
University of Huddersfield Repository

Vallati, Mauro, Fawcett, Chris, Gerevini, Alfonso, Hoos, Holger and Saetti, Alessandro

Generating Fast Domain-Specific Planners by Automatically Configuring a Generic Parameterised 
Planner

Original Citation

Vallati, Mauro, Fawcett, Chris, Gerevini, Alfonso, Hoos, Holger and Saetti, Alessandro (2011) 
Generating Fast Domain-Specific Planners by Automatically Configuring a Generic Parameterised 
Planner. In: Workshop on Planning and Learning: ICAPS 2011, 13th June 2011, Freiburg, Germany.

This version is available at http://eprints.hud.ac.uk/id/eprint/15372/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Generating Fast Domain-Specific Planners by Automatically Configuring a
Generic Parameterised Planner

Mauro Vallati
University of Brescia

mauro.vallati@ing.unibs.it

Chris Fawcett
University of British Columbia

fawcettc@cs.ubc.ca

Alfonso E. Gerevini
University of Brescia
gerevini@ing.unibs.it

Holger H. Hoos
University of British Columbia

hoos@cs.ubc.ca

Alessandro Saetti
University of Brescia
saetti@ing.unibs.it

Abstract

When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect to
the domain analysis or compilation performed during prepro-
cessing, the heuristic functions used during search, and other
features of the search algorithm. These design decisions can
have a large impact on the performance of the resulting plan-
ner. By providing many alternatives for these choices and ex-
posing them as parameters, planning systems can in principle
be configured to work well on different domains. However,
usually planners are used in default configurations that have
been chosen because of their good average performance over
a set of benchmark domains, with limited experimentation of
the potentially huge range of possible configurations.
In this work, we propose a general framework for automati-
cally configuring a parameterised planner, showing that sub-
stantial performance gains can be achieved. We apply the
framework to the well-known LPG planner, which has 62 pa-
rameters and over 6.5 × 1017 possible configurations. We
demonstrate that by using this highly parameterised planning
system in combination with the off-the-shelf, state-of-the-art
automatic algorithm configuration procedure ParamILS, sub-
stantial performance improvements on specific planning do-
mains can be obtained.

Introduction
When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect
to the domain analysis or compilation performed during pre-
processing, the heuristic functions used during search, and
several other features of the search algorithm. These design
decisions can have a large impact on the performance of the
resulting planner. By providing many alternatives for these
choices and exposing them as parameters, highly flexible
domain-independent planning systems are obtained, which
then, in principle, can be configured to work well on differ-
ent domains, by using parameter settings specifically cho-
sen for solving planning problems from each given domain.
However, usually such planners are used with default config-
urations that have been chosen because of their good aver-
age performance over a set of benchmark domains, based on
limited manual exploration within a potentially vast space of
possible configurations. The hope is that these default con-
figurations will also perform well on domains and problems
beyond those for which they were tested at design time.

In this work, we advocate a different approach, based
on the idea of automatically configuring a generic, param-
eterised planner using a set of training planning problems
in order to obtain planners that perform especially well in
the domains of these training problems. Automated config-
uration of heuristic algorithms has been an area of intense
research focus in recent years, producing tools that have im-
proved algorithm performance substantially in many prob-
lem domains. To our knowledge, however, these techniques
have not yet been applied to the problem of planning.

While our approach could in principle utilise any suf-
ficiently powerful automatic configuration procedure, we
have chosen the FocusedILS variant of the off-the-shelf,
state-of-the-art automatic algorithm configuration procedure
ParamILS (Hutter, Hoos, & Stützle 2007; Hutter et al.
2009). At the core of the ParamILS framework lies Iter-
ated Local Search (ILS), a well-known and versatile stochas-
tic local search method that iteratively performs phases of
a simple local search, such as iterative improvement, in-
terspersed with so-called perturbation phases that are used
to escape from local optima. The FocusedILS variant
of ParamILS uses this ILS procedure to search for high-
performance configurations of a given algorithm by eval-
uating promising configurations, using an increasing num-
ber of runs in order to avoid wasting CPU-time on poorly-
performing configurations. ParamILS also avoids wasting
CPU-time on low-performance configurations by adaptively
limiting the amount of runtime allocated to each algorithm
run using knowledge of the best-performing configuration
found so far.

ParamILS has previously been applied to configure state-
of-the-art solvers for several combinatorial problems, in-
cluding propositional satisfiability (SAT) (Hutter et al.
2007) and mixed integer programming (MIP) (Hutter, Hoos,
& Leyton-Brown 2010). This resulted in a version of the
SAT solver Spear that won the first prize in one category of
the 2007 Satisfiability Modulo Theories Competition (Hut-
ter et al. 2007); it further contributed to the SATzilla solvers
that won prizes in 5 categories of the 2009 SAT Competition
and led to large improvements in the performance of CPLEX
on several types of MIP problems (Hutter, Hoos, & Leyton-
Brown 2010). Differently from SAT and MIP, in planning,
explicit domain specifications are available through a plan-
ning language, which creates more opportunities for plan-
ners to take problem structure into account within param-



eterised components (e.g., specific search heuristics). This
can lead to more complex systems, with greater opportuni-
ties for automatic parameter configuration, but also greater
challenges (bigger, richer design spaces can be expected to
give rise to trickier configuration problems).

One such planning system is LPG (see, e.g., Gerevini,
Saetti, & Serina 2003, Gerevini, Saetti, & Serina 2008).
Based on a stochastic local search procedure, LPG is a well-
known efficient and versatile planner with many components
that can be configured very flexibly via 62 exposed config-
urable parameters, which jointly give rise to over 6.5× 1017

possible configurations. This configuration space is one of
the largest considered so far in applications of ParamILS.
In this work, we used ParamILS to automatically config-
ure LPG on various propositional domains, starting from a
manually-chosen default parameter setting with good per-
formance on a broad range of domains.

We tested our approach using ParamILS and LPG on 11
domains of planning problems used in previous international
planning competitions (IPC-3–6). Our results demonstrate
that by using automatically determined, domain-specific
configurations (LPG.sd), substantial performance gains can
be achieved compared to the default configuration (LPG.d).
Using the same automatic configuration approach to opti-
mise the performance of LPG on a merged set of bench-
mark instances from different domains also results in im-
provements over the default, but these are less pronounced
than those obtained by automated configuration for single
domains.

We also investigated to which extent the domain-specific
planners obtained by configuring the general-purpose LPG
planner perform well compared to other state-of-the-art
domain-independent planners. Our results indicate that, for
the class of domains considered in our analysis, LPG.sd is
significantly faster than LAMA (Richter & Westphal 2008),
the top-performing propositional planner of the last planning
competition (IPC-6).1

Moreover, in order to understand how well our approach
works compared to state-of-the-of-art systems in automated
planning with learning, we have experimentally compared
LPG.sd with the planners of the learning track of IPC-
6, showing that in terms of speed and usefulness of the
learned knowledge, our system outperforms the respective
IPC-6 winners, PbP (Gerevini, Saetti, & Vallati 2009) and
ObtuseWedge (Yoon, Fern, & Givan 2008).

Recently, LPG.sd has been entered into the learning track
of the 7th International Planning Competition (IPC-7) as
ParLPG, and we give preliminary results on the competition
domains in this paper.

While in this work, we focus on the application of the
proposed framework to the LPG planner, we believe that
similarly good results can be obtained for highly parame-

1The version of LAMA used in the IPC-6 competition exposes
only four Boolean parameters, which its authors recommend to
leave unchanged; it is therefore not suitable for studying auto-
matic parameter configuration. A newer, much more flexibly con-
figurable version of LAMA has become available very recently, as
part of the Fast Downward system, which we are studying in ongo-
ing work.

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic functionE;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

terised versions of other existing planning systems. In gen-
eral, our results suggest that in the future development of
efficient planning systems, it is worth including many dif-
ferent variants and a wide range of settings for the various
components, instead of committing at design time to particu-
lar choices and settings, and to use automated procedures for
finding configurations of the resulting highly parameterised
planning systems that perform well on the problems arising
in a specific application domain under consideration.

In the rest of this paper, we first provide some background
and further information on LPG and its parameters. Next, af-
ter a description of the parameter configuration process, we
describe in detail our experimental analysis and results, in-
cluding preliminary results from our IPC-7 submission. Fi-
nally, we give some concluding remarks and discuss some
avenues for future work.

The Generic Parameterised Planner LPG
In this section, we provide a very brief description of LPG
and its parameters. LPG is a versatile system that can be
used for plan generation, plan repair and incremental plan-
ning in PDDL2.2 domains (Hoffmann & Edelkamp 2005).
The planner is based on a stochastic local search procedure
that explores a space of partial plans represented through
linear action graphs, which are variants of the very well-
known planning graph (Blum & Furst 1997).

Starting from the initial action graph containing only
two special actions representing the problem initial state
and goals, respectively, LPG iteratively modifies the current
graph until there is no flaw in it or a certain bound on the
number of search steps is exceeded. Intuitively, a flaw is
an action in the graph with a precondition that is not sup-
ported by an effect of another action in the graph. LPG at-
tempts to resolve flaws by inserting into or removing from
the graph a new or existing action, respectively. Figure 1
gives a high-level description of the general search process
performed by LPG. Each search step selects a flaw σ in
the current action graph A, defines the elements (modified
action graphs) of the search neighborhood of A for repair-
ing σ, weights the neighborhood elements using a heuristic
function E, and chooses the best one of them according to
E with some probability n, called the noise parameter, and
randomly with probability 1 − n. Because of this noise pa-
rameter, which helps the planner to escape from possible
local minima, LPG is a randomised procedure.

LPG exposes 62 configurable parameters; these control
various aspects of the system and can be grouped into seven



Domain Configuration P1 P2 P3 P4 P5 P6 P7 Total

Blocksworld 1 1 2 1 5 1 2 13
Depots 2 2 1 1 2 2 2 12
Gold-miner 2 3 0 1 4 2 1 13
Matching-BW 1 2 2 1 3 0 2 11
N-Puzzle 4 5 3 2 14 5 2 35
Rovers 0 1 0 0 0 2 1 4
Satellite 2 7 3 1 11 5 3 32
Sokoban 0 1 1 1 1 1 2 7
Zenotravel 3 5 2 3 11 5 3 32
Merged set 0 1 0 1 5 2 2 11
Number of parameters 6 15 8 6 17 7 3 62

Table 1: Number of parameters of LPG that are changed by
ParamILS in the configurations computed for nine domains
independently considered (rows 2–10) and jointly consid-
ered (“merged set” row). Each of the columns P1–P7 corre-
sponds to a different parameter category (i.e., planner com-
ponent).

distinct categories, each of which corresponds to a different
component of LPG:
P1 Preprocessing information (e.g., mutually exclusive re-

lations between actions).
P2 Search strategy (e.g., the use and length of a “tabu list”

for the local search, the number of search steps before
restarting a new search, and the activation of an alternative
systematic best-first search procedure).

P3 Flaw selection strategy (i.e., different heuristics for de-
ciding which flaw should be repaired first).

P4 Search neighborhood definition (i.e., different ways of
defining/restricting the basic search neighborhood).

P5 Heuristic function E (i.e., a class of possible heuristics
for weighting the neighborhood elements, with some vari-
ants for each of them).

P6 Reachability information used in the heuristic functions
and in neighborhood definitions (e.g., the minimum num-
ber of actions required to achieve an unsupported precon-
dition from a given state).

P7 Search randomisation (i.e., different ways of statically
and dynamically setting the noise value).

The last row of Table 1 shows the number of LPG’s param-
eters that fall into each of these seven categories (planner
components).

Experimental Analysis
In this section, we present the results of a large experi-
mental study examining the effectiveness of the automated
approach outlined in the introduction in terms of planning
speed.

Benchmark domains and instances
In our first set of experiments, we considered problem
instances from eight known benchmark domains used in
the last four international planning competitions (IPC-3–6),
Depots, Gold-miner, Matching-BW, N-Puzzle, Rovers,

Satellite, Sokoban, and Zenotravel, plus the well-
known Blocksworld domain. These domains were selected
because they are not trivially solvable, and random instance
generators are available for them, such that large training
and testing sets of instances can be obtained.

For each domain, we used the respective random instance
generator to obtain two disjoint sets of instances: a training
set with 2000 relatively small instances (benchmark T), and
a testing set with 400 middle-size instances (benchmark MS).
The size of the instances in training set T was chosen such
that the instances could be solved by the default configura-
tion of LPG in 20 to 40 CPU seconds on average. For testing
set MS, the size of the instances was chosen such that the in-
stances could on average be solved by the default configura-
tion of LPG in 50 seconds to 2 minutes. This does not mean
that all our problem instances can actually be solved by LPG,
since we merely determined the size of the instances accord-
ing to the performance of the default configuration, and then
we used the random instance generators to derive the actual
instances.

For the experiments comparing automatically determined
configurations of LPG against the planners that entered the
learning track of IPC-6, we employed the same instance sets
as those used in the competition.

Automated configuration using ParamILS
For all configuration experiments we used the FocusedILS
variant of ParamILS version 2.3.5 with default parameter
settings. Using the default configuration of LPG as the
starting point for the automated configuration process, we
concurrently performed 10 independent runs of FocusedILS
per domain, using random orderings of the training set in-
stances.2 Each run of FocusedILS had a total CPU-time cut-
off of 48 hours, and a cutoff time of 60 CPU seconds was
used for each run of LPG performed during the configuration
process. The objective function used by ParamILS for eval-
uating the quality of configurations was mean runtime, with
timeouts and crashes assigned a penalised runtime of ten
times the per-run cutoff (the so-called PAR-10 score). Out
of the 10 configurations produced by these runs, we selected
the configuration with the best training set performance (as
measured by FocusedILS) as the final configuration of LPG
for the respective domain.

Additionally, we used FocusedILS for optimising the con-
figuration of LPG across all of the selected domains together.
As with our approach for individual domains, we performed
10 independent runs of FocusedILS starting from the de-
fault configuration; again, the single configuration with the
best performance on the merged training set as measured by
FocusedILS was selected as the final result of the configura-
tion process.

The final configurations thus obtained were then evalu-
ated on the testing set of instances (benchmark MS) for each
domain, using a per-run timeout of 600 CPU seconds.

For convenience, we define the following abbreviations
corresponding to configurations of LPG:

2Multiple independent runs of FocusedILS were used, because
this approach can help ameliorate stagnation of the configuration
process occasionally encountered otherwise.



Domain LPG.d LPG.r

Score % solved Score % solved

Blocksworld 99.00 99 0.00 16
Depots 86.00 86 0.00 18
Gold-miner 91.00 91 0.00 19
Matching-BW 14.00 14 0.15 9
N-Puzzle 59.10 89 34.75 86
Rovers 85.81 100 31.21 53
Satellite 96.02 100 18.99 37
Sokoban 73.20 74 2.06 28
Zenotravel 98.70 100 2.47 24
Total 702.8 83.7 89.6 32.2

Table 2: Speed scores and percentage of problems solved by
LPG.d and LPG.r for 100 problems in each of 9 domains of
benchmark MS.

• Default (LPG.d): The default configuration of LPG.
• Random (LPG.r): Configurations selected independently

at random from all possible configurations of LPG.
• Specific (LPG.sd): The specific configuration of LPG

found by ParamILS for each domain.
• Merged (LPG.md): The configuration of LPG obtained by

running ParamILS on the merged training set.
Table 1 shows, for each parameter category of LPG, the

number of parameters that are changed from their defaults
by ParamILS in the derived domain-specific configurations
(LPG.sd) and in the configuration obtained for the merged
training set (LPG.md).
Empirical result 1 Domain-specific configurations of LPG
differ substantially from the default configuration.
Moreover, we noticed that usually the changed parameter
settings are considerably different from each other.

Results on specific domains
The performance of each configuration was evaluated us-
ing the performance score functions adopted in IPC-6 (Fern,
Khardon, & Tadepalli 2008). The speed score of a configu-
ration C is defined as the sum of the speed scores assigned to
C over all test problems. The speed score assigned to C for a
planning problem p is 0 if p is unsolved and T ∗

p /T (C)p oth-
erwise, where T ∗

p is the lowest measured CPU time to solve
problem p and T (C)p denotes the CPU time required by C to
solve problem p. Higher values for the speed score indicate
better performance.

Table 2 shows the results of the comparison between
LPG.d and LPG.r, which we conducted to assess the per-
formance of the default configuration on our benchmarks.
Empirical result 2 LPG.d is much faster and solves many
more problems than LPG.r.
Specifically, LPG.r solves very few problems in 6 of the 9
domains we considered, while LPG.d solves most of the
considered problems in all but one domain. This observation
also suggests that the default configuration is a much bet-
ter starting point for deriving configurations using ParamILS
than a random configuration. In order to confirm this intu-
ition, we performed an additional set of experiments using

 0.1

 1

 10

 100

 U

 0.1  1  10  100  U

Figure 2: CPU time (log. scale) of LPG.sd versus LPG.d
for the problems in bechmark set MS. The x-axis shows run-
time of LPG.d and the y-axis runtime of the specific LPG.sd
solvers, measured in CPU seconds; U indicates runs that
timed out with the given runtime cutoff.

the random configuration as starting point. As expected, the
resulting configurations of LPG perform much worse than
LPG.sd, and sometimes even worse than LPG.d.

Figure 2 shows the performance of LPG.sd and LPG.d on
the individual benchmark instances in the form of a scat-
terplot. We consider all instances solved by at least one of
these planners. Each cross symbol indicates the CPU time
used by LPG.d and LPG.sd to solve a particular problem
instance of benchmarks MS. When a cross appears below
(above) the main diagonal, LPG.sd is faster (slower) than
LPG.d; the distance of the cross from the main diagonal in-
dicates the performance gap (the greater the distance, the
greater the gap). The results in Figure 2 indicate that LPG.sd
performs almost always better than LPG.d, often by 1–2 or-
ders of magnitude.

Table 3 shows the performance of LPG.d, LPG.md, and
LPG.sd for each domain of benchmark MS in terms of speed
score, percentage of solved problems and average CPU time
(computed over the problems solved by all the considered
configurations). These results indicate that LPG.sd solves
many more problems, is on average much faster than LPG.d
and LPG.md, and that for some benchmark sets LPG.sd al-
ways performs better than or equal to the other configura-
tions, as the IPC score of LPG.sd is sometimes the maximum
score (i.e., 400 points for benchmark MS).3

Empirical result 3 LPG.sd performs much better than both
LPG.d and LPG.md.

As can be seen from the last row of Table 3, LPG.md per-
forms usually better than LPG.d on the test sets for the in-
dividual domains. Moreover, it performs better than LPG.d

3Additional results using, for each of the nine considered do-
mains, 2000 test problems of the same size as those used for the
training, and 50 test problems considerably larger than those in the
MS benchmark, indicate a performance behaviour very similar to
(or even better than) the one observed for the MS instances consid-
ered in Table 3.



Domain Speed score % solved Average CPU time
LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd

Blocksworld 21.3 74.8 400 98.8 100 100 105.3 28.17 4.29
Depots 124 164 345 90.3 99 98.5 78.1 42.4 5.7
Gold-miner 18.5 232 374 90.5 100 100 94.4 7.4 1.6
Matching-BW 9.74 72.5 375 15.8 55.3 97.8 93.8 42.3 5.6
N-Puzzle 20.1 27.0 347 85 86.3 86.8 321.0 247 31.20
Rovers 131 162 400 100 100 100 72.2 52.9 21.2
Satellite 104 111 400 100 100 100 64.0 59.2 1.3
Sokoban 26.7 191 335 75.8 94.8 96.5 24.6 6.15 1.19
Zenotravel 49.1 97.2 397 100 99.8 100 103.7 57.6 11.1
All above 280.3 304.3 – 83.3 91.5 – 115.4 38.8 –

Table 3: Speed score, percentage of solved problems, and average CPU time of LPG.d, LPG.md and LPG.sd for 400 MS
instances in each of 9 domains, independently considered, and in all domains (last row).

Domain LPG.sd vs. LAMA LPG.sd vs. PbP
∆-speed ∆-solved ∆-speed ∆-solved

Blocksworld +377.4 +52 +361.7 ±0
Depots +393.9 +381 +211.1 +54
Gold-miner +400 +400 +395.6 +319
Matching-BW +227.8 +118 +40.7 +330
N-Puzzle +255.7 +4 +279.8 −20
Rovers +392.9 +14 +313.4 +9
Satellite +388.1 +157 +253.6 +9
Sokoban +340.1 +278 −41.6 +5
Zenotravel +368.3 ±0 −282.1 +8
Total +3144 +1404 +1532 +714

Table 4: Performance gap between LPG.sd and LAMA
(columns 2–3) and LPG.sd and PbP (columns 4–5) for 400
MS problems in each of 9 domains in terms of speed score
and number of solved problems.

on the sets obtained by merging the test sets for all individ-
ual domains, which indicates that by using a merged training
set, we successfully produced a configuration with good per-
formance on average across all selected domains.

Empirical result 4 LPG.md performs better than LPG.d.

Next, we compared our LPG configurations with state-of-
the-art planning systems – namely, the winner of the IPC-
6 classical track, LAMA (configured to stop when the first
solution is computed), and the winner of the IPC-6 learn-
ing track, PbP. The performance gap between LPG.sd and
these planners for MS problems are shown in Table 4, where
we report the speed score and the number of solved prob-
lems (positive numbers mean that LPG.sd performs better).
These experimental results indicate clearly that our configu-
rations of LPG are significantly faster and solve many more
problems than LAMA.

Empirical result 5 LPG.sd performs significantly better
than LAMA on well-known non-trivial domains.

Moreover, LPG.sd outperforms PbP in most of the se-
lected domains: only for Sokoban and Zenotravel, PbP
obtains a better speed score (but performs slightly worse in
terms of solved problems). Interestingly, for these domains
the multiplanner of PbP runs a single planner with an asso-

Planner # unsolved Speed score ∆-score

LPG.sd 38 93.23 +59.7
ObtuseWedge 63 63.83 +33.58
PbP 7 69.16 −3.54
RFA1 85 11.44 –
Wizard+FF 102 29.5 +10.66
Wizard+SGPlan 88 38.24 +7.73

Table 5: Performance of the top 5 planners that took part in
the learning track of IPC-6 plus LPG.sd, in terms of number
of unsolved problems, speed score and score gap with and
without using the learned knowledge for the problems of the
learning track of IPC-6.

ciated set of macro-actions; these macro-actions clearly help
to significantly speed up the search phase of this planner.

Empirical result 6 For the well-known benchmark do-
mains considered here, LPG.sd performs significantly better
than PbP.

Results on learning track of IPC-6

To evaluate the effectiveness of our approach against re-
cent learning-based planners, we compared our LPG.sd con-
figurations with planners that entered the learning track
of IPC-6, based on the same performance criteria as used
in the competition. Table 5 shows performance in terms
of number of unsolved problems, speed score, and per-
formance gap with and without using the learned knowl-
edge (positive numbers mean that the planner performs bet-
ter using the knowledge); the results in this table indicate
that LPG.sd performs better than every solver that partici-
pated in the IPC-6 learning track, including the version of
PbP that won this track. Although LPG.sd solves fewer
problems than PbP, it achieves the best score as it is the
fastest planner on 3 domains (Gold-miner, N-Puzzle and
Sokoban), and it performs close to PbP on one additional
domain (Matching-BW). Furthermore, the results in Ta-
ble 5 indicate that the performance gap between LPG.sd and
LPG.d is significant, and is greater than the gap achieved by
ObtuseWedge, the planner recognised as best learner of the



Domain Speed score % solved Average time
LPG.d LPG.sd LPG.d LPG.sd LPG.d LPG.sd

Barman – – – – – –
BW 14.12 30 80 100 259.5 95.3
Depots 6.52 20.5 37 70 315.4 52.1
Gripper 20.36 30 100 100 77.6 27.4
Parking – – – – – –
Rovers 18.64 28 93 93 157.11 27.7
Satellite 23.67 30 100 100 70.1 24.5
Spanner 17.73 30 100 100 272.7 25.3
Tpp – 14 – 47 – 73.29

Table 6: Speed score, percentage of solved problems and
average CPU time of LPG.d and LPG.sd for 30 instances
from the test sets of IPC-7 domains. BW indicates the
Blocksworld domain, and “–” is used when LPG.sd or
LPG.d failed to solve any of the problem instances for a
given domain.

IPC-6 competition.4

Empirical result 7 According to the evaluation criteria of
IPC-6, LPG.sd performs better than the winners of the
learning track for speed and best-learning.

Preliminary results on the learning track of IPC-7
At the time of this writing, LPG.sd is participating in the
learning track of the 7th International Planning Competi-
tion (IPC-7).5 In this submission, we utilised several meta-
algorithmic procedures provided by HAL, a recently devel-
oped tool supporting both the computer-aided design and the
empirical analysis of high-performance algorithms (Nell et
al. 2011). In addition to the HAL plugin for the FocusedILS
variant of ParamILS, we used the plugins providing sup-
port for the empirical analysis of a single algorithm’s perfor-
mance. We also leveraged HAL’s built-in support for com-
pute clusters and data management.

For each of the 9 IPC-7 domains, ten independent runs
of ParamILS were performed using a randomly generated
training set containing 60 to 70 instances solvable by LPG.d
within the 900 second competition cutoff. Each run of LPG
was given a runtime cutoff of 900 CPU seconds, and the
total runtime cutoff for configuration was 5 CPU days. The
configuration with the best training quality as reported by a
subsequent empirical analysis of the ParamILS incumbents
was selected as the representative LPG.sd configuration for
each domain.

Table 6 shows results for 900 CPU second runs of LPG.sd
and LPG.d on each of these IPC-7 domains, using randomly
generated test sets of 30 instances of the same size and hard-
ness as those that will be used for evaluating the competing
planners. Although at the time of this writing, the actual
instances to be used in the competition to evaluate our sub-
mission were not yet available, the competition organisers

4As observed in (Gerevini, Saetti, & Vallati 2009), the negative
∆-score of PbP is mainly due to some implementation bugs that
have been fixed in a version developed after the competition.

5The implementation of LPG.sd used for IPC-7 is named
ParLPG.

had announced in advance the instance distributions they in-
tended to use.

The IPC-7 speed score for a configuration C is defined as
the sum of the speed scores assigned to C over all test prob-
lems. The speed score assigned to C for a planning problem
p is 0 if p is unsolved, and 1/(1 + log10(T (C)p/T ∗

p )) oth-
erwise, where T ∗

p is the lowest measured CPU time to solve
problem p and T (C)p denotes the CPU time required by C
to solve problem p. Obviously, higher values for the speed
score indicate better performance.

The results in Table 6 show that, for all but two of the IPC-
7 domains, LPG.sd obtains better speed scores than LPG.d
and, on average, is considerably faster. Moreover, for three
of the nine domains (Depots, Tpp and Blocksworld), it
solves many more problems. For Barman and Parking, nei-
ther LPG.d nor LPG.sd are able to solve any of the generated
test instances.
Empirical result 8 For the domains used in IPC-7, LPG.sd
performs significantly better than LPG.d.

Conclusions and Future Work
We have investigated the application of computer-assisted
algorithm design to automated planning and proposed a
framework for automatically configuring a generic planner
with several parameterised components to obtain specialised
planners that work efficiently on given domains. In a large-
scale empirical analysis, we have demonstrated that our ap-
proach, when applied to the state-of-the-art, highly parame-
terised LPG planning system, effectively generates substan-
tially improved domain-specific planners.

Our work and results also suggest a potential method
for testing new heuristics and algorithm components, based
on measuring the performance improvements obtained by
adding them to an existing highly-parameterised planner fol-
lowed by automatic configuration for specific domains. The
results may not only reveal to which extent new design el-
ements are useful, but also under which circumstances they
are most effective – something that would be very difficult
to determine manually.

We see several avenues for future work. Concerning
the automatic configuration of LPG, we are conducting
an experimental analysis about the usefulness of the pro-
posed framework for identifying configurations improving
the planner performance in terms of plan quality. More-
over, we plan to apply the framework to metric-temporal
planning domains. Finally, we believe that our approach
can yield good results for other planners that have been ren-
dered highly configurable by exposing many parameters. In
particular, preliminary results from ongoing work indicate
that substantial performance gains can be obtained when ap-
plying our approach to a very recent, highly parameterised
version of the IPC-4 winner Fast Downward.

Acknowledgements. The authors would like to thank WestGrid
and Compute-Calcul Canada for providing access to some of the
cluster hardware used in our experiments. HH gratefully acknowl-
edges funding through an NSERC Discovery Grant and Discovery
Accelerator Supplement. We also thank Frank Hutter for useful
comments on an earlier draft, Chris Nell for support using HAL
and Ivan Serina for a useful discussion about LPG’s parameters.



References
Blum, A., and Furst, M., L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–
300.
Fern, A.; Khardon, R.; and Tadepalli, P. 2008. Learning
track of the 6th international planning competition. Avail-
able at http://eecs.oregonstate.edu/ipc-learn/.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An ap-
proach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence 172(8-
9):899–944.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-
09), 191–199.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. Learning
and Exploiting Configuration Knowledge for a Portfolio-
based Planner. In Proceedings of the ICAPS-09 Workshop
on Planning & Learning.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research 24:519–579.
Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision pro-
cedures. In Formal Methods in Computer-Aided Design,
27–34. IEEE CS Press.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010.
Automated configuration of mixed integer programming
solvers. In Proceedings of the 7th International Conference
on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems
(CPAIOR 2010), 186–202.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic
algorithm configuration based on local search. In Pro-
ceedings of the 22nd Conference on Artificial Intelligence
(AAAI-07), 1152–1157.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd Conference on
Artificial Intelligence (AAAI-08), 975–982.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. Journal of Ma-
chine Learning Research (JMLR) 9:683–718.
Nell, Christopher; Fawcett, Chris; Hoos, Holger H.;
Leyton-Brown, Kevin 2011. HAL: A Framework for the
Automated Analysis and Design of High-Performance Al-
gorithms. In Proceedings of the 5th International Confer-
ence on Learning and Intelligent Optimization (LION 5),
to appear.


