectively. The heat transfer due to radiation may be 262 

calculated from the following formula: 263 

( ) ( ) csaRrrr ATTAIQ 441 −+−= εσα  (8) 264 

The intensity, 
rI ( )2m/W , is obtained from the value measured in lx divided by the 265 

product of 683 lm/W and the luminous efficiency of the halogen lamp. The halogen lamp 266 

operates at a filament temperature of around 3000 K , with luminous efficiency taken to 267 

be 3.5% according to Planck’s law. The radiated surface, 
rA ( 2m ), is the projection of the 268 
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sleeve surface in the plane perpendicular to radiation. The albedo of wet snow, α, is taken 269 

to be 0.6 (Male and Grey, 1981), whereas the emissivity of snow, ε, is equal to 0.98 270 

(Kondratyev, 1969). The 81057.5 −×=Rσ  ( )42 KmW/ ×  is the Stefan-Boltzmann 271 

constant, and the temperature of chamber walls is assumed to be equal to the air 272 

temperature, aT ( Co ). Although heat radiation is neglected in snow accumulation models, 273 

because snow usually accumulates under overcast conditions, the present model takes it 274 

into account, which makes it possible to evaluate the effect of solar radiation on snow 275 

shedding. 276 

 277 

The heat due to Joule effect is produced by the current carried in the cable, and also 278 

depends on the electric resistance of the cable. As the effect of electric current is the 279 

subject of a parallel project, this term is left out of the present model. 280 

 281 

3.2 Water Movement through Snow and Deflection of End Section 282 

LWC and density are assumed to be constant initially in the cross section of the snow 283 

sleeve. Then, once the water distribution in snow is in funicular mode, the liquid water 284 

begins to migrate from the top toward the bottom. If, for the sake of simplicity, the 285 

capillary influence on water flow is ignored, then the flow occurs under the effect of 286 

gravity, and can thus be described by the simplified form of Darcy’s law (Colbeck, 287 

1972): 288 

w

w

ww

g
ku

µ

ρ
=  (10) 289 
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where wu (m/s) is the volume flux of water, wk ( 2m ) is the permeability to the water 290 

phase, wρ ( 3kg/m ) is the density of water, and wµ ( )( )smkg/ ×  is the dynamic viscosity of 291 

water. The permeability, wk , is related to the porosity, φ, and water saturation, wS . If the 292 

water film is not continuous from ice grain to ice grain, then the permeability is 0 and no 293 

water flow occurs. This fact suggests to relate permeability to another parameter, 294 

( ) ( )wiwiw SSSS −−= 1/ , where wiS  is the value of saturation when the water film 295 

becomes continuous, called irreducible water saturation, and S = 0 if wS < wiS . This 296 

saturation corresponds to the transition between the pendular and funicular regimes of 297 

liquid distribution, which occurs around 14% (Denoth, 1980). Then, permeability can be 298 

obtained by the following equation: 299 

( ) 2exp Sbakw φ=  (11) 300 

where a( 2m ) and b are constants. The value derived by Colbeck, 1972 for a, 141025.6 −×  301 

2m , was applied in the model. The value of the other constant, 8=b , was chosen in 302 

correspondence with experimental observations. The porosity, φ, and saturation, wS , are 303 

related to the LWC, Λ, and density of snow, ρ ( 3kg/m ) as follows (Denoth, 1980): 304 

( ) iρρφ /11 Λ−−=  (12) 305 

( ) φρρ // Λ= wwS  (13) 306 

with 
iρ ( 3kg/m ) denoting the density of ice. 307 

 308 

The development of cavities below the cable and the deflection of end section are 309 

modeled as follows. Liquid water percolates toward the inferior parts of the snow matrix 310 
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under the effect of gravity. Thus, water flows away from the snow which is located 311 

directly below the cable, but the cable prevents water to flow here from the upper parts of 312 

snow. Consequently, a cavity starts enlarging below the cable at the end of the snow 313 

sleeve where cohesion in the snow is weaker. The flow of water migrating away from the 314 

lower limit of the cavity in the end section is the product of the volume flux of water, wu , 315 

and the length of the arc limiting the cavity from the bottom. This arc length is equal to 316 

the half of the circumference of the cable. The flow of this migrating water in time, t, 317 

creates a cavity with an area which is the product of the cable diameter, d, and the 318 

deflection of end section in the same time, y. This equality provides the length, y, as a 319 

function of time (step b in Fig. 3). 320 

 321 

3.3 Procedure of Computation 322 

Since the model is two dimensional, all the calculations concern a unit length of cylinder 323 

with the assumptions being valid in the end section of the snow sleeve. Thus, the unit 324 

length practically means an infinitesimal length at the end of snow sleeve. First, the mass 325 

of melted water in unit time in this section is determined from heat balance. Knowing the 326 

ambient conditions, the initial mass and initial LWC, then the average LWC in the 327 

section may easily be calculated at any time. Second, the deflection of the end section is 328 

obtained in each time step as explained in the previous subsection, and the LWC and 329 

density of the snow above and below the centerline is determined. In order to achieve this 330 

goal, each time step during the process in the second part is divided into three sub-steps 331 

numerically as shown in Fig. 3. In the first sub-step (step (a) in Fig. 3), the snow sleeve 332 

shrinks, with consequent increase in density, so that a new radius, ( )1+iR , is calculated 333 
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due to this change and accordingly with the assumption which is based on experimental 334 

observations: the increase in density is proportional to the increase in LWC. In the second 335 

sub-step (step (b) in Fig. 3), the size of cavity increases, and correspondingly, the 336 

deflection of end section increases to ( )1+iy . The area, ( )iA∆ , which was in the top part 337 

of the snow sleeve before the ith time step, moves to the bottom part, because it is located 338 

below the centerline of the (i+1)st time step. In the third sub-step (step (c) in Fig. 3), 339 

water flows downward inside the snow matrix. The quantity of water which passes by the 340 

centerline during a time step ∆t, ( )iM w∆ , is calculated after applying another 341 

experimentally established assumption: the quantity of this water is 50% of the water 342 

which melted during the same time, ∆t. Consequently, the mass of snow above the 343 

centerline after the ith time step, ( )11 +iM , is equal to this mass in the preceding time 344 

step, ( )iM1 , minus the mass of snow in the area ( )iA∆ , minus the quantity of water which 345 

passes the centerline in the ith time step, ( )iM w∆ . Since the density of snow is assumed 346 

to be the same in the entire top part of the section, the ratio of masses is equal to the ratio 347 

of areas; therefore 348 

( ) ( )
( )

( ) ( )iMiM
iA

iA
iMiM w∆−

∆
−=+ 1

1
11 )1(  (14) 349 

Since water dripping is not considered, and the evaporated mass is negligible, the total 350 

mass, M, is maintained constant, and the mass of snow below the centerline after the ith 351 

time step is obtained from: 352 

( )1)1( 12 +−=+ iMMiM  (15) 353 

The indices 1 and 2 refer to the parts above and below the centerline, respectively. The 354 

mass of water above the centerline after the ith time step, ( )11 +iM w , is equal to the mass 355 
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after the preceding time step, ( )iM w1 , plus the mass of water melted in the ith time step in 356 

the snow which is above the centerline, minus the mass of water in the area ( )iA∆ , minus 357 

the quantity of water which passes the centerline in the ith time step, ( )iM w∆ : 358 

( ) ( )
( )

( ) ( )
( )

( ) ( )iMiM
iA

iA
iM

iA

iA
iMiM wwfww ∆−

∆
−+=+ 1

1

1
11 )1(  (16) 359 

where A is the total area of the cross section. The mass of water below the centerline after 360 

the ith time step, ( )12 +iM w , is similarly obtained from: 361 

( )
( )
( )

( ) ( )
( )

( ) ( )iMiM
iA

iA
iM

iA

iA
iMiM wwfww ∆+

∆
+








−+=+ 1

1

1
22 1)1(  (17) 362 

Once the mass of snow, the mass of water and the area above and below the centerline 363 

are known, the LWC and density may easily be calculated in both parts of the end section 364 

of the snow sleeve. The procedure is repeated until the entire end section turns below the 365 

centerline, when shedding is assumed and computation is terminated. The values of the 366 

parameters describing the physical properties of air, water and ice are listed in Table 2. 367 

 368 

4 Results and Discussion 369 

This section presents the observed shedding mechanism as well as experimental and 370 

computational results of modeling snow shedding.  371 

 372 

4.1 Shedding Mechanism 373 

A typical example of the deformation of the end section of a snow sleeve during the 374 

shedding mechanism is shown in Fig. 4. Initially, the snow sleeve is homogeneous; its 375 

circumference forms a circle concentric with the cable (Fig. 4a). As time goes on, water 376 
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migrates toward the bottom of the sleeve, and the bottom part of the sleeve becomes more 377 

and more transparent. Simultaneously, the end section begins to turn down, and a zone of 378 

cavity appears below the cable (Figs. 4b and 4c). However, the cross section remains 379 

approximately circular during this deformation. Further down in the process, the entire 380 

end section turns below the cable, and water droplets may start falling at the tip of the 381 

section (Fig. 4d). This step in most of the experiments is very short as compared to the 382 

whole duration of the process, ending with the shedding of a 20 to 30-cm-long snow 383 

chunk. Nevertheless, there were a few experiments when the cohesion in the snow 384 

delayed shedding. In these cases, the LWC increased linearly in time, and then remained 385 

approximately constant during a relatively longer period during which water dripping was 386 

already observed. Since this time was short in the majority of experiments, and water 387 

dripping was not observed until this very last part of the shedding mechanism, the 388 

theoretical model stops when the entire end section turns below the cable, so that water 389 

dripping is not considered in the model. 390 

 391 

4.2 Experimental Results 392 

Experiments were carried out under several different ambient conditions as explained in 393 

Section 2. This subsection compares the effects of the three ambient parameters 394 

examined: (i) temperature, (ii) wind speed, (iii) heat radiation. During the experiments, 395 

one end of the snow sleeve is never touched, whereas the LWC and density are measured 396 

from time to time at the other end of the sleeve. At the end of each experiment, these 397 

properties are measured from the shed pieces of snow. Shedding time including the time 398 

of the whole process till actual shedding is also recorded. 399 
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 400 

Table 3 presents a summary of the experimental results, including the adjusted ambient 401 

conditions, and the measured parameters which are the initial and final LWC and 402 

densities, the shedding time, and the average slope describing the increase in LWC at the 403 

end section in time (slope of the linear fit on measured data points such as the lines 404 

shown in Figs 5-7). Density measurement requires a large enough unbroken piece of 405 

snow which was not always available after shedding; therefore the time in parentheses 406 

appearing below most of the final density data indicates when the last density 407 

measurement took place. According to these results, the lowest LWC values of shedding 408 

snow were measured around 35%, and they might go up to about 55%. It should be noted 409 

that the highest measured values of LWC may overestimate the real LWC, because the 410 

snow was slushy and the snow sample melted quickly even on the plate where it fell and 411 

where it was carried for measuring its LWC. The 40% estimate applied in previous 412 

models (Admirat et al., 1988; Poots and Skelton, 1994; Poots and Skelton, 1995) falls in 413 

this range, but the width of this range is considerably greater than a few % which could 414 

be attributed to measurement error. However, the 40% estimate used in those models is 415 

valid during the accumulation process. So, the process simulated with the 40% estimate is 416 

different from the one considered here. The interval of measured values for final density 417 

is 600-870 3kg/m . The results of an experiment which was carried out at an air 418 

temperature of 1 Co  do not appear in Table 3, because that experiment lasted 23 h, 419 

including the night period when conditions were not controlled, so that the obtained 420 

results were rejected. 421 

 422 
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Figure 5 reveals how increasing air temperature accelerates the shedding process by 423 

showing time histories of LWC with air temperature as parameter. The shedding time is 424 

reduced significantly, more precisely by a factor of approximately 2.7, when temperature 425 

is increased from 2 Co  to 5 Co . The slope of the line representing the increase in LWC 426 

also increases by a factor of 2.3 – 2.5. 427 

 428 

The effect of wind speed on snow shedding may be observed in Fig. 6. A small increase 429 

in velocity, from 0.6 to 4 m/s, reduces shedding time to the one third of its value. It 430 

should be kept in mind, however, that the initial LWC was considerably higher for 4 m/s 431 

than the desired range of 10-15%, which must have contributed to the early shedding. 432 

Nevertheless, the significant effect of air velocity is not an exaggeration, because the 433 

slope of increase in LWC also changed by a factor of around 3 when the velocity was 434 

increased from 0.6 to 4 m/s. 435 

 436 

Figure 7 presents time histories of LWC with the third parameter under investigation, i.e. 437 

heat radiation. The application of halogen lamps influences the shedding process to a 438 

significantly less extent than an increase in air temperature or wind speed. The shedding 439 

time and the slope of the increase in LWC are almost identical for intensities of 0 lx and 440 

450 lx, whereas the slope is greater by a factor of approximately 1.3 for 900 lx. The only 441 

considerable difference observed is the diminution in shedding time for the 900 lx 442 

intensity. This change may possibly be explained by an undesirable effect, such as the 443 

different quality of snow available outdoor preceding different experiments or a crack 444 

produced during the preparation of the sleeve. 445 
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 446 

4.3 Comparison of Experimental Observations and Computer Simulations 447 

The theoretical model described in Section 3 was applied for several different conditions, 448 

and the obtained simulation results were compared to experimental observations. Since 449 

the duration of the experiments took several hours, the time step of calculation was 450 

chosen to be one minute. Figure 8 shows time histories of LWC as calculated in the entire 451 

end section as well as in the top and bottom half of the same section. Measured values of 452 

LWC of the snow sleeve are also plotted in this figure. In some of the experiments two 453 

samples were taken at each measurement, one from the top and one from the bottom half 454 

of the snow sleeve (see Figs. 8c and 8d). The four diagrams in Fig. 8 were chosen to help 455 

compare the effects of changing each parameter when the other parameters are not varied. 456 

At the beginning of most of the experiments the LWC increases by the same extent 457 

everywhere in the snow sleeve, because ice grains start melting, but water percolation is 458 

not occurring yet (curves for “simulation, bottom” and “simulation, top” coincide at the 459 

beginning in Figs. 8a,c,d and 9). As LWC increases, the water distribution in snow is in 460 

funicular mode, water movement toward the bottom of the snow sleeve begins, and the 461 

end section starts turning down. Consequently, the LWC increase in the top part slows 462 

down, and, at the same time, it accelerates in the bottom part (curves for “simulation, 463 

bottom” and “simulation, top” have different slopes and diverge in Figs. 8 and 9). At the 464 

end of the experiment, the top part disappears and the LWC in the bottom part 465 

approaches the average LWC of the entire section, because the whole section is deflected 466 

below the cable (“simulation, bottom” curve approaches “simulation” curve in Figs. 8 467 

and 9). It should be noticed that water distribution was in funicular mode even at the 468 
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beginning of the experiment whose simulation results are shown in Fig. 8b. Therefore, 469 

the increase in LWC in the top differs from that in the bottom part from the very 470 

beginning. Variations in density for the entire section, in the top and the bottom parts are 471 

plotted and compared to experimental results for one ambient condition in Fig. 9, where 472 

similar tendencies may be observed as for LWC. The difference is that the density does 473 

not approach 0 as the LWC does when the mass of snow on the top reduces significantly. 474 

In this moment, even a very small amount of water causes a slight increase in the density, 475 

since the volume also becomes very small. Although this increase in the density is just a 476 

few percent, it was not evaluated as realistic; therefore the density calculated on the top is 477 

not presented after this moment. Although the discrepancy between the measured and 478 

simulated values is changeable, the increasing tendencies, i.e. the slopes of the curves and 479 

the shedding times, are predicted satisfactorily by the model. In the few cases when 480 

shedding was delayed by stronger cohesion in the snow, the model is applicable to predict 481 

the increase of LWC; however, it fails to estimate shedding time, because the period with 482 

approximately constant LWC and with water dripping is not considered. This problem 483 

appears to be a challenge in future research. The reader is referred to Olqma, 2009 for 484 

further results and details. 485 

 486 

Simulation results are compared to former experimental observations in Fig. 10. The time 487 

history of LWC is presented in this figure for the conditions of an experiment carried out 488 

by Roberge, 2006. The model provides an acceptable estimation for both of the increase 489 

of LWC and the shedding time. The slope of increase of LWC is calculated as 4.4 % / h, 490 

and measured as 5.1 % / h; whereas the computed and experimentally obtained shedding 491 
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times are 7h 27min and 6h 38min, respectively. Both discrepancies are within 15%. It 492 

should be noted, that the calculated curves in Fig. 10 do not coincide with those in Fig. 493 

8a, because the initial conditions (LWC, density) were different. 494 

 495 

The evaluation of different terms in the heat balance makes possible a qualitative 496 

comparison between the influences of different heat sources. Table 4 shows the 497 

contribution of each heat source when air temperature, wind velocity, and intensity of 498 

short-wave radiation are varied. Since the air speed was practically 0.6 m/s in the cases 499 

with “no wind” (see Section 2.3), heat flux data are also presented for this velocity. This 500 

comparison confirms what was obtained in the experiments: the influence of increasing 501 

temperature and wind velocity dominates over the influence of heat radiation. It should 502 

be noted, however, that under sunny conditions the heat transfer rate due to short-wave 503 

radiation may reach, or even exceed, that due to convection under calm conditions. 504 

 505 

5 Conclusions and Recommendations 506 

Wet-snow shedding from a suspended cable with negligible sag under natural conditions 507 

has been studied experimentally, and a thermodynamic model has been developed to 508 

simulate the variation of LWC and density at the end section of the snow sleeve until 509 

shedding. The effects of three parameters were considered: air temperature, wind velocity 510 

and solar radiation. Experimental results show that snow shedding under natural 511 

conditions begins at the end of the snow sleeve. At the beginning of the shedding process 512 

LWC increases in the entire end section, then water starts migrating toward the bottom of 513 

sleeve. Eventually, the end section becomes more and more deflected until the snow 514 
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sheds, when external forces exceed adhesive and cohesive forces. Increasing air 515 

temperature and wind velocity accelerate this process significantly. The effect of solar 516 

radiation is less important when the sky is cloudy though it becomes considerable under 517 

sunny conditions. The theoretical model predicts satisfactorily the rate of increase of 518 

LWC and the shedding time. The final LWC and final density of the snow when it sheds 519 

vary within a considerably wide range. 520 

 521 

The process of snow shedding implies a number of further questions which are out of the 522 

scope of the present study, but should be addressed in future research. Some of these 523 

topics are as follows: modeling snow shedding from a current-carrying conductor; 524 

studying the snow shedding process from a sagged cable; finding the dependence of final 525 

LWC and final density on the initial snow characteristics; extending the thermodynamic 526 

model to 3D; and defining a shedding condition in terms of external and adhesive forces, 527 

which may help to predict rupture in the model of a 3D snow sleeve. 528 

 529 
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Tables 594 

 595 

Source of error Precision 
Parameter affected 
by source of error 

Max error in 
parameter 

Max error in 
LWC value 

Scale on measuring 
glass 

5.0±  ml Mass of water, wm  5.0±  g 2± % 

Digital scale 01.0±  g Mass of snow 
sample, 

sm  51.0±  g 1± % Handling 
procedure 5.0±  g 

Digital 
thermocouple C5.0 o±  

Temperature of hot 
water, wT  C5.0 o±  6± % 

Temperature of 
mixture, mT  C5.0 o±  13± % 

 596 

Table 1: Maximum error in the LWC measurement 597 

598 
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 599 
Parameter Symbol Unit Value 

Specific heat of air 
pc  ( )KkgJ/ ×  1006 

Diffusion coefficient of 
water vapor in air 

awD ,  /sm2  -5102.1×  

Thermal conductivity of air 
ak  ( )KmW/ ×  -2102.42×  

Latent heat of fusion 
fL  J/kg  5103.35×  

Latent heat of vaporization 
vL  J/kg  6102.5×  

Thermal expansion 
coefficient of air 

aβ  1/K  ( )( )2//1 sa TT +  

Dynamic viscosity of air 
aµ  ( )smkg/ ×  -5101.73×  

Dynamic viscosity of water 
wµ  ( )smkg/ ×  -3101.79×  

Kinematic viscosity of air 
aν  /sm2  -5101.34×  

Density of air 
aρ  3kg/m  1.28 

Density of water 
wρ  3kg/m  1000 

Density of ice 
iρ  3kg/m  917 

 600 

Table 2: Physical parameters describing air, water and ice (temperature dependent 601 

parameters are considered at 3 Co ) 602 

603 
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 604 

aT  
 

( Co ) 

aU  
 

(m/s) 

Illumi-
nation 

(lx) 

Initial 
LWC 
(%) 

Initial 
density 

( 3kg/m ) 

Final 
LWC 
(%) 

Final 
density 

( 3kg/m ) 

Shedding 
time 

(h:min) 

Average 
slope 

(% / h) 

2 0* 0 29.4 550 45.8 870 
(12:00)** 

13:00 1.1 

3 0 0 12.2 440 40.2 510 
(4:00) 

7:00 4.8 

5 0 0 12.5 460 43.1 730 
(6:00) 

6:40 4.4 

2 2 0 10.0 670 42.5 870 7:00 3.4 
3 2 0 15.2 640 50.0 800 

(5:00) 
6:45 5.9 

5 2 0 20.2 540 59.6 850 
(3:00) 

3:40 10.0 

2 4 0 14.2 500 56.8 790 
(5:00) 

5:30 5.7 

3 4 0 12.3 580 46.8 - 3:15 10.1 
5 4 0 23.2 580 49.6 640 

(1:00) 
2:00 13.3 

2 0 450 10.0 420 41.9 600 3:25 8.2 
3 0 450 8.5 420 43.2 590 

(6:10) 
7:45 4.5 

5 0 450 24.6 590 49.5 0.64 3:10 7.9 
2 0 900 9.7 540 44.8 770 

(4:00) 
7:40 4.6 

3 0 900 11.8 520 36.3 0.71 4:00 6.1 
5 0 900 16.0 520 47.5 680 

(1:00) 
2:50 11.2 

 605 

Table 3: Summary of experimental results; * - 0 means “no wind” case, but a velocity of 606 

about 0.6 m/s of the circulating air was still measured; ** - time in parentheses below 607 

final density data indicates time of last density measurement if it took place earlier than 608 

the end of experiment 609 

610 
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 611 
Convective heat flux, cq  ( 2W/m ) 

 C2o=aT  C3o=aT  C5o=aT  

0=aU  m/s 6 9 15 

6.0=aU  m/s 21 31 52 

2=aU  m/s 56 84 140 

4=aU  m/s 100 149 249 

10=aU  m/s 213 314 533 

(a) 612 

Heat flux due to short-wave radiation, srq ,  

condition exp, 450 lx exp, 900 lx sunny winter day 

srq ,  ( 2W/m ) 7.5 15 167* 

(b) 613 

Heat flux due to long-wave radiation, lrq ,  

( )CoaT  2 3 5 

lrq ,  ( 2W/m ) 9 14 23 

(c) 614 

Heat flux due to evaporation / condensation, eq  ( 2W/m ) 

 C2o=aT  C3o=aT  C5o=aT  

0=aU  m/s -2.3 -0.2 4.5 

6.0=aU  m/s -8.0 -0.7 15 

2=aU  m/s -22 -1.9 42 

4=aU  m/s -39 -3.4 74 

10=aU  m/s -83 -7.3 159 

(d) 615 

Table 4: Heat fluxes under different ambient conditions, (a) heat convection, (b) heat due 616 

to short-wave radiation considering a snow albedo of 0.6, (c) heat due to long-wave 617 

radiation, (d) heat due to evaporation / condensation for a relative humidity of 0.8; * - 618 
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value corresponds to 1.5 ( )hmMJ/ 2 ×  which is measured at midday on sunny winter days 619 

(Atmospheric Environment Service, 1984) 620 

 621 
622 
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Figure Captions 623 

Fig. 1: Snow sleeve on the suspended cable at the beginning of an experience using one 624 

lamp to simulate heat radiation 625 

Fig. 2: Illumination of the snow sleeve by the halogen lamps 626 

Fig. 3: Three numerical sub-steps in the ith time step to calculate deflection of end 627 

section as well as LWC and density above and below centerline 628 

Fig. 4: Evolution of deflection of snow sleeve during the shedding mechanism 629 

( C5 o=aT , 2=aU m/s, no radiation), (a) t = 0h; (b) t = 1h; (c) t = 2h; (d) t = 3h 630 

Fig. 5: Time histories of LWC until snow shedding with air temperature as parameter; (a) 631 

4=aU m/s, no radiation; (b) 900=rI lx, no wind 632 

Fig. 6: Time histories of LWC until snow shedding with wind speed as parameter, 633 

C5 o=aT , no radiation 634 

Fig. 7: Time histories of LWC until snow shedding with heat radiation as parameter, 635 

C3 o=aT , no wind 636 

Fig. 8: Measured (experiment) and calculated (simulation) LWC time histories, (a) 637 

C3o=aT , no wind, no radiation, (b) C3o=aT , 4=aU  m/s, no radiation, (c) C2o=aT , 638 

4=aU  m/s, no radiation, (d) C3o=aT , no wind, 450=rI lx 639 

Fig. 9: Measured (experiment) and calculated (simulation) density time histories for 640 

C3o=aT , no wind, no radiation 641 

Fig. 10: LWC time histories as measured by Roberge, 2006 (experiment) and calculated 642 

by the present model (simulation) for C3o=aT , no wind, no radiation 643 

644 
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 645 
 646 

Fig. 1: Snow sleeve on the suspended cable at the beginning of an experience using one 647 
lamp to simulate heat radiation 648 

 649 
650 
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 651 
 652 
 653 

Fig. 2: Illumination of the snow sleeve by the halogen lamps 654 
655 

halogen lamps 

snow sleeve 
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 656 
 657 

Fig. 3: Three numerical sub-steps in the ith time step to calculate deflection of end 658 
section as well as LWC and density above and below centerline 659 
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   661 
 662 

   663 
 664 

Fig. 4: Evolution of deflection of snow sleeve during the shedding mechanism 665 
( C5 o=aT , 2=aU m/s, no radiation), (a) t = 0h; (b) t = 1h; (c) t = 2h; (d) t = 3h 666 

667 
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 668 
(a) 669 

 670 

 671 
 672 

(b) 673 
 674 

Fig. 5: Time histories of LWC until snow shedding with air temperature as parameter; (a) 675 
4=aU m/s, no radiation; (b) 900=rI lx, no wind 676 

677 
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 678 
 679 

Fig. 6: Time histories of LWC until snow shedding with wind speed as parameter, 680 
C5 o=aT , no radiation 681 

682 

0.6 m/s

2 m/s 

4 m/s 



 40

 683 
 684 

Fig. 7: Time histories of LWC until snow shedding with heat radiation as parameter, 685 
C3 o=aT , no wind 686 

687 
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(c) 696 
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(d) 699 

 700 
Fig. 8: Measured (experiment) and calculated (simulation) LWC time histories, (a) 701 

C3o=aT , no wind, no radiation, (b) C3o=aT , 4=aU  m/s, no radiation, (c) C2o=aT , 702 

4=aU  m/s, no radiation, (d) C3o=aT , no wind, 450=rI lx 703 

704 
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 706 

Fig. 9: Measured (experiment) and calculated (simulation) density time histories for 707 
C3o=aT , no wind, no radiation 708 
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 711 

Fig. 10: LWC time histories as measured by Roberge, 2006 (experiment) and calculated 712 
by the present model (simulation) for C3o=aT , no wind, no radiation 713 
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