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A Simple Method for Estimating Term  
Mutual Information 

D. Cai and T.L. McCluskey 

Abstract—The ability to formally analyze and automatically measure statistical dependence of terms is a core problem in many 
areas of science. One of the commonly used tools for this is the expected mutual information (MI) measure. However, it seems 
that MI methods have not achieved their potential. The main problem in using MI of terms is to obtain actual probability 
distributions estimated from training data, as the true distributions are invariably not known. This study focuses on the problem 
and proposes a novel but simple method for estimating probability distributions.  Estimation functions are introduced; 
mathematical meaning of the functions is interpreted and the verification conditions are discussed. Examples are provided to 
illustrate the possibility of failure of applying the method if the verification conditions are not satisfied. An extension of the 
method is considered. 

Index Terms—Information analysis and extraction, dependence and relatedness of terms, statistical semantic analysis.  

                                                        ——————————      —————————— 

1 INTRODUCTION

HE ability to formally analyze and automatically 
measure statistical dependence (relatedness, 
proximity, association, similarity) of terms in textual 

documents is a core problem in many areas of sciences, 
such as, feature extraction and selection, concept learning 
and clustering, document representation and query 
formulation, text analysis and data mining. Solution of 
the problem has been a technical barrier for a variety of 
practical mathematical applications. One of the 
commonly used  tools of analysis and measurement is the 
expected  mutual information (MI) measure drawn from 
information theory [10], [16]. Many studies have used  the 
measure for a variety of tasks in, for  instance, feature 
selection [2], [1], [11], [15], document classification [18], 
face image clustering [14], multimodality image 
registration [13], information retrieval [6], [7], [8], [9], [14]. 
However, it seems that MI methods have not achieved 
their potential. The main problem we face in using  the 
expected  MI measure is obtaining actual probability 
d istributions, as the true d istributions are invariably  not 
known, and we have to estimate them from training data. 
This work explores techniques of estimation. 

To address this study clearly, let us first introduce the 
concept of a term  state value d istribution. A term is usually 
thought of as having states “present” or “absent” in a 
document. Thus, for an arbitrary term  𝑡, it will be 
convenient to introduce a variable 𝛿 taking values from 
set Ω = *1, 0+, where 𝛿 = 1 expresses that 𝑡 is present and  
𝛿 = 0 expresses that  𝑡 is absent. Denote 𝑡 = 𝑡, 𝑡̅ when 
𝛿 = 1, 0, respectively. We call Ω a state value space, and  

each element in Ω a state value, of 𝑡. Similarly, for an 
arbitrary term pair  (𝑡 , 𝑡 ), we introduce a variable pair 
(𝛿 , 𝛿 ) taking values from set Ω × Ω = {(1,1), (1,0), (0,1), 
(0,0)}. We call Ω × Ω a state value space, and each element 
in Ω × Ω a state value pair, of (𝑡 , 𝑡 ). 

Let 𝐷 be a collection of documents (training data), and 𝑉 
a vocabulary of terms used to index individual documents 
in 𝐷. Denote 𝑉 ⊆ 𝑉 as the set of terms occurring in 
document 𝑑 ∈ 𝐷. Thus, for each term 𝑡 occurring in 𝑑, its 
state value d istribution is 
 

𝑃 (𝛿) = 𝑃(𝑡 |𝑑)      (𝛿 ∈ Ω) 
 
Obviously, each term 𝑡 ∈ 𝑉  is matched to a state value 
distribution and there are totally |𝑉 | state value 
distributions for document 𝑑.  

There exists statistical dependence between two terms, 
𝑡  and  𝑡 , if the state value of one of them provides mutual 
information about the probability of the state value of 
another. Losee [12] showed  that there is a relationship  
between the frequencies (or probabilities) of terms and MI 
of terms. Therefore, term  𝑡  taking some state value 𝛿  (say 
𝛿 = 1) should  be looked upon as complex because 
another state value (say 𝛿 = 0) of 𝑡 , and  state values of 
many other terms (i.e., all terms 𝑡 ∈ 𝑉 − *𝑡 + ), may be 
dependent on this 𝛿 . 

Mathematically, for two arbitrary terms 𝑡 , 𝑡 ∈ 𝑉 , the 
expected mutual information [10] about the probabilities of 
the state value pair (𝛿 , 𝛿 ) of term pair (𝑡 , 𝑡 ) can be 
expressed  by: 
 

𝐼 (𝛿 , 𝛿 ) = 𝐻(𝛿 ) − 𝐻(𝛿 |𝛿 ) = 𝐻(𝛿 ) − 𝐻(𝛿 |𝛿 )  

                  = ∑ 𝑃 (𝛿 , 𝛿 ) log
  (  ,  )

  (  )  (  )
  ,    ,   
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where 𝐻(𝛿 ) is entropy of 𝛿 , measuring uncertainty on 𝛿 ; 
𝐻(𝛿 |𝛿 ) is conditional entropy of 𝛿 , measuring 
uncertainty on 𝛿  given knowing 𝛿 . Thus, 𝐼 (𝛿 , 𝛿 ) 
measures the amount of information that 𝛿  provides about 
𝛿 , and vice versa.  

The estimation of d istributions 𝑃 (𝛿) and  𝑃 (𝛿 , 𝛿 ) 
required  in 𝐼 (𝛿 , 𝛿 ) is crucial and  remains an open issue 
for effectively d istinguishing potentially dependent term 
pairs from many others and , therefore, the main concern 
of our current study. In Section 2, we introduce estimation 
functions, interpret mathematical meaning of the 
functions and  d iscuss verification conditions. In Section 3, 
we provide examples to clarify the idea of our method . 
Section 4 considers an extension of our method and 
conclusions are drawn in Section 5. Some mathematical 
details are given in the Appendix. 

2 ESTIMATION 

In practical application, the state value d istributions may 
be estimated  from training data. The estimation of the 
joint state value d istribution, 𝑃 (𝛿 , 𝛿 ), is a more 
complicated  task, which is thus the main concern of this 
section. 

Let us start with considering a given document. Say 
we have a document 𝑑 ∈ 𝐷 with 𝑉 = *𝑡  , 𝑡  , … , 𝑡  + ⊆
*𝑡 , 𝑡 , … , 𝑡 + = 𝑉, where 1 ≤ 𝑖 < 𝑖 < ⋯ < 𝑖 ≤ 𝑛. In this 
study, we always assume that 2 < 𝑠 = |𝑉 | ≤ 𝑛 (namely, 
each document has at least three d istinct  terms).  

Generally, if we denote 𝑓 (𝑡) as the frequency of term 𝑡 
in 𝑑 and ‖𝑑‖ as the length of 𝑑 then, for a given document 
𝑑, the term occurrence frequency d istribution is given by 
 

𝑝 (𝑡) = 𝑝(𝑡|𝑑) =
𝑓 (𝑡)

∑ 𝑓 (𝑡
 )  ∈  

=
𝑓 (𝑡)

‖𝑑‖
     (𝑡 ∈ 𝑉 ) 

 
which should  not be confused with the term state value 
d istribution 𝑃 (𝛿). 
     In order to constitu te the state value d istributions, for 
arbitrary terms 𝑡, 𝑡 , 𝑡 ∈ 𝑉 , let we introduce two estimation 
functions: 
 

𝜓 (𝑡) =
  ( )

∑   ( 
 )  ∈  

                                      (1) 
 

𝛾 (𝑡 , 𝑡 ) =
  (  )  (  )

∑   (   )  .   /        
  

,  
  

∈  

     (2) 

 
Clearly, 0 < 𝜓 (𝑡), 𝛾 (𝑡 , 𝑡 ) < 1 for arbitrary 𝑡, 𝑡 , 𝑡 ∈ 𝑉 .  
     Then, for each term 𝑡 ∈ 𝑉 , from the function  𝜓 (𝑡), 
define 𝑃 (𝛿) by 
 

𝑃 (𝛿 = 1) = 𝑃 (𝑡) = 𝜓 (𝑡) 
 

   𝑃 (𝛿 = 0) = 𝑃 (𝑡̅) = 1 − 𝜓 (𝑡)      (3) 
 

which is a probability d istribution over Ω.  
       To constitu te 𝑃 (𝛿 , 𝛿 ) from the function 𝛾 (𝑡 , 𝑡 ), for  
 

 
given terms 𝑡 , 𝑡 ∈ 𝑉 , define 
 

𝜑 (𝛿 = 1, 𝛿 = 1) = 𝛾 (𝑡 , 𝑡 )  
 

𝜑 (𝛿 = 1, 𝛿 = 0) = 𝜓 (𝑡 ) − 𝛾 (𝑡 , 𝑡 )    
 

𝜑 (𝛿 = 0, 𝛿 = 1) = 𝜓 (𝑡 ) − 𝛾 (𝑡 , 𝑡 )  
 

𝜑 (𝛿 = 0, 𝛿 = 0) = 1 − 𝜓 (𝑡 ) − 𝜓 (𝑡 ) + 𝛾 (𝑡 , 𝑡 )  
 
Note that 𝜑 (𝛿 , 𝛿 ) may not constitu te a probability 
d istribution. 
    Next, we need to prove that, under some conditions, 
𝜑 (𝛿 , 𝛿 ) can be a probability d istribution by Theorem 1 
below. For doing so, here, and throughout this study, we 
denote the denominator of 𝛾 (𝑡 , 𝑡 ) by 
 

𝜛 = ∑ 𝑓 (𝑡  )          ,    ∈  
𝑓 (𝑡  )  

 
and , for an arbitrary term  𝑡 ∈ 𝑉 , denote 
 

𝜛 = ∑ 𝑓 (𝑡  )          ,    ∈   * + 𝑓 (𝑡  )  

 
Clearly 𝜛 > 𝜛 ≥ 1 as |𝑉 | > 2.  

To prove Theorem 1, we need  to introduce two lemmas. 
Detailed  proofs are given in the Appendix. 
 
Lemma 1. For an arbitrary term 𝑡 ∈ 𝑉 , we have 
 

𝜛 = ‖𝑑‖𝑓 (𝑡) − 𝑓 
 (𝑡) + 𝜛  

 

Lemma 2. For the functions 𝜓 (𝑡) and 𝛾 (𝑡 , 𝑡 ) given in (1) 
and (2), respectively, we have: 

(a) 𝜛  
≥ 𝑓 

 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ); 
(b) 𝜛  

≥ 𝑓 
 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ). 

 

We are now ready to introduce Theorem 1 below.  
Detailed  proof is given in the Appendix. 
 

Theorem 1. For arbitrary terms 𝑡 , 𝑡 ∈ 𝑉 , expression 
 

𝑃 (𝛿 , 𝛿 ) = 𝜑 (𝛿 , 𝛿 )         (4) 
 

     is a probability distribution  over Ω × Ω if it satisfies two 
inequalities: a) 𝜛  

≥ 𝑓 
 (𝑡 ) and b) 𝜛  

≥ 𝑓 
 (𝑡 ).      

 
     Thus, by the above expression 𝜑 (𝛿 , 𝛿 ) and  Theorem  
1, we have, for instance, 
 

𝑃 (𝛿 = 1, 𝛿 = 1) = 𝑃 (𝑡 , 𝑡 ) = 𝛾 (𝑡 , 𝑡 )  
 

𝑃 (𝛿 = 1, 𝛿 = 0) = 𝑃 (𝑡 , 𝑡 ̅) = 𝜓 (𝑡 ) − 𝛾 (𝑡 , 𝑡 ) 
   
     The first lemma tells us that there exists a relationship 
between 𝜛 and  𝜛 . The second lemma tells us how to  
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verify two inequalities (conditions) required  in Theorem 
1: 𝜛  

≥ 𝑓 
 (𝑡 ) and  𝜛  

≥ 𝑓 
 (𝑡 ) may be simply verified  by  

𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ) and   𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ), respectively. 
The reasoning behind the estimate, 𝑃(𝛿 , 𝛿 ), is rather 

intuitive. 𝑃(𝛿 = 1, 𝛿 = 0) and 𝑃(𝛿 = 0, 𝛿 = 1) are 
derived by two constraints:  
 

𝑃(𝛿 = 1, 𝛿 = 0) + 𝑃(𝛿 = 1, 𝛿 = 1) = 𝑃(𝛿 = 1);  
 

       𝑃(𝛿 = 0, 𝛿 = 1) + 𝑃(𝛿 = 1, 𝛿 = 1) = 𝑃(𝛿 = 1);  
 

which ensure that both 𝑃(𝛿 ) and 𝑃(𝛿 ) are marginal 
distributions of 𝑃(𝛿 , 𝛿 ). 𝑃(𝛿 = 0, 𝛿 = 0) is derived by 
another constraint  
 

                                   ∑ 𝑃 (𝛿 , 𝛿 )  ,    , = 1  
 
It is worth explaining the derivation of 𝑃(𝛿 = 1, 𝛿 = 1) =

𝛾(𝑡𝑖, 𝑡 ) in more detail. In practice, the estimation functions 
should be considered carefully and introduced  
meaningfully according to a specific application problem. 
Let us now explain the meaning of 𝛾(𝑡 , 𝑡 ) given in (1). 

It may be easier to make the explanation through an 
𝑛 × 𝑛 matrix. Suppose we are given a document 𝑑 
represented by a (frequency) 1 × 𝑛 matrix 
 

         𝒎 = ,𝑓 (𝑡 ), 𝑓 (𝑡 ), … , 𝑓 (𝑡 )- = ,𝑓 (𝑡)- ×   
 
in which, each element is a frequency satisfying 𝑓 (𝑡) ≥ 1 
when 𝑡 ∈ 𝑉  and  𝑓 (𝑡) = 0 when 𝑡 ∈ 𝑉 − 𝑉 . The matrix 
product can be written by  
 

𝒎 
 × 𝒎 = [

𝑓 (𝑡 )
…

𝑓 (𝑡 )
] × ,𝑓 (𝑡 ) … 𝑓 (𝑡 )-  

= [
𝑓 (𝑡 )𝑓 (𝑡 ) … 𝑓 (𝑡 )𝑓 (𝑡 )

… … …
𝑓 (𝑡 )𝑓 (𝑡 ) … 𝑓 (𝑡 )𝑓 (𝑡 )

]  

= [𝑓 (𝑡 )𝑓 (𝑡 )] × 
  

= 𝜛 0
 

 
𝑓 (𝑡 )𝑓 (𝑡 )1

 × 
  

= 𝜛[𝑃 (𝛿 = 1, 𝛿 = 1)]
 × 

  
 

Generally, [𝑓 (𝑡 )𝑓 (𝑡 )] × 
, which is symmetric, is 

called the co-occurrence frequency matrix of terms concerning 
𝑑. Hence, 
 

      [𝑃 (𝛿 = 1, 𝛿 = 1)]
 × 

= 0
 

 
𝑓 (𝑡 )𝑓 (𝑡 )1

 × 
  

          = [𝛾 (𝑡 , 𝑡 )] × 
  

 
can be referred to as the normalized co-occurrence frequency 
matrix of terms concerning 𝑑. Consequently, 𝑃 (𝛿 = 1, 𝛿 =
1) = 𝛾 (𝑡 , 𝑡 ), for 𝑖,  = 1,… , 𝑛, can be represented by an 
𝑛 × 𝑛 matrix: its numerator, 𝑓 (𝑡 )𝑓 (𝑡 ), characterizes the 
co-occurrence frequencies of 𝑡  and 𝑡  in document 𝑑; its 
denominator, 𝜛, the sum of all possible numerators  

 
𝑓 (𝑡 )𝑓 (𝑡 ) for 𝑖 <    𝑖,  = 1,… , 𝑛, is a normalization factor 
for the characterization. Clearly, 𝜛 is a constant for all term 
pairs, (𝑡 , 𝑡 ), occurring in a given document. 

Note that assumption |𝑉 | > 2 ensures that there exists 
more than one non-zero element in the matrix, such that 
[𝑃𝑑(𝛿𝑖 = 1, 𝛿 = 1)]

 × 
≠ ,0- × . Notice also that, because 

no two components of (𝑡 , 𝑡 ) can be the same, the elements 
where 𝑖 =   , corresponding to 𝑃 (𝛿 = 1, 𝛿 = 1) for 
𝑖 = 1,… , 𝑛, should not be considered in our context. 
However, it is only for notational convenience that these 
elements are included in the matrix. 

3 DISCUSSION 

It should  be emphasized , in order to speak of the MI of 
terms, that we must verify two arguments of 𝐼(𝛿 , 𝛿 ) are 
probability d istributions. For instance, in our method, 
they should  satisfy the two inequalities given in Theorem 
1. Let us look at examples below, which will help to 
clarify the idea and make understandable the 
computation involved in all the above formulae. 
 

Example 1. Suppose 𝑑 = *𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 +, then we 
have 𝑉  

= *𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 +, and 𝜛 = 26. Thus, for 
term pair (𝑡 , 𝑡 ), from (2) and (4), we have 

 

        𝑃  
(𝛿 = 1, 𝛿 = 1) =

 × 

  
=

 

   
  

        𝑃  
(𝛿 = 1, 𝛿 = 0) =

 

 
−

 

  
=

 

   
> 0  

        𝑃  
(𝛿 = 0, 𝛿 = 1) =

 

 
−

 

  
=

  

   
> 0  

        𝑃  
(𝛿 = 0, 𝛿 = 0) = 1 −

 

 
−

 

 
+

 

  
=

  

   
  

 

Then, it follows immediately (using natural logarithms) 
 

𝐼  
(𝛿 , 𝛿 ) =

 

   
log

 

   
 

 
   
 

 

+
 

   
log

 

   
 

 
   
 

 

  

+ 
  

   
log

  

   
 

 
   
 

 

+
  

   
log

  

   
 

 
   
 

 

  

≈ 0.0693 − 0.0321 − 0.0405 + 0.0472  
= 0.0439  

 

Example 2. Suppose that we are given a document 
𝑑 = *𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 +. From which we have 

 

𝜛 = ∑ 𝑓  
(𝑡  )          ,    ∈   

𝑓  
(𝑡  )  

= 𝑓  
(𝑡 )𝑓  

(𝑡 ) + 𝑓  
(𝑡 )𝑓  

(𝑡 ) + 𝑓  
(𝑡 )𝑓  

(𝑡 ) +

𝑓  
(𝑡 )𝑓  

(𝑡 ) + 𝑓  
(𝑡 )𝑓  

(𝑡 ) + 𝑓  
(𝑡 )𝑓  

(𝑡 )   

        = 1 × 3 + 1 × 1 + 1 × 1 + 3 × 1 + 3 × 1 + 1 × 1 = 12 
 

Thus, for instance, for term pair (𝑡 , 𝑡 ), we have 
𝛾  

(𝑡 , 𝑡 ) =
 × 

  
, and  

     𝑃  
(𝛿 = 1, 𝛿 = 0) = 𝜓  

(𝑡 ) − 𝛾  
(𝑡 , 𝑡 )  

     = 1/6 − 3/12 = −1/12 < 0  
 

from which we can conclude that 𝑃  
(𝛿 , 𝛿 ) is not a  
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probability distribution since 𝜛  
(𝑡 ) − 𝛾  

(𝑡 , 𝑡 ) < 0. 
Also, we can verify this in an alternative way: 
 

          𝜛  = ∑ 𝑓  
(𝑡  )𝑓  

(𝑡  )          ,    ∈    *  +   

             = 𝑓  
(𝑡 )𝑓  

(𝑡 ) + 𝑓  
(𝑡 )𝑓  

(𝑡 ) 

     +𝑓  
(𝑡 )𝑓  

(𝑡 )     

          = 1 + 1 + 1 < 9 = 𝑓  
(𝑡 )𝑓  

(𝑡 ) 
 
That is, the first inequality given in Lemma 2 is not 
satisfied. 

The above Example 2 is a specific instance of failing to 
apply the estimation given in (1)-(4). From the above two 
examples, we can see: 
 

(i) In order to compute term dependence, we must 
verify both 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ) and 𝜓 (𝑡 ) ≥
𝛾 (𝑡 , 𝑡 ), or equivalently to verify both 𝜛  

≥ 𝑓 
 (𝑡 ) 

and 𝜛  
≥ 𝑓 

 (𝑡 ), satisfied simultaneously, for each 
term pair considered.  

 

(ii) 𝛾 (𝑡 , 𝑡 ) becomes smaller rapidly as documents 
become longer, it should thus not be a problem to 
satisfy the above two inequalities in practical 
application. 

 

In a practical application, we generally concentrate on 
the statistics of co-occurrence of terms. That is, the 
dependence with which we are really concerned is state 
value (𝛿 , 𝛿 ) = (1, 1) of term pair (𝑡 , 𝑡 ). In this case, what 
we need is to apply only the first item of 𝐼(𝛿 , 𝛿 ) and to 
verify the second condition given in Theorem 1: 
 

𝑃 (𝛿 = 1, 𝛿 = 1) =
  (  )  (  )

 
   

                    = 𝛾 (𝑡 , 𝑡 )  > 𝜓 (𝑡 )𝜓 (𝑡 ) 

  =   (  )

‖ ‖
   

  (  )

‖ ‖
  

 

to ensure that 𝑡  and 𝑡  are highly dependent under their 
co-occurrence. 

4 EXTENSION 

The method proposed in this study may be applicable to 
any quantitative document representation s. That is, the 
estimation functions given in (1) and (2) can be applied  to 
document representations not only for the frequency 
matrix, but also for a more general case, where each 
matrix element is a real number.  

More particularly, suppose each 𝑑 ∈ 𝐷 can be 
expressed  by a 1 × 𝑛 (weight) matrix 

 
𝒎 = ,𝑤 (𝑡 ), 𝑤 (𝑡 ), … ,𝑤 (𝑡 )- = ,𝑤 (𝑡)- ×  

 
satisfying 𝑤 (𝑡) > 0 when 𝑡 ∈ 𝑉  and  𝑤 (𝑡) = 0 when 
𝑡 ∈ 𝑉 − 𝑉 . The 𝑤 (𝑡) is called  a weighting function , 
indicating the importance of term 𝑡 in representing 
document 𝑑. For instance, a w idely used  weighting  
 
 

 
function would  be 𝑤 (𝑡) = 𝑓 (𝑡) × log

| |

  ( )
, where 𝑛 (𝑡) is  

the number of documents in 𝐷 in which 𝑡 occurs. Also, 
the method described in previous sections is a special case 
where, 𝑤 (𝑡) = 𝑓 (𝑡) for 𝑡 ∈ 𝑉 .  

With document representation by 𝑤 (𝑡), let us 
continue to denote the “length” of document 𝑑 by 
 

‖𝑑‖ = ∑ 𝑤 (𝑡
 )

  ∈  

 

and  denote  
 

           𝜛 = ∑ 𝑤 (𝑡  )          ,    ∈   * + 𝑤 (𝑡  )  

           < ∑ 𝑤 (𝑡  )          ,    ∈  
𝑤 (𝑡  ) =  𝜛  

 

Then, for arbitrary terms 𝑡, 𝑡 , 𝑡 ∈ 𝑉 , similar to the 
expressions given in (3) and (4), we may write the 
corresponding marginal d istribution:  
 

             𝑃 (𝛿 = 1) =
  ( )

‖ ‖
= 𝑝 (𝑡) = 𝜓 (𝑡)        (5) 

                   𝑃 (𝛿 = 0) = 1 − 𝜓 (𝑡) 
 
and  joint d istribution  
 

𝑃 (𝛿 = 1, 𝛿 = 1) =
  (  )  (  )

 
= 𝛾 (𝑡 , 𝑡 )  

 

𝑃 (𝛿 = 1, 𝛿 = 0) =
  (  )

‖ ‖
−

  (  )  (  )

 
  

                                    = 𝑝 (𝑡 ) − 𝛾 (𝑡 , 𝑡 )                (6) 
 

𝑃 (𝛿 = 0, 𝛿 = 1) =
  (  )

‖ ‖
−

  (  )  (  )

 
  

                                    = 𝑝 (𝑡 ) − 𝛾 (𝑡 , 𝑡 )  
 

 𝑃 (𝛿 = 0, 𝛿 = 0) = 1 − 𝑝 (𝑡 ) − 𝑝 (𝑡 ) + 𝛾 (𝑡 , 𝑡 ) 
 

Also, the verification conditions are given by the 
following lemmas and  theorem. Proofs of Lemmas 3-4 
and Theorem 2 are here omitted  as they are similar to the 
respective proofs of Lemmas 1-2 and Theorem 1.  
 

Lemma 3. For an arbitrary term 𝑡 ∈ 𝑉 , we have  
 

𝜛 = ‖𝑑‖𝑤 (𝑡) − 𝑤 
 (𝑡) + 𝜛  

 
Lemma 4. For functions 𝜓 (𝑡) and 𝛾 (𝑡 , 𝑡 ) given in (5) and 
(6), respectively, we have: 
 

      𝜛  
≥ 𝑤 

 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ); 
 

      𝜛  
≥ 𝑤 

 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ). 
 

Theorem 2. 𝑃 (𝛿 , 𝛿 ) given in (6) is a probability distribution 
if it satisfies two inequalities: a) 𝜛  

≥ 𝑤 
 (𝑡 ) and b) 

𝜛  
≥ 𝑤 

 (𝑡 ). 
 
     Obviously, 𝑤𝑑(𝑡) is the main component of the 
estimation functions 𝜓 (𝑡) and  𝛾 (𝑡 , 𝑡 ). As we all know,  
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document representations, 𝑤 (𝑡), play an essential role in 
determining effectiveness. The issue of accuracy and 
valid ity of document representation has long been a  
crucial and open problem. It is beyond the scope of this 
paper to d iscuss the issue in greater detail. A detailed  
d iscussion about representation techniques may be 
found, for instance, in study [3][4]. 

5 CONCLUSION 

It seems that MI methods have not achieved their 
potential for automatically measuring statistical 
dependence of terms. The main problem in MI methods is 
to obtain actual probability d istributions estimated  from 
training data. This study concentrated  on such a problem 
and proposed  a novel but simple method  for measures. 
We introduced estimation functions 𝜓 (𝑡) and  𝛾 (𝑡 , 𝑡 ), 
which may be used  to capture the occurrence and  co-
occurrence information of terms and  to define 
d istributions 𝑃 (𝛿) and  𝑃 (𝛿 , 𝛿 ). We interpreted  
mathematical meaning of the functions within practical 
application contexts. We discussed  verification conditions 
in order to ensure 𝑃 (𝛿) and  𝑃 (𝛿 , 𝛿 ) are probability 
d istributions under the conditions. We provided 
examples to clarify the idea of our method, to make 
understandable the computation involved in all the 
formulae and, in particular, to illustrate the possibility of 
failure of applying our method if the verification 
conditions are not satisfied . We considered  the possibility 
of extension of our method, indicated  that it is applicable 
to any quantitative document representations with a 
weighting function. The generality of the formal 
d iscussion means our method can be applicable to many 
areas of science, involving statistical semantic analysis of 
textual data. 

APPENDIX 

Lemma 1. For an arbitrary term 𝑡 ∈ 𝑉 , we have 
 

𝜛 = ‖𝑑‖𝑓 (𝑡) − 𝑓 
 (𝑡) + 𝜛  

  

Proof. Without losing generality, suppose 𝑡 = 𝑡  . 
(Otherwise, let 𝑡 = 𝑡  . Notice that the order of the 
elements in the set is unnecessary, so we can rewrite 
𝑉 = *𝑡  , 𝑡  , … , 𝑡    

, 𝑡    
, … , 𝑡  +, and thus 𝑉 − *𝑡+ =

*𝑡  , … , 𝑡    
, 𝑡    

, … , 𝑡  + with 1 ≤ 𝑖 < ⋯ < 𝑖   <
𝑖   < ⋯ < 𝑖 ≤ 𝑛. So our d iscussion still holds.) Thus 
we have 

𝜛 = 𝑓 (𝑡  )[𝑓 (𝑡  ) + ⋯+ 𝑓 (𝑡  )] 

+ 𝑓 (𝑡  )[𝑓 (𝑡  ) + ⋯+ 𝑓 (𝑡  )] 

+⋯+ 𝑓 (𝑡    
)[𝑓 (𝑡    

) + 𝑓 (𝑡  )] 

+𝑓 (𝑡    
)[𝑓 (𝑡  )] 

= 𝑓 (𝑡),‖𝑑‖ − 𝑓 (𝑡)- + 𝑓 (𝑡  ) ∑ 𝑓 (𝑡  )     ,…,  
  

+⋯+ 𝑓 (𝑡    
)∑ 𝑓 (𝑡  )       

 

= ‖𝑑‖𝑓 (𝑡) − 𝑓 
 (𝑡) 

+ ∑ 𝑓 (𝑡  )𝑓 (𝑡  )          ,    ∈   * +   

= ‖𝑑‖𝑓 (𝑡) − 𝑓 
 (𝑡) + 𝜛                                                

 

Lemma 2. Functions 𝜓 (𝑡) and 𝛾 (𝑡 , 𝑡 ) given in (1) have: 

(a) 𝜛  
≥ 𝑓 

 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ); 
(b) 𝜛  

≥ 𝑓 
 (𝑡 ) if and only if 𝜓 (𝑡 ) ≥ 𝛾 (𝑡 , 𝑡 ). 

 

Proof. We only prove (a). The proof of (b) is similar to (a). 
Notice that 𝜛 ≠ 0 and ‖𝑑‖ ≠ 0. Thus, by Lemma 1, we 
have 

𝜛  
− 𝑓 

 (𝑡 ) ≥ 0 
if and only if 

 

𝜛 = ‖𝑑‖𝑓 (𝑡 ) + [𝜛  
− 𝑓 

 (𝑡 )] ≥ ‖𝑑‖𝑓 (𝑡 ) 
 

if and only if 
 

𝜛𝑓 (𝑡 ) ≥ ‖𝑑‖𝑓 (𝑡 )𝑓 (𝑡 ) 
 

if and only if 
 

             𝜓 (𝑡 ) =
  (  )

‖ ‖
≥

  (  )  (  )

 
= 𝛾 (𝑡 , 𝑡 )             

 

Theorem 1. 𝑃 (𝛿 , 𝛿 ) given in (4) is a probability distribution 
if a) 𝜛  

≥ 𝑓 
 (𝑡 ) and b) 𝜛  

≥ 𝑓 
 (𝑡 ) 

 

Proof. 𝑃 (𝛿 = 1, 𝛿 = 1) > 0 as 0 < 𝛾 (𝑡 , 𝑡 ) < 1; 
𝑃 (𝛿 = 1, 𝛿 = 0), 𝑃 (𝛿 = 0, 𝛿 = 1) ≥ 0 as 𝜓 (𝑡 ), 𝜓 (𝑡 ) 

≥ 𝛾 (𝑡 , 𝑡 ) by Lemma 2; 𝑃 (𝛿 = 0, 𝛿 = 0) = ,1 − 𝜓 (𝑡 )- 

−[𝜓 (𝑡 ) − 𝛾 (𝑡 , 𝑡 )] > 0 as 0 < 𝜓 (𝑡 ) < 1. Finally, 
∑ 𝑃 (𝛿 , 𝛿 )  ,    , = 1 can easily be seen from (3).          
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