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On Exploiting Structures of Classical Planning Problems:
Generalizing Entanglements

Lukáš Chrpa and Thomas Leo McCluskey1

Abstract.

Much progress has been made in the research and development
of automated planning algorithms in recent years. Though incremen-
tal improvements in algorithm design are still desirable, complemen-
tary approaches such as problem reformulation are important in tack-
ling the high computational complexity of planning. While machine
learning and adaptive techniques have been usefully applied to auto-
mated planning, these advances are often tied to a particular planner
or class of planners that are coded to exploit that learned knowledge.
A promising research direction is in exploiting knowledge engineer-
ing techniques such as reformulating the planning domain and/or the
planning problem to make the problem easier to solve for general,
state-of-the-art planners. Learning (outer) entanglements is one such
technique, where relations between planning operators and initial or
goal atoms are learned, and used to reformulate a domain by remov-
ing unneeded operator instances. Here we generalize this approach
significantly to cover relations between atoms and pairs of operators
themselves, and develop a technique for producing inner entangle-
ments. We present methods for detecting inner entanglements and
for using them to do problem reformulation. We provide a theoreti-
cal treatment of the area, and an empirical evaluation of the methods
using standard planning benchmarks and state-of-the-art planners.

1 Introduction

In the area of Automated Planning, many successful planning en-
gines have been developed [2, 3, 18], however, little use is made
of knowledge that might be characteristic for a given class of plan-
ning problems. Knowledge that might be used to help inform plan-
ning falls into a spectrum between planner dependent at one extreme,
and planner independent at the other. At the planner independent ex-
treme, knowledge must be learned or hand-encoded within planning
domain models and tasks, utilizing the syntax and semantics of a
domain independent planner input language such as PDDL [12]. On
the other hand, planner dependent knowledge is created to fit with the
particular design of a planner, and is normally encoded in structures
additional to the planner input language.

As the use of general planning engines within AI technology be-
comes more widespread, planner independent approaches such as
reformulation or pre-processing are very attractive, as they tend to
decouple the choice and development of planning engines from the
choice and development of the learning or encoding technique. A
good example of a such a technique is learning macro-actions. This
is a widely studied area [4, 7, 20] because macro-actions can be en-
coded as regular actions, although they share the behavior of a se-
quence of actions, and are useful for a class of planning engines.
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While the main disadvantage of using macro-actions is the risk of
a significant increase of the branching factor during searching, there
are several techniques which are used for reducing the branching fac-
tor. A well-known technique, called commutativity pruning, is used
to discard unnecessary symmetries caused by commutative actions.
Commutative actions, informally said, do not influence each other
and can be executed in any order. Graphplan [2], one of the best-
known planning algorithms, allows the execution of commutative
actions in parallel (in one step). In linear-memory algorithms (e.g.
IDA∗) commutativity pruning can be done by giving the commuta-
tive actions fixed ordering (see e.g. [14]). Existing planners usually
do not deal with all instances of planning operators. The FF plan-
ner [18] instantiates only actions appearing at some level of relaxed
Planning Graph. FastDownward [15] (a predecessor of LAMA [21])
uses the idea called reach-one-goal (i.e. achieve the goals of the plan-
ning task consecutively), where the solver focuses on such actions
that may be relevant for a particular goal. Recent work [6] focusing
on cost-optimal SAS+ planning [1] introduces an ‘Expansion Core‘
method which in a node expansion phase (in A∗ search) restricts on
relevant Domain Transition Graphs rather than all of them. Other
work focusing on cost-optimal SAS+ planning [10] prunes irrelevant
actions (e.g. actions changing a value of a variable having no de-
pendants from a goal value) or exploits ‘tunnel macro-actions’ (i.e.
if a certain action is executed then there is no other choice than to
execute specific actions forming the ‘tunnel’). Finally, capturing re-
lations between planning operators and initial or goal atoms [8], later
called outer entanglements, is also used for pruning potentially un-
necessary instances of operators.

The contributions of this paper are as follows. We generalize the
idea of outer entanglements [8] to cover relations between pairs of
planning operators and atoms, called inner entanglements. Infor-
mally, inner entanglements determine exclusivity of ‘achievement’
or ‘consumption’ of atoms between operators. Entanglements (both
outer and inner) aim to capture the causal relationships characteristic
for a given class of planning problems; despite making no guarantee
of preserving optimality, in many cases they enable a reduction of
the branching factor. Since deciding outer entanglements is PSPACE-
complete [9] and a similar property is assumed (although not proved
yet) for inner entanglements, an approximation method for detect-
ing entanglements is provided. The method finds entanglements in
a set of reference plans which are then transferred to a wider set of
planning tasks. Entanglements can be encoded directly in planning
problems (by problem reformulation) which ensures planner inde-
pendence. Our approach is evaluated on International Planning Com-
petition (IPC) benchmarks2 using several state-of-the-art planners.

2 http://ipc.icaps-conference.org
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2 Preliminaries

Classical planning (in state space) deals with finding a sequence of
actions transforming the static, deterministic and fully observable en-
vironment from some initial state to a desired goal state [13].

In the set-theoretic representation atoms, which describe the
environment, are propositions. States are defined as sets of
propositions. Actions are specified via sets of atoms specify-
ing their preconditions, negative and positive effects (i.e., a =
(pre(a), eff−(a), eff+(a))). An action a is applicable in a state s
iff pre(a) ⊆ s. Application of a in s (if possible) results in a state
(s \ eff−(a)) ∪ eff+(a).

In the classical representation atoms are predicates. A Planning

operator o = (name(o), pre(o), eff−(o), eff+(o))) is a generalized
action (i.e. action is a grounded instance of the operator), where
name(o) = op name(x1, . . . , xk) (op name is an unique operator
name and x1, . . . xk are variable symbols (arguments) appearing in
the operator and pre(o), eff−(o) and eff+(o) are sets of (unground)
predicates. The set-theoretic representation can be obtained from the
classical representation by grounding.

A planning domain is specified via sets of predicates and plan-
ning operators (alternatively propositions and actions). A planning

problem is specified via a planning domain, initial state and set of
goal atoms. A plan is a sequence of actions. A plan is a solution of
a planning problem if and only if a consecutive application of the ac-
tions in the plan (starting in the initial state) results in a state, where
all the goal atoms are satisfied.

3 Theoretical Background

An insight into how actions in plans can be ordered is given by the
fact that some action creates an atom (a grounded predicate) which
is required by another action. This relation is called general depen-
dence. General dependence can be generalized in terms of defining it
between planning operators.

Definition 1. Let a1 and a2 be actions. We say that a2 gener-
ally depends on a1 by a (grounded) predicate pgnd if and only if
pgnd ∈ eff+(a1) ∩ pre(a2).
Let o1 and o2 be planning operators. We say that o2 generally de-
pends on o1 by a predicate p if and only if there exists a substitution
Θ such that p ∈ eff+(o1) ∩ pre(o2Θ). �

A more specific notion than general dependence, which is well
known in the planning community (e.g. as a causal link in plan-space
planning), is that of an action being an ‘achiever’ of a predicate for
some other action occurring after it in a plan (in a similar way as
discussed in Chapman’s earlier work [5]). Formally:

Definition 2. Let 〈a1, a2, . . . an〉 be a sequence of actions. We say
that an action ai achieves a (grounded) predicate pgnd for an action
aj if and only if i < j, pgnd ∈ eff+(ai) ∩ pre(aj) and ∀k ∈ {i +
1, . . . , j − 1} : pgnd 
∈ eff+(ak). �

3.1 Entanglements

‘Outer Entanglements’ are relations between planning operators and
initial or goal atoms, and have been introduced as a tool for eliminat-
ing potentially unnecessary actions [8]. In the BlocksWorld [22] we
may observe, for example, that unstacking blocks only occurs from
their initial positions. In this case an ‘entanglement by init’ will cap-
ture that if atom onblock(a,b) is to be achieved for a correspond-
ing instance of operator unstack(?x,?y) (unstack(a,b)),

then the atom is an initial atom. Similarly, it may be observed
that stacking blocks only occurs to their goal position. Then, an
‘entanglement by goal’ will capture that atom onblock(b,a)
achieved by a corresponding instance of operator stack(?x,?y)
(stack(b,a)) is a goal atom.

Definition 3. Let P be a planning problem, where I is an initial sit-
uation and G is a goal situation. Let o be a planning operator and
p be a predicate (o and p are defined in a planning domain related
to P ). We say that operator o is entangled by init (resp. goal) with
predicate p in planning problem P if and only if p ∈ pre(o) (resp.
p ∈ eff+(o)) and there exists a plan π that solves P and for every
action a ∈ π which is an instance of o and for every grounded in-
stance pgnd of the predicate p it holds: pgnd ∈ pre(a) ⇒ pgnd ∈ I
(resp. pgnd ∈ eff+(a) ⇒ pgnd ∈ G). Hereinafter, it is denoted as
entP = (init, o, p) (resp. entP = (goal, o, p)).
Henceforth, entanglements by init and goal are denoted as outer en-
tanglements. �

In this paper we extend the idea of outer entanglements to cover
also relations between pairs of operators and predicates, called inner
entanglements. Inner entanglements stand for operator exclusivity of
‘providing’ or ‘requiring’ predicates. In the BlocksWorld it may be
observed, for instance, that operator pickup(?x) achieves predi-
cate holding(?x) exclusively for operator stack(?x,?y) (and
not for operator putdown(?x)). This relation is denoted as an
‘entanglement by succeeding’. Similarly, it may be observed that
predicate holding(?x) for operator putdown(?x) is exclu-
sively achieved by operator unstack(?x,?y) (and not by opera-
tor pickup(?x)). This relation is denoted as an ‘entanglement by
preceding’.

Definition 4. Let P be a planning problem. Let o1 and o2 be
planning operators and p be a predicate (o1, o2 and p are defined
in a planning domain related to P ) such that p ∈ eff+(o1) and
p ∈ pre(o2). We say that o1 is entangled by succeeding o2 with
p if and only if there exists a plan π solving P and ∀a1, a2 ∈ π
such that a1 achieves pgnd (pgnd is a grounded instance of p) for a2

it holds that if a1 is an instance of o1 then a2 is an instance of o2.
Hereinafter, it is denoted as entP = (succ, o1, o2, p).
We also say that o2 is entangled by preceding o1 with p if and only
if there exists a plan π solving P and ∀a1, a2 ∈ π such that a1

achieves pgnd (pgnd is a grounded instance of p) for a2 it holds that
if a2 is an instance of o2 then a1 is an instance of o1. Hereinafter, it
is denoted as entP = (prec, o2, o1, p).
Henceforth, entanglements by preceding and succeeding are denoted
as inner entanglements. �

The above definition allows situations where an instance of the
predicate (e.g. holding(a)) is not exclusively achieved by an in-
stance of a certain operator (e.g. unstack(a,b)) but it is present
in the initial state. Similarly, it is allowed that an instance of the pred-
icate (e.g. holding(b)) is not exclusively achieved for an instance
of a certain operator (e.g. stack(b,a)) but it is present in the goal
state. To keep ‘providing’ and ‘requiring’ exclusivity only between
given operators, Definition 4 must be strengthened as follows.

Remark 1. Let P be a planning problem, I be an initial state in
P and π = 〈a1, . . . , an〉 be a plan solving P . Let aI = {∅, ∅, I}
and aG = {sG, ∅, ∅} be actions where sG is a state obtained by ex-
ecuting π in I . Universal quantifier (∀a1, a2 ∈ π) used for defining
both entanglement by succeeding and preceding can be modified to
∀a1, a2 ∈ 〈aI , a1, . . . , an, aG〉 (in both cases). Then we say that
entanglement by succeeding (or preceding) is strict.
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Entanglements as defined before are related to a single planning
problem. This assumption can be easily extended to cover a class of
planning problems sharing the same predicates and operators.

A single entanglement requires only the existence of one plan
solving the given planning problem where the entanglement condi-
tions are met. Hence some of the solution plans do not have to meet
the entanglement conditions. Obviously, different entanglements are
met in different solution plans. Therefore, we define a set of compat-
ible entanglements which ensures existence of at least one solution
plan following all the entanglements in the set. For example, all the
BlocksWorld related entanglements mentioned throughout this sec-
tion forms a set of compatible entanglements.

Definition 5. Let entP be an entanglement related to a planning
problem P . Let ΠP be the set of plans solving P . Let ΠentP ⊆ ΠP

be the set of plans satisfying conditions of the entanglement entP .
We say that a set EP = {ent1P , . . . , entkP } is a set of compatible
entanglements for P if and only if

⋂k
i=1 Πenti

P

= ∅. �

3.2 Theoretical Properties of Entanglements

Outer entanglements in fact say that we need only instances of op-
erators which are directly related to initial or goal situations (e.g.
unstacking a block from its initial position or stacking it to its goal
position). Hence if outer entanglements are taken into account then
the number of actions considered by planners are lower or at worst
equal than in the original problem [8].

On the other hand, inner entanglements stand for exclusivity of
operators in ‘providing’ or ‘requiring’ predicates. For example, if an
action, an instance of some operator (e.g. pickup(a)), is executed,
then only an instance of a certain operator (e.g. stack(a,b)) can
‘require’ an instance of a certain predicate (e.g. holding(a)). In
this case we do not restrict a number of actions but we reduce the
branching factor. In other words, we prune some unpromising alter-
natives during the search.

There are some trivial situations when we can decide entangle-
ments. Considering static predicates, i.e., predicates whose instances
can be defined only in an initial state and no instance can be added
or removed during the planning process.

Lemma 1. Let P be a planning problem, p be a predicate and o
be an operator related to P . Let entP = (init, o, p) be an en-
tanglement. entP is valid, i.e., o is entangled by init with p and
ΠentP = ΠP if p is static.

Proof. See [8].

There is a straightforward relationship between entanglements by
succeeding or preceding and general dependence which says that
general dependence is weaker than inner entanglements.

Lemma 2. If either an operator o1 is entangled by a succeeding
operator o2 with a predicate p or an operator o2 is entangled by a
preceding operator o1 with p, then o2 generally depends on o1 by p.

Proof. Follows immediately from the definitions.

General dependence between planning operators can also reveal
situations where the operators must follow inner entanglements with
a certain predicate. That is if there is only one operator that can
achieve a certain predicate or if there is only one operator having
a certain predicate in its precondition. In other words, exclusivity is
already given in the domain definition. It is formalized in the follow-
ing lemmas.

Lemma 3. Let O be the set of planning operators defined in the
domain of a given problem P and p be a predicate. If ∃!oi ∈ O such
that p ∈ eff+(oi), then ∀ok ∈ O such that p ∈ pre(ok) it holds that
ok is entangled by preceding oi with p.

Proof. It is straightforward because there cannot be an action pro-
viding a grounded instance of p to any instance of ok which is not an
instance of oi.

Lemma 4. Let O be the set of planning operators defined in the
domain of a given problem P and p be a predicate. If ∃!oi ∈ O such
that p ∈ pre(oi), then ∀ok ∈ O such that p ∈ eff+(ok) it holds that
ok is entangled by succeeding oi with p.

Proof. It is straightforward because there cannot be an action requir-
ing a grounded instance of p (achieved by any instance of ok) which
is not an instance of oi.

Remark 2. Considering strict inner entanglements we have to
take into account additional conditions (see Remark 1). Regarding
Lemma 3 we have to ensure that there exists a plan where instances
of oi always achieve p for instances of (all) ok. It holds if there is no
instance of p in an initial state. Regarding Lemma 4 we have also to
ensure that there exist a plan where execution of instances of (all) ok
is always followed at some point by execution of an instance of oi.

4 Problem Reformulation

To exploit entanglements during the planning process we have to de-
velop a specific planner or we have to reformulate problems in such a
way that every valid solution follows entanglements. Reformulation
is provided within classical planning (see Section 2), therefore it is
possible to use any planner supporting classical (STRIPS) planning.

Outer entanglements can be encoded as follows (for deeper in-
sight, see [8]). Let P be a planning problem, I be its initial state
and G its goal situation. Let entP = (init, o, p) (resp. entP =
(goal, o, p)) be an entanglement. Then the problem P is reformu-
lated as follows:

1. Create a predicate p′ (not defined in the domain of P ) having the
same arguments as p and add p′ to the domain of P .

2. Modify the operator o by adding p′ into its precondition. p′ has
the same arguments as p which is in precondition (resp. positive
effects) of o.

3. Create all possible instances of p′ which correspond to instances
of p listed in I (resp. G) and add the instances of p′ to I .

Adding p′, which is in fact a static predicate, into precondition of
o causes that instances of o that do not follow the entanglement entP
to become unreachable. For a proof of correctness, see [8].

Inner entanglements can be encoded as follows. Firstly, it is shown
how entanglement by succeeding is encoded. Let P be a planning
problem and entP = (succ, o1, o2, p) be an entanglement. Then the
problem P is reformulated as follows:

1. Create a predicate p′ (not defined in the domain of P ) having the
same arguments as p and add p′ to the domain of P .

2. Modify the operator o1 by adding p′ into its negative effects. p′

has the same arguments as p which is in the positive effects of o1.
3. Modify the operator o2 by adding p′ into its positive effects. p′

has the same arguments as p which is in the precondition of o2.
4. Modify all operators o such that o 
= o2 and o generally depends

on o1 by p by adding p′ into its precondition. p′ has the same
arguments as p which is in the precondition of o.
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5. Add all possible instances of p′ into the initial state of P and if
entP is strict, then also to the goal situation of P .

Secondly, it is shown how entanglement by preceding is encoded.
Let P be a planning problem and entP = (prec, o2, o1, p) be an
entanglement. Then the problem P is reformulated as follows:

1. Create a predicate p′ (not defined in the domain of P ) having the
same arguments as p and add p′ to the domain of P .

2. Modify the operator o1 by adding p′ into its positive effects. p′

has the same arguments as p which is in the positive effects of o1.
3. Modify the operator o2 by adding p′ into its precondition and neg-

ative effects. p′ has the same arguments as p which is in the pre-
condition of o2.

4. Modify all operators o such that o 
= o2 and p ∈ eff−(o) by adding
p′ into its negative effects. p′ has the same arguments as p.

5. Modify all operators o such that o 
= o1 and p ∈ eff+(o) by adding
p′ into its negative effects (p′ has the same arguments as p).

6. If entP is not strict, then i) add all possible instances of p′ to the
initial state of P .

Due to space reasons we provide only sketch proofs of correct-
ness of above encodings of inner entanglements. Regarding entan-
glements by succeeding we can see that all possible instances of p′

are valid in the initial state therefore applicability of instances of any
operator is not affected unless an instance of o1 is executed. After
execution of an instance of o1 a corresponding instance of p′ is re-
moved. It causes inapplicability of corresponding instances of o (see
step 4) until a corresponding instance of o2 is executed. Such a sit-
uation follows the entanglement by succeeding (entP ) because all
instances of o1 achieves predicates only for instances of o2. If we
consider a strict version of the entanglement entP , then all the in-
stances of p′ must be valid in the goal state, i.e., every instance of
o1 must be at some point of the planning process followed by the
corresponding instance of o2.

Regarding entanglements by preceding we can see that in a strict
version we can execute an instance of o2 only if a previously exe-
cuted instance of o1 created p and no other action removed it. It is
because p′ which is in the precondition of o2 can be created only by
o1. If anther operator o removes p created by o1 (see step 4), then
p′ is removed as well to prevent unwanted execution of o2 if some
other operator (than o1) created p. However, if o 
= o1 creates p,
then p′ must be removed to prevent execution of o2 (otherwise the
entanglement is violated). Such a situation follows a strict version of
the entanglement by preceding (entP ) because an instance of o2 is
applicable only if an instance of o1 achieves p for it. In a non-strict
version, instances of o2 can be executed if corresponding instances
of p are present in the initial state (all possible instances of p′ are
defined in the initial state).

5 Detecting Entanglements

Since deciding entanglements, except trivial cases discussed in Sec-
tion 3.2, is a hard problem (as mentioned in the introduction), an
approximation method is used for detecting entanglements. Having
classes of planning problems where each class shares the same plan-
ning domain (i.e., predicate and operator sets), then we can select a
set of simpler problems from each class, solve them by a common
planner and then explore plans. Entanglements found in these plans
are assumed to be valid also for the rest of problems from the class.

The above can be formalized as follows. Let C be a set of plan-
ning problems sharing the same planning domain. Let CT ⊂ C be a

set of training problems. By generalizing the term ‘set of compatible
entanglements’ for a class of problems we can say that EC is a set of
compatible entanglements for C if and only if EC ⊆ ⋂

P∈C EP (EP

is a set of compatible entanglements for a problem P ). In our ap-
proximation method we assume that ECT ⊆ EC . Obviously, this as-
sumption might not be correct, however, we believe that if problems
in each class differ only by number of objects, then the assumption
remains valid.

The idea of detecting outer entanglements in (training) plans is
presented in work [8]. For every action we check whether predicates
in its precondition (resp. positive effects) correspond with predicates
in initial (resp. goal) situations. Inner entanglements are detected by
checking which action achieves a predicate for a current action or
vice versa. By that we can reveal whether instances of a certain oper-
ator achieve instances of a certain predicate for instances of another
operator. These ideas are elaborated in Algorithm 1. We count how
many times the entanglement conditions between instances of oper-
ators are met. Results are stored in 2D arrays entI , entG and 3D
arrays entP, entS. Function is inst(arg) returns either an operator
if arg (action) is an instance of it or an unground predicate if arg
(atom) is an instance of it. Function apply(s, a) (Line 22) applies
an action a in a state s and moreover ensures to keep information
that predicates from eff+(a) are achieved by a. This information is
restored by achieved by function (Line 10) or NULL is returned if a
predicate is achieved by the initial state.

When all the arrays are filled then we can determine where the
particular entanglement holds (for training problems). Training plans
obtained by using a non-optimal planner, however, might contain
flaws which can prevent detection of some entanglements. On the
other hand, using optimal planners might be computationally very
expensive. Therefore we introduce a flaw ratio η ∈ [0; 1] as a pa-
rameter referring to an allowed percentage of flaws in training plans.
Let η be a flaw ratio, then the entanglements are detected as follows:

(init, o, p) ⇔ entI[o, p]

counter[o]
≥ 1− η (1)

(goal, o, p) ⇔ entG[o, p]

counter[o]
≥ 1− η (2)

(prec, o1, o2, p) ⇔ entP [o1, o2, p] > 0 ∧
∀o 
= o2 :

entP [o1, o, p]

counter[o1]
≤ η (3)

(succ, o1, o2, p) ⇔ entS[o1, o2, p] > 0 ∧
∀o 
= o2 :

entS[o1, o, p]

counter[o1]
≤ η (4)

For the strict versions of inner entanglements we have to replace
entP [o1, o2, p] > 0 by entP [o1, o2, p]/counter[o1] ≥ 1− η in (3)
and entS[o1, o2, p] > 0 by entS[o1, o2, p]/counter[o1] ≥ 1− η in
(4).

However, introducing a flaw ratio might cause that some detected
entanglements are not valid even for training problems, especially
if the flaw ratio is too high. Therefore, it is reasonable to validate
detected entanglements on the training problems, i.e., we reformu-
late the training problems according to detected entanglements and
then we run the planner on them. If at least one of the reformulated
problems become unsolvable then we have to decrease the flaw ratio
and start again. We continue it unless the detected entanglements are
valid for all the training problems (it obviously happens if the flaw
ratio (η) is 0).
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Metric-FF LAMA SatPlan LPG
Orig OE IE IOE Orig OE IE IOE Orig OE IE IOE Orig OE IE IOE

Depots (5-22) 22.04 34.26 22.23 32.22 21.77 31.88 20.43 33.26 14.76 21.21 14.52 22.36 26.03 33.92 26.19 33.84
Zeno (10-20) 19.85 20.15 20.41 21.69 20.41 20.39 20.17 20.74 10.30 10.91 10.47 13.66 19.91 20.66 9.24 11.84
DriverLog (8-20) 18.29 19.54 18.17 17.36 21.59 22.84 21.56 22.84 14.71 21.58 15.98 21.61 22.73 17.56 20.17 18.78
Matching (1-20) 18.71 33.24 10.20 15.71 27.16 36.02 8.04 16.49 24.15 39.78 22.98 36.66 13.02 34.69 17.30 25.16
Parking (1-20) 36.25 N/A 38.14 N/A 30.53 N/A 28.01 N/A 0.00 N/A 0.00 N/A 0.00 N/A 2.00 N/A
FreeCell (8-20) 23.12 22.91 15.31 17.73 20.88 23.11 12.21 15.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1. Cumulative results for typed strips IPC benchmarks (problem ranges are in brackets, target-typed for Matching and Parking Benchmarks). Values are
computed according to scoring in IPC learning track (2011). OE - outer entanglements only, IE - inner entanglements only, IOE - both

Algorithm 1 Checking how many times the entanglement conditions
are met.
1: initialize ent arrays(); {create empty arrays entI, entG of size [Ops,

Preds] and entP, entS of size [Ops,Ops,Preds]}
2: initialize op counter(); {create an empty array counter of size [Ops]}
3: for all training plan π = 〈a1, . . . an〉 do
4: s := I; {I is an initial state and G is a goal situation}
5: for i := 1 to n do
6: for all p ∈ pre(ai) do
7: if p ∈ I then
8: entI[is inst(ai), is inst(p)] + +;
9: end if

10: a := achieved by(s, p);
11: if a �= NULL then
12: entP [is inst(ai), is inst(a), is inst(p)] + +;
13: entS[is inst(a), is inst(ai), is inst(p)] + +;
14: end if
15: end for
16: for all p ∈ eff+(ai) do
17: if p ∈ G then
18: entG[is inst(ai), is inst(p)] + +;
19: end if
20: end for
21: counter[is inst(ai)] + +;
22: s := apply(s, a);
23: end for
24: end for

6 Experimental Evaluation

The aim of the experiments is to evaluate and compare how reformu-
lating problems with inner and outer entanglements affects solving
time and quality of plans. The evaluation is made according to rules
used in the IPC learning track (see Section 6.3).

6.1 Implementation Details

We decided to use a strict version of entanglements by preceding and
non-strict version of entanglements by succeeding. The reason why
we use a non-strict version of entanglements by succeeding rests in a
necessity of including all the instances of a ‘special‘ predicate to the
goal situation which is difficult to handle for some planners. More-
over we decided not to reformulate ‘trivial‘ entanglements which are
mentioned in lemmas 1, 3 and 4 because these entanglements do not
bring any new information.

Methods for detecting outer and inner entanglements are imple-
mented in C++. Both of the methods support typed STRIPS repre-
sentation in PDDL.

6.2 Experimental Setup

For evaluation purposes we chose several IPC benchmarks (typed
strips), namely Depots, Zeno, DriverLog, Matching-BlockWorld,
Parking and Freecell. As benchmarking planners we chose Metric-
FF [16], LAMA 2011 [21], SatPlan 2006 [19] and LPG-td [11]. All
the planners successfully competed in the IPC. LPG was optimized
for speed and ran with a random seed set to 12345. LAMA was set to

Figure 1. Selection of problems solved by Metric-FF. OE - outer
entanglements only, IE - inner entanglements only, IOE - both

use a lazy greedy best first search accommodated by Landmark and
FF heuristics. Metric-FF and SatPlan ran in default settings. Timeout
was set to 1000s. For each benchmark we selected 5-7 easy prob-
lems as training problems and produced training plans by Metric-FF.
A flaw ratio was set to 0.1 but in Parking domain it had to be de-
creased to 0.0 (see Section 5). All the experiments were performed
on Intel i5 2.8 GHz, 8GB RAM, where Ubuntu Linux was used for
running planners and Windows 7 for running our method.

6.3 Experimental Results

Cumulative results of the evaluation are presented in Table 1. Val-
ues in Table 1 are computed according to rules used in IPC learn-
ing track3. Score for every solved (original or reformulated) prob-
lem is computed according to the formula (1/(1 + log10 T/T

∗)) +
(N∗/N), where T is a running time of the certain planner for a cer-
tain (original or reformulated) problem, N is the length of the solu-
tion, T ∗ is the minimum running time achieved by a certain planner
on either original problem or any of its reformulation. Similarly, N∗

is the shortest solution. Score for unsolved (original or reformulated)
problems is zero.

The results showed that reformulating planning problems by outer
entanglements brought a significant improvement in most cases, ex-
cept Zeno (Metric-FF and LAMA), Freecell (Metric-FF) and Driver-
Log (LPG). No outer entanglements have been detected in the Park-
ing domain. The reason for this improvement rests in eliminating
some potentially unnecessary but normally reachable instances of
operators which pruned the search space and helped planners to nav-
igate towards solutions more easily. However, sometimes it might
happen that at some point of the planning process pruned actions
might help to easily recover local maxima (e.g. if the goal is to build
a tower of blocks A,B,C but at some point we have stacked A on
B but not B on C, then unstacking A from B will help. However,

3 http://www.plg.inf.uc3m.es/ipc2011-learning/Rules
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if A is not on B in the initial state, then due to the entanglement we
cannot unstack A from B and have to backtrack to the point before
A was stacked on B.) This peculiarity of (outer) entanglements has
been noticed previously [8].

In the inner entanglement case the results showed that the perfor-
mance was improved in Zeno (Metric-FF), Parking (Metric-FF and
LPG), DriverLog (SatPlan) and Matching-BW (LPG). However, the
performance was much worse in Matching-BW and Freecell (Metric-
FF and LAMA) and Zeno (LPG). In the case of Freecell at least
two reformulated problems became unsolvable thus the assumption
(see Section 5) does not hold in this case. Contrary to outer entan-
glements, inner entanglements do not restrict the number of actions
considered by planners but prune some potentially unwanted alter-
natives coming across during the planning process. One shortcoming
of planner independent approach is that planners have to take into
account more atoms, which are introduced in encodings of inner en-
tanglements (outer entanglements are encoded by static predicates
that can be compiled away during preprocessing).

Combining outer and inner entanglements together brought the
best results in Depots (LAMA, SatPlan), Zeno (Metric-FF, LAMA
and SatPlan) and DriverLog (SatPlan). We found that the number
of actions considered by these planners is lower than in when only
outer entanglements are used. Even though inner entanglements did
not restrict the number of actions in comparison to the original prob-
lem, in this case inner entanglements propagate knowledge given by
outer entanglements. For instance, if we know that operator LIFT
(Depots domain) is entangled by init with a predicate ‘at’ (referring
to a location of a crate) and operator LOAD is entangled by pre-
ceding LIFT with a predicate ‘lifting’, then we can deduce that we
can load a crate only at its initial location; thus some instances of
LOAD can be pruned even though no outer entanglement is related
to LOAD. The experiments show that in some cases the results were
much better when inner entanglements were involved, while some-
times the results were much worse (for illustration, see Figure 1). In
the case of LPG, it seems that the planner behavior is very dependent
on the defined random seed. In the case of Metric-FF and LAMA, it
appears that the efficiency of the planning process is tightly related to
how the relaxed Planning Graph is affected by inner entanglements
in different stages of the planning process and when there is a ten-
dency for forming plateaux (the resolution of this conjecture is an
interesting open problem which we aim to explore in future work).
As mentioned before, outer entanglements restrict the number of ac-
tions therefore the action layers in Planning Graphs are smaller. In
combination with inner entanglements the action layers can be even
smaller. Inner entanglements are designed to ease the search (in Plan-
ning Graphs) by pruning possible ‘dead-end’ branches, but they may
lead to fact layers which are larger than the original encoding.

7 Conclusions

In this paper we have generalized the idea of outer entanglements [8]
to the idea of inner entanglements. We have presented a theoreti-
cal background to the work, and reviewed some relevant theoretical
properties in this context. Methods for learning inner entanglements,
and for reformulating problems using them, are detailed. The impact
of inner (and outer) entanglements is experimentally evaluated on
several IPC benchmarks using several state-of-the art planners. These
planners already incorporates some pre-processing techniques for re-
ducing the branching factor such as commutativity pruning (SatPlan)
or pruning some operator instances (Metric-FF, LAMA), so the en-
tanglement approach can be seen as complementary. The results in-

dicate that the overall reformulation method is worthwhile, though
the improvement is not universal. The experiments showed some in-
teresting outcomes, indicating some fertile lines for future research.
In particular, Metric-FF and LAMA performed on some reformu-
lated problems significantly better while on some others significantly
worse even in the same domain. This opens up an interesting prob-
lem of how relaxed planning graphs and heuristic values develop
through the planning process and under what conditions reformu-
lations help to avoid plateaux or, on the other hand, cause plateaux.
Our future work will utilize recent research results on heuristic land-
scapes [17] in order to determine a theory of how inner entangle-
ments affect search, and consider how related work designed for
SAS+ planning [6, 10] might be incorporated into our approach.
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