Search:
Computing and Library Services - delivering an inspiring information environment

Transmission electron microscopy of the amorphization of copper indium diselenide by in situ ion irradiation

Hinks, J. A. and Edmondson, P.D. (2012) Transmission electron microscopy of the amorphization of copper indium diselenide by in situ ion irradiation. Journal of Applied Physics, 111 (5). 053510. ISSN 0021-8979

[img] PDF - Published Version
Restricted to Repository staff only

Download (858kB)

    Abstract

    Copper indium diselenide (CIS), along with its derivatives Cu(In,Ga)(Se,S)2, is a prime candidate for use in the absorber layers of photovoltaic devices. Due to its ability to resist radiation damage, it is particularly well suited for use in extraterrestrial and other irradiating environments. However, the nature of its radiation hardness is not well understood. In this study, transmission electron microscopy (TEM) with in situ ion irradiation was used to monitor the dynamic microstructural effects of radiation damage on CIS. Samples were bombarded with 400 keV xenon ions to create large numbers of atomic displacements within the thickness of the TEM samples and thus explore the conditions under which, if any, CIS could be amorphized. By observing the impact of heavily damaging radiation in situ—rather than merely the end-state possible in ex situ experiments—at the magnifications allowed by TEM, it was possible to gain an understanding of the atomistic processes at work and the underlying mechanism that give rise to the radiation hardness of CIS. At 200 K and below, it was found that copper-poor samples could be amorphized and copper-rich samples could not. This difference in behavior is linked to the crystallographic phases that are present at different compositions. Amorphization was found to progress via a combination of one- and two-hit processes. The radiation hardness of CIS is discussed in terms of crystallographic structures/defects and the consequences these have for the ability of the material to recover from the effects of displacing radiation

    Item Type: Article
    Subjects: Q Science > Q Science (General)
    Q Science > QC Physics
    Schools: School of Computing and Engineering
    School of Computing and Engineering > Electron Microscopy and Materials Analysis
    Depositing User: Jonathan Hinks
    Date Deposited: 29 Nov 2012 10:55
    Last Modified: 02 Sep 2013 11:26
    URI: http://eprints.hud.ac.uk/id/eprint/16017

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©