
University of Huddersfield Repository

Gerevini, Alfonso Emilio, Saetti, Alessandro and Vallati, Mauro

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability

Original Citation

Gerevini, Alfonso Emilio, Saetti, Alessandro and Vallati, Mauro (2011) Exploiting Macro-actions
and Predicting Plan Length in Planning as Satisfiability. In: AI*IA 2011: Artificial Intelligence
Around Man and Beyond. Lecture Notes in Computer Science, 6934 . Springer, London, UK, pp.
189-200. ISBN 978-3-642-23953-3

This version is available at https://eprints.hud.ac.uk/id/eprint/15351/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Exploiting Macro-actions and Predicting Plan Length in
Planning as Satisfiability

Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia
Via Branze 38, 25123 Brescia, Italy

{gerevini, saetti, mauro.vallati}@ing.unibs.it

Abstract. The use of automatically learned knowledge for a planning domain
can significantly improve the performance of a generic planner when solving a
problem in this domain. In this work, we focus on the well-known SAT-based ap-
proach to planning and investigate two types of learned knowledge that have not
been studied in this planning framework before: macro-actions and planning hori-
zon. Macro-actions are sequences of actions that typically occur in the solution
plans, while a planning horizon of a problem is the length of a (possibly opti-
mal) plan solving it. We propose a method that uses a machine learning tool for
building a predictive model of the optimal planning horizon, and variants of the
well-known planner SatPlan and solver MiniSat that can exploit macro actions
and learned planning horizons to improve their performance. An experimental
analysis illustrates the effectiveness of the proposed techniques.

Keywords: Machine learning for planning. Planning as satisfiability.

1 Introduction

Learning for planning is an important research field in automated planning research,
that, as demonstrated by the last two planning competitions [6, 3], in the recent years
has received considerable attention in the planning community. Starting from the PDDL
formalization of a planning problem, the current learning techniques for deterministic
(classical) planning aim at automatically generating additional knowledge about the
problem, and at effectively using it to improve the performance of a planner.

In this paper, we consider two types of learned knowledge for optimal planners
in the “planning as satisfiability” framework (also called SAT-based planning) [11]:
macro-actions and the planning horizon. Macro-actions are (usually short) sequences
of actions that typically occur in the plans solving the problems of a given planning do-
main. The planning horizon of a planning problem is the length of a (possibly optimal)
plan solving the problem, that for classical planning is defined as the number of time
steps in the plan.

Regarding macro-actions, several systems for learning and using them in a planner
have been developed, e.g., [2, 16]. However, to the best of our knowledge, the use of
macro-actions in SAT-based planning has never been investigated. Regarding learned
horizons, we are not aware of any existing work about learning this information and
exploiting it in SAT-based planning.

2 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

We focus our study on SatPlan [11–13], one of the most popular and efficient
SAT-based optimal planning system. Essentially, first SatPlan uses a preprocessing
algorithm to compute a lower (possibly exact) bound k on the optimal planning hori-
zon, and translates the planning problem into a SAT problem, i.e., the satisfiability of a
propositional formula in CNF (shortly a CNF) encoding the problem. If the SAT prob-
lem is solvable (the CNF is satisfiable), a plan with at most k time steps can be derived
from a model of the CNF. If the SAT problem is unsolvable (the CNF is unsatisfiable),
SatPlan generates a larger SAT problem using an increased bound, and so on, until it
finds a solution or it proves that the original planning problem has no solution.

While SatPlan can use any SAT solver, in this work we concentrate our study on
MiniSat [5], a very well-known efficient solver based the DPLL algorithm [4], extended
with backtracking by conflict analysis and clause recording [14] and with boolean con-
straint propagation (BCP) [15].

The paper contains the following contributions in the context of SatPlan: (i) a new
variant of MiniSat that can exploit a given set of macro-actions to improve the perfor-
mance of SAT solving for a CNF encoding a planning problem, (ii) a machine learning
technique for constructing a predictive model of the optimal planning horizon for a
given problem, and (iii) the use of this model, possibly in combination with macro-
actions, to reduce the number of SAT problems during planning. The effectiveness of
these techniques is studied in a preliminary experimental analysis, showing that they
can lead to significant performance improvements.

The rest of the paper is organized as follows. Section 2 describes a modified ver-
sion of MiniSat exploiting macro-actions; Section 3 introduces a method for estimating
the optimal planning horizon, and proposes another enhanced version of MiniSat for
computing shorter plans from a satisfiable CNF; Section 4 presents our experimental
results; finally, Sections 5 gives the conclusions.

2 Using Macro-actions during SAT Solving

In order to exploit macro-actions in the SAT-solver of SatPlan, we have modified the
well-known solver MiniSAT by using macro-actions to bias the way in which the propo-
sitional variables are processed (i.e., selected and instantiated). The intuitive general
idea is giving preference to unassigned variables corresponding to actions that would
include in the current plan macro actions that are compatible with the current assign-
ment. We shall illustrate the idea with an example after introducing more precisely the
notion of macro-action for SatPlan. In the rest of the paper, variable vj

i of the CNF
encoding a planning problem denotes action ai planned at time step j.

In the context of SatPlan, a macro-action is a sequence of propositional variables
representing actions executed at certain time steps. For example, consider a planning
problem in the well-known BlocksWorld domain, and assume that 〈a1, a2〉 is a macro-
action for this problem, where a1 and a2 abbreviate actions (pick-up A) and (stack
A B), respectively. Moreover, suppose that the planning horizon (plan steps) in the
SAT problem encoding the planning problem under considerations is 5, and the earliest
time steps where a1 and a2 can be planned are 3 and 4, respectively. Then the CNF
encoding the planning problem contains 3 variables v3

1 , v4
1 and v5

1 representing action
(pick-up A) planned at time steps 3, 4 and 5, respectively, and 2 variables v4

2 and

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability 3

MacroMiniSAT(F , M)

Input: The CNF F encoding a planning problem, a set M of macro actions.

Output: A solution variable assignment W or failure.

1. W ← ∅;
2. while ∃ variable v of F not assigned in W do
3. v ← SelectVariableFromMacros(F , W, M);
4. if v = nil then v ← SelectVariable(F , W);
5. W ←W ∪ (v = TRUE);
6. Propagate value of v;
7. if the propagation has generated conflicts then
8. if the propagation has generated a top level conflict then return failure;
9. else Perform backtracking;
10. return W .

Fig. 1: MiniSAT modified for solving the SAT encoding of a planning problem using macro-
actions.

v5
2 representing action (stack A B) planned at time steps 4 and 5, respectively. For

this CNF, two possible macro-actions are {v3
1 , v4

2} and {v4
1 , v5

2}. If, for instance, in the
current assignment of the SAT-solver v5

2 is true, v4
2 is false, and the other variables are

unassigned, then v4
1 is preferred to v3

1 .
Figure 1 gives a high-level description of a variant of MiniSAT, called MacroMiniSAT,

for solving the SAT encoding F of a given planning problem using a set M of macro-
actions. Initially, the current set of assigned variables (W) is empty (step 1). At each
iteration of the loop 2–9, an unassigned variable v of the input CNF F is selected by
either procedure SelectVariableFromMacros or procedure SelectVariable, and the value
of the selected variable is set to true (steps 3–5). Each variable selection and instanti-
ation is called a (search) decision. Then, the effects of the last decision are propagated
by unit propagation (steps 6–9): when a clause becomes unary under the current assign-
ment, the remaining literal in the clause is set to true and this decision is propagated,
possibly reducing other clauses to unary clauses and repeating the propagation. The
propagation process continues until no more information can be propagated. If a con-
flict is encountered (all literals of a clause are false), a conflict clause is constructed and
added to the SAT problem. The decisions made are canceled by backtracking, until the
conflict clause becomes unary. This unary clause is propagated and the search process
continues.

The main difference w.r.t. MiniSAT concerns SelectVariableFromMacros(F ,W, M),
which uses a macro m selected from a set MA ⊆ M of macros to determine the next
variable to instantiate. A macro m′ is in MA if the three following conditions hold:

1. At least one variable of m′ is unassigned;

2. All the assigned variable of m′ are true according to the current variable assign-
ment W ;

3. m′ contains no variable belonging to another macro m′′ formed by only variables
that are true according to W .

4 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

The rationale of condition 2 is to avoid preferring variables representing actions that,
given the current variable assignment, will not appear in the solution plan. The mo-
tivation of condition 3 is based on the empirical observation that, for many domains,
often two macro-actions sharing one or more actions do not appear simultaneously in a
solution plan.

If set MA contains more than one macro, SelectVariableFromMacros prefers the
macro m′ in MA according to the actions in a given relaxed plan π (see, e.g., [9, 10,
7, 17]) for the planning problem under consideration. Plan π is relaxed in the sense
that it does not consider the possible negative interference between planned actions,
and it can be quickly computed by a polynomial algorithm (see, e.g., [10]). Essentially,
SelectVariableFromMacros chooses a variable from the macro m′ in MA formed by
the highest percentage of variables of m′ representing actions in π.

For example, consider a BlocksWorld problem in which A and B are on the table, C
is on B, and the goal is moving A on B. The following sequence of actions is a possible
relaxed plan for our running example: (unstack C B), (pick-up A), (stack A
B). In the original planning problem, action (unstack C B) would make the robot
arm occupied, but, since this is represented through a negative effect of the action, in
the relaxed plan the arm remains free after the execution of (unstack C B), and so
action (pick up A) can be planned.

Assume that sequences 〈a1, a2〉 and 〈a3, a4〉 are two macro-actions for this BlocksWorld
problem, where a1, a2, a3 and a4 abbreviate (pick-up A), (stack A B), (pick-up
C), (stack C B). Moreover, assume that v5

2 is false in the current variable assignment.
Then, MA is formed by {v3

1 , v4
2}, {v3

3 , v4
4} and {v4

3 , v5
4}; the percentage of variables

in these macros representing actions in the relaxed plan is 100, 0 and 0, respectively.
Therefore, SelectVariableFromMacros chooses macro {v3

1 , v4
2}.

If the number of macro-actions with the highest percentage of variables represent-
ing actions in the relaxed plan is greater than one, then SelectVariableFromMacros
uses some secondary criteria to select the most promising macro. These criteria include
the ratio between the number of variables assigned as true and the cardinality of the
macro, the sum of the variable activity values (as defined in [5]), and the time step
of the first action in the macro. If none of the these criteria returns a single macro,
SelectVariableFromMacros randomly chooses a macro from the set of the best macros.
Finally, it returns the earliest (time-step wise) unassigned variable from the best macro.

If set MA contains no macro, SelectVariableFromMacros returns nil and, subse-
quently, the algorithm uses the standard MiniSAT procedure SelectVariable (as defined
in [5]) for choosing an unassigned variable of the CNF.

3 Predicting and Using Learned Horizons in SATPLAN

Typical SAT-based planners like SatPlan generate several unsatisfiable CNF encodings
of the given planning problem with different (increasing) plan length bounds before
finding a solvable CNF (from which an optimal plan is obtained). Unfortunately, we
have observed that, while for a solvable CNF the use of macro-actions can speed up the
SAT-solver, often for an unsolvable CNF this is not the case. Hence, in order to better
exploit the macro-actions in the whole planning process, we have developed a method
for predicting the optimal planning horizon of a problem in a given domain. It should be

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability 5

Name Description
#G number of problem goals
#O number of problem objects
#F number of facts in the initial state
#A number of actions grounded by planner LPG

#LM number of landmarks computed by planner Lama
#ME number of mutex exclusive relations computed by LPG
πFD

r number of actions in the relaxed plan constructed by planner FastDownward
πFF

r number of actions in the relaxed plan constructed by planner FF
πLama

r number of actions in the relaxed plan constructed by Lama
πLPG

r number of actions in the relaxed plan constructed by LPG

Table 1: The set of features used to define a predictive model of the planning horizon.

noted that such a predictive model is an independent technique that can be used without
the macro-actions.

The predictive model is constructed using a set of features, given in Table 1, con-
cerning the planning problem, the mutex relations and landmarks in its state space (e.g.,
[7, 17]), and the relaxed solutions used in some heuristics of state-of-the-art satisficing
planners. The values of features #G, #O, #F are derived from the “grounded” de-
scription of the planning problem, while the values of the other features are derived
using the planning techniques implemented in FastDownward [9], FF [10], Lama
[17] and LPG [7]. Essentially, for each training problem Π , the length (number of plan
steps) lπ of an optimal solution π for Π is computed using an existing optimal planner;
the values of the learning features for Π and lπ provide the data from which the predic-
tive model is generated using a machine-learning tool. In our implementation, we used
the well-known tool WEKA [18] with technique M5Rules [8].

The experimental results in Table 2 indicate that, for problems with short optimal
plans, the estimated optimal horizon computed by WEKA is sometimes better than the
first horizon computed by SatPlan, which is the initial length of Graphplan’s planning
graph; while for problems with middle-size and long optimal plans, the estimated opti-
mal horizons are always better. Moreover, these results indicate that the predicted plan
length can be higher than the actual optimal plan length, while SatPlan’s initial horizon
is a lower or exact bound. Therefore, in order to use a learned horizon in SatPlan, we
have modified its standard behaviour as follows.

If the initial CNF F encoding the planning problem with a predicted horizon t is
solvable, then the process is repeated using a CNF with horizon r − 1, where r is the
number of time steps in the solution plan computed from F , and so on, until a horizon
q < t for which the CNF is unsolvable has been identified (the optimal solution plan is
the one generated from the CNF with horizon q +1). Otherwise, the process is repeated
with horizon t+1, and the planner stops when a solvable CNF is generated (the optimal
solution is the plan derived from the solution of this last CNF).

Each generated CNF can be solved using the modified version of the MacroMiniSAT
procedure shown in Figure 2. The gray steps indicate the differences with respect to
the version using only macro actions given in Figure 1. At each iteration of the loop
2–13, if the selected variable v represents an action at level (time step) l, procedure

6 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

Problem Opt. Length ∆G ∆W

Short plans
BlocksWorld – 6 8 -2 2
Depots – 3 9 -4 1
Ferry – 3 7 -3 3
Goldminer – 5 8 0 5
Gripper – 4 7 -4 1
Matching-BW – 5 7 -3 4
Sokoban – 6 8 0 2
Middle-size plans
BlocksWorld – 8 18 -8 -1
Depots – 5 12 -3 2
Ferry – 4 13 -9 1
Goldminer – 7 16 -3 0
Gripper – 8 15 -12 1
Matching-BW – 8 15 -8 0
Sokoban – 7 19 -6 -5
Long plans
BlocksWorld – 28 81 -47 3
Depots – 10 20 -6 4
Ferry – 11 40 -36 0
Goldminer – 15 92 -18 16
Gripper – 11 23 -20 -1
Matching-BW – 30 46 -28 2
Sokoban – 12 51 -31 4

Table 2: Empirical evaluation of the accuracy of the predicted planning horizon using some prob-
lems with different size from 7 known domains: optimal plan length (2nd column), gap between
the first plan length bound of SatPlan (defined as the length of the initial Graphplan’s planning
graph) and the optimal plan length (3rd column), and gap between the predicted planning horizon
and the optimal plan length. Smaller ∆-values indicate better estimates.

PropagateGoalNoop is called to possibly assign true to the unassigned variables en-
coding “no-ops” at every time step i > l and representing problem goals. As observed
below, this is useful when the solution plan has a length that is lower that the current
plan horizon.

The loop 4–11 of PropagateGoalNoop assigns true to each unassigned variable v
representing a problem goal at level l, and propagates this decision. If a conflict is
generated, and backtracking is performed. The outer loop (steps 2–11) repeats these
variable assignments for each time step from the input time step l to the latest time step
of an action encoded in the input CNF F .

We experimentally observed that this modified version of MacroMiniSAT generates
plans shorter than those generated by the version in Figure 1. Hence, when the pre-

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability 7

MacroMiniSAT(F , M)

Input: The CNF F encoding a planning problem, a set M of macro actions.

Output: A solution variable assignment W or failure.

1. W ← ∅;
2. while ∃ variable v of F not assigned in W do
3. v ← SelectVariableFromMacros(F , W, M);
4. if v = nil then v ← SelectVariable(F , W);
5. W ←W ∪ (v = TRUE);
6. Propagate value of v;
7. if the propagation has generated no conflict then
8. if v represents an action then

9. W ← PropagateGoalNoop(F , W, Level(v) + 1);

10. if W = failure then return failure;
11. else
12. if the propagation has generated a top level conflict then return failure;
13. else Perform backtracking;
14. return W .

PropagateGoalNoop(F , W, m)

Input: The CNF F encoding a planning problem, a variable assignment W , and a time step m.

Output: A (partial) variable assignment W or failure.

1. if m > EndLevel then return W ;
2. for l = m to EndLevel do
3. G(l)← set of variables of F encoding no-ops at level l and representing goals;
4. foreach unassigned variable v in G(l) do
5. W ←W ∪ (v = TRUE);
6. Propagate value of v;
7. if the propagation has generated no conflict then
8. if all variables of F are assigned then return W ;
9. else
10. if the propagation has generated a top level conflict then return failure;
11. else Perform backtracking;

Fig. 2: Algorithms for solving the SAT encoding of a planning problem using a set of macro-
actions when the horizon can be higher than the optimal one. Function Level(v) returns the time
step of the action encoded by variable v. EndLevel represents the latest time step of an action
encoded in the input CNF F .

dicted horizon is greater than the optimal one, SatPlan generates (and solves through
MacroMiniSAT) fewer CNFs.

4 Experimental Results

In this section, we give some results from an experimental analysis aimed at

– understanding the effectiveness of using macro-actions for SAT-based planning;

8 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 3 6 9 12 15 18 21 24 27 30

FerryMilliseconds

SatPlan
SatPlan+M

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 3 6 9 12 15 18 21 24 27 30

GripperMilliseconds

SatPlan
SatPlan+M

Fig. 3: CPU time of SatPlan and SatPlan+M to solve the SAT problems encoded from the
planning problems of domains Ferry and Gripper using the optimal horizon. On the x-axis we
have the problem names simplified by numbers.

– evaluating the impact of using learned horizons instead of those computed by SatPlan.

All experimental tests were conducted using an Intel Xeon(tm) 3 GHz machine,
with 2 Gbytes of RAM. Unless otherwise specified, the CPU-time limit for each run
was 30 minutes, after which termination was forced. (The CPU time used for com-
puting the values of the considered problem features and estimating the plan length is
generally negligible w.r.t. the time used for planning, and in our analysis it is ignored.)
The CPU time used for computing the values of the problem features and estimating the
plan length is generally negligible w.r.t. the time used for planning, and is ignored in
our analysis.) In our experiments, macro-actions were computed using the techniques
incorporated into Macro-FF [2], a well-known available planning system. However,
any other system for computing macro-actions could be used.

Overall, the experiments consider 7 known planning domains: BlocksWorld, Depots,
Ferry, Goldminer, Gripper, Matching-BW and Sokoban. However, for testing the
use of macro-actions we focus only on domains Ferry and Gripper. Domain Ferry
concerns transporting cars between locations using a ferry. Each location is directly
connected to every other location; cars can be debarked and boarded; the available ferry
can carry at most one car at a time. The only macro-action used in our experiments

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability 9

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16

FerryMilliseconds

SatPlan
SatPlan+M

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8

GripperMilliseconds

SatPlan
SatPlan+M

Fig. 4: CPU times of SatPlan and SatPlan+M in domains Ferry and Gripper. On the x-axis
we have the problem names simplified by numbers.

for this domain is formed by three domain actions (no other macro-action is learned):
boarding a car x from a location l1 to the ferry, moving the ferry from l1 to another
location l2, and debarking x in l2. Domain Gripper concerns transporting some balls
between two rooms using a robot with two gripper hands. The macro-action used in
our experiments for this domain is formed by five actions (again this is the only learned
macro-action): picking a ball x from a room r1 by the right hand, picking a ball y from
room r1 by the left hand, moving the robot from r1 to another room r2, dropping x in
r2, and dropping y to r2.

For the other domains considered in our experiments, the macro-actions computed
by Macro-FF are not suitable for SatPlan because they are long and can appear only
in sub-optimal plans, or there is a large number of similar macro-actions, involving
many variables of the CNF. In these situations, the variant of MiniSat that tries to use
macro-actions is not more efficient than the original version.

Figure 3 shows the CPU times required by the original version of SatPlan and the
version using macros (abbreviated with SatPlan+M) for domains Ferry and Gripper
when the optimal planning horizon is given (and the first generated SAT problem is
solvable).

10 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

Domain #Prob % Solved Mean CPU Time Speed score
SatPlan SatPlan+H SatPlan SatPlan+H SatPlan SatPlan+H

BlocksWorld 60 80 98.33 330.2 321.5 20.6 58.2
Depots 43 100 100 78.6 70.6 30.8 40.7
Ferry 18 83.3 94.4 223.5 176.5 4.9 17.0
Goldminer 44 97.3 95.5 464.5 374.9 31.0 41.3
Gripper 10 80.0 80.0 15.8 10.4 5.8 7.8
Matching-BW 30 96.7 96.67 228.5 146.9 16.9 28.5
Sokoban 140 99.0 100 232.3 93.2 61.0 138.5
Total 345 94.5 98.3 251.1 178.9 171.0 332.1

Table 3: Percentage of solved problems (columns 3-4), average CPU time (columns 5-6) and IPC
score (columns 7-8) of SatPlan and SatPlan using the learned horizon estimated by WEKA for
7 known domains.

SatPlan+M is almost always faster than SatPlan and solves much larger prob-
lems. However, as shown in Figure 4, when the optimal planning horizon is not given,
SatPlan+M is usually slower than SatPlan (up to about two times). The main reason
why macro-actions slow down the planning process is that they are not useful when
a SAT problem is unsolvable, and usually SatPlan generates several unsolvable SAT
problems before the solvable one.

In order to better exploit macro-actions, it is important to have accurate bounds on
the optimal horizon and minimize the number of the generated unsolvable SAT prob-
lems. In the last part of this section, we will show that using macro-actions can be useful
when combined with the use of learned horizons (which often are upper bounds, rather
than lower bounds as in SatPlan, on the optimal horizons).

Table 3 gives the percentage of solved problems, the average CPU time and the
speed score of the original version of SatPlan and the proposed version using learned
planning horizons (abbreviated with SatPlan+H). The speed score was first introduced
and used by the organizers of the 6th International Planning Competition [6] for evalu-
ating the relative performance of the competing planners, and since then it has become
a standard method for comparing planning systems. The speed score of a system s is de-
fined as the sum of the speed scores assigned to s over all the considered problems. The
speed score assigned to s for a planning problem P is 0 if P is unsolved and T ∗

P /T (s)P

otherwise, where T ∗
P is the lowest measured CPU time to solve problem P and T (s)P

denotes the CPU time required by s to solve problem P . Higher values of the speed
score indicate better performance.

The results in Table 3 indicate that the number of problems solved by SatPlan+H
is greater than or equal to the number of those solved by SatPlan, and that SatPlan+H
is almost always faster than SatPlan, because the speed score of SatPlan+H is very
close to the number of considered problems.

Figure 5 shows the CPU time of the original version of SatPlan (which generates
the first SAT problem using a lower bound on the optimal horizon through Graphplan)
and our version using macros and the horizon learned by the proposed method (ab-
breviated with SatPlan+MH). The results in Figure 5 show that, for the considered

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability 11

 100

 1000

 10000

 100000

 1e+06

 0 3 6 9 12 15 18 21 24 27 30

FerryMilliseconds

SatPlan+MH (Find the optimal solution)
SatPlan+MH (Prove the optimality)

SatPlan

 10

 100

 1000

 10000

 100000

 1e+06

 0 3 6 9 12 15 18 21 24 27 30

GripperMilliseconds

SatPlan+MH (Find the optimal solution)
SatPlan+MH (Prove the optimality)

SatPlan

Fig. 5: CPU time of SatPlan and SatPlan+MH to find the optimal solution and to prove that
such a solution is optimal for domains Ferry and Gripper. On the x-axis we have the problem
names simplified by numbers.

domains, the combination of using learned horizons and macro-actions speeds up the
planning process of SatPlan.

Finally, the CPU time of SatPlan+MH for finding the optimal plan is up to about
two orders of magnitude lower than the time of SatPlan, and, moreover, SatPlan+MH
solves many more problems. SatPlan+MH is often still faster than SatPlan in proving
that a computed solution is optimal, but the performance gap is reduced. The reason
why the performance gap is smaller is that, in order to prove optimality, one unsolvable
SAT problem (with horizon equal to the optimal horizon minus one) is generated and,
as previously observed, for domains Ferry and Gripper the use of macro-actions for
unsolvable SAT problems do not usually increase the performance.

5 Conclusions

We have investigated the use of macro-actions in SAT-based planning based on a variant
of a well-known SAT solver that can exploit this information to speed up planning.
Moreover, we have presented a new method for predicting the optimal planning horizon
through a model generated using standard machine-learning techniques, and shown how
to use it in combination with macro actions.

12 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati

A preliminary experimental study indicates that: (i) the use of macro actions can
speed up the SAT solver when the CNF encoding of the problem is satisfiable; (ii) the
estimate of the optimal plan length computed by our method is more accurate than the
bound computed by SatPlan through Graphplan’s planning graph and it can be used to
improve SatPlan speed; and (iii) the use of macro-actions combined with the learned
planning horizon can speed up SatPlan.

Future work includes studying the use of macro-actions generated by other tools,
e.g., WIZARD [16], and running additional experiments about the impact of macro-
actions and learned horizons on the performance of SAT-based planning.

References

1. Blum, A., and Furst, M., L. 1997. Fast planning through planning graph analysis. Artificial
Intelligence 90:281–300.

2. Botea, A., Müller, M., and Schaeffer, J. 2005. Learning partial-order macros from solutions.
In Proc. of ICAPS-05.

3. Celorrio, S. J., Coles, A. and Coles, A. 2011. 7th Int. Planning Competition – Learning Track.
http://www.plg.inf.uc3m.es/ipc2011-learning.

4. Davis, M., Logemann, G., and Loveland, D. 1962. A machine program for theorem-proving.
In Communications of the ACM 5:394–397.

5. Een, N., and Sörensson, N. 2003. An extensible SAT-solver. In Proc. of SAT-03.
6. Fern, A., Khardon, R., and Tadepalli, P. 2008. 6th Int. Planning Competition – Learning

Track. http://eecs.oregonstate.edu/ipc-learn/.
7. Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through stochastic local search and

temporal action graphs. Journal of Artificial Intelligence Research 20:239–290.
8. Hall, M.; Holmes, G; Frank, E. 1999. Generating Rule Sets from Model Trees. In Proc. of

Australian Conf. on AI, 1999
9. Helmert, M. 2006. The Fast downward planning system. In Journal of Artificial Intelligence

Research 26:191–246.
10. Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast plan generation through

heuristic search. In Journal of Artificial Intelligence Research 14:253–302.
11. Kautz, H., and Selman, B. 1992. Planning as satisfiability. In Proc. of ECAI-92.
12. Kautz, H., and Selman, B. 1999. Unifying SAT-based and graph-based planning. In Proc. of

IJCAI-99.
13. Kautz, H., Selman, B., and Hoffmann, J. 2006. SatPlan: Planning as satisfiability. In Abstract

Booklet of the 5th Int. Planning Competition.
14. Marques, S., J., P., and Karem S., A. 1996. GRASP a new search algorithm for satisfiability.

in Proc. of ICCD-96.
15. Moskewicz, M., W., and Madigan, C., F., and Zhao, Y., and Zhang, L., and Malik, S. 2001.

Chaff: Engineering an Efficient SAT Solver. In Proc. of DAC-01.
16. Newton, M., Levine, J., Fox, M., and Long, D. 2007. Learning macro-actions for arbitrary

planners and domains. In Proc. of ICAPS-07.
17. Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding cost-based anytime plan-

ning with landmarks. Journal of Artificial Intelligence Research, 39:127–177.
18. Witten, I., H., and Frank, E. 2005. Data mining: Practical machine learning tools and

techniques. Morgan Kaufmann. San Fransisco, CA.

