Search:
Computing and Library Services - delivering an inspiring information environment

The Efficacy of Ideographic Models for Geographical Offender Profiling

Canter, David V., Hammond, Laura, Youngs, Donna E. and Juszczak, Piotr (2013) The Efficacy of Ideographic Models for Geographical Offender Profiling. Journal of Quantitative Criminology, 29 (3). pp. 423-446. ISSN 0748-4518

[img]
Preview
PDF - Accepted Version
Download (792kB) | Preview

    Abstract

    Objectives: Current ‘geographical offender profiling’ methods that predict an offender’s base location from information about where he commits his crimes have been limited by employing aggregate distributions across a number of offenders, ignoring the possibility of axially distorted distributions and working with limited probability models. The efficacy of five ideographic models (derived only from individual crime series) was therefore tested.

    Methods: A dataset of 63 burglary series from the UK was analysed using five different ideographic models to make predictions of the likely location of an offenders home/base: (1) a Gaussian-based density analysis (kernel density estimation); (2) a regression-based analysis; (3) an application of the ‘Circle Hypothesis’; (4) a mixed Gaussian method; and (5) a Minimum Spanning Tree (MST) analysis. These tests were carried out by incorporating the models into a new version of the widely utilised Dragnet geographical profiling system DragNetP. The efficacy of the models was determined using both distance and area measures.

    Results: Results were compared between the different algorithms and with previously reported findings employing nomothetic algorithms, Bayesian approaches and human judges. Overall the ideographic models performed better than alternate strategies and human judges. Each model was optimal for some series, no one model producing the best results for all series.

    Conclusions: Although restricted to one limited sample the current study does show that these offenders vary considerably in the spatial distribution of offence location choice and mathematical models therefore need to take this into account. Such models will improve geographically based investigative decision support systems.

    Item Type: Article
    Subjects: B Philosophy. Psychology. Religion > BF Psychology
    H Social Sciences > H Social Sciences (General)
    Schools: School of Human and Health Sciences
    School of Human and Health Sciences > International Research Centre for Investigative Psychology
    Related URLs:
    Depositing User: Sharon Beastall
    Date Deposited: 03 Oct 2012 09:39
    Last Modified: 18 Sep 2013 10:57
    URI: http://eprints.hud.ac.uk/id/eprint/15273

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©