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Abstract— In some industrial process control systems it is 

desired not to allow an overshoot beyond the setpoint or a 

threshold, this could be a safety constraint or the 

requirement of the system. This study investigates the 

achievement of a zero overshoot step response using a fuzzy 

logic controller.  A fuzzy PID controller is applied to stable, 

marginally stable and unstable systems and their step 

responses are compared with a PID controller. A 

comparative case study shows that the proposed fuzzy 

controller outperforms conventional PID controller in 

achieving zero overshoot response.  

Keywords - fuzzy PD+I; PID controller; zero overshoot; 

scaling gain; tuning. 

I.  INTRODUCTION  

An integral part in controller design and analysis is to 
achieve a satisfactory response in transient time and 
steady state.  The characteristics of these states can be 
represented in parameters such as: overshoot, rise time, 
settling time and steady state error. In a stable system, the 
transient response exists for a short period of time. 
However, this might cause problems in some applications.  
For example, in some chemical processes, it is desired to 
have zero overshoot or an overshoot that does not exceed 
a specific threshold.   

The conventional Proportional-Integral-Derivative 
(PID) controllers, which are the most popular feedback 
methods for their robustness and simplicity [1, 2] have 
some limitations, particularly when they are applied to 
obtain zero overshoot. These controllers can be tuned in 
several ways [3] to achieve zero overshoot if possible, but 
most of the time this is at the expense of rise time, and 
vice versa.  

Some methods have been reported by researchers to 
find the values of PID gains to achieve zero overshoot [4-
7]. By relating the step response overshoot to the positions 
of zeros and poles of a transfer function, a method has 
been derived to find the parameters of PID controller [6]. 
This method has been used to avoid overshoot in second 
order and lower order systems. A cascade sliding mode-
PID controller has been proposed in literature [7].  

On the other hand fuzzy logic controllers have been 
applied successfully in industrial processes and in some 
cases outperform PID controllers [8], in particular when 
the controlled system is complex or non-linear, as this is 
the case in many process control systems [9].  

Nonetheless, designing fuzzy controllers is 
challenging. There is no systematic process for the design 
of fuzzy logic controllers that will produce a high-
performance controller for a wide range of applications 
[10, 11]. For example, it is difficult to find the relation 
between selecting membership function type or rule base, 
and the controller performance such as better rise time or 
less overshoot. In addition, unlike conventional 
controllers, fuzzy controllers have several parameters that 
can be adjusted, such as membership function shape, rules 
and scaling gains. Furthermore, there is no general rule of 
tuning these parameters. However, some techniques 
applied in tuning conventional controllers can still be 
utilised to some extent [10]. 

In this study, a fuzzy PID controller is adopted and is 
applied to different second order systems. Initially the 
controller gains are fixed and then manually tuned to 
achieve zero overshoot with a short rise time and settling 
time. A case study has been used to compare the 
performance of the fuzzy PID and conventional PID 
controllers for a second order system. The results show 
that fuzzy controllers outperform conventional controllers 
in achieving zero overshoot and fast transient response. 

The remainder of this paper is organised as follows: 
Section 2 presents an overview of the fuzzy controller. 
Design and synthesis of the fuzzy PD+I controller is 
illustrated in section 3 using MATLAB and Simulink. 
Simulation results are shown in section 4. Finally, some 
conclusions are drawn in section 5. 

II. STRUCTURE OF THE FUZZY CONTROLLER 

The most widely used fuzzy controllers are fuzzy 
proportional-derivative controllers (FPD) and they act on 
two inputs: error and change in error (derivative of error) 
signals; therefore, designing rule base for these controllers 
is well understood and a straightforward procedure. This 
configuration exhibits a good performance at the transient 
response of the system, while encountering problems at 
the steady state when the error is close to zero [3, 12, 13].   

To enhance the steady state performance of a system, 
integral action is required [3]. Thus the controller becomes 
fuzzy proportional-integral controller (FPI). Although 
these controllers have good performance, at the steady 
state they suffer from a slow response [12, 13]. 

Improving both the transient state and the steady state 
requires a controller that includes both derivative and 
integral actions. A fuzzy controller with this capability is 
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known as fuzzy proportional-derivative-integral controller 
(FPID). 

 In literature, various structures have been proposed to 
design FPID controllers [3, 13-15]. 

Fig.1 shows a simple design proposed in [3] and was 
adopted as the fuzzy PID controller in this study.  

 
Figure 1: Fuzzy PD+I controller (FPD+I) [3] 

 
The controller consists of a normal FPD with added 

integral action; therefore it is known as FPD+I. As the 
controller has three inputs: error, derivative of error and 
integral of error, it can provide all the benefits of 
conventional PID controllers, but still has some 
disadvantages such as derivative kick and integrator 
windup. Additionally, there is only one rule base with two 
inputs; therefore, designing the rule base is less complex 
than the structure proposed in [15] which has three input 
rule base. Furthermore, some techniques applied in tuning 
conventional PID controllers can still be utilised to some 
extent [3, 10]. 

III. SIMULATION OF CONTROLLERS 

A. Fuzzy PD+I 

Matlab (v7.9) and Simulink were used to build and 
simulate the model. Fig. 2 shows the FPD+I controller in a 
closed-loop feedback system. 

 

 
 

Figure 2: Simulink model of Fuzzy PD+I controller in a closed-loop 

control structure. 

The plant block represents the desired transfer function 
to be controlled.  

The fuzzy PD+I controller was formed by adding the 
integrator to the output of the fuzzy PD controller. The 
controller has three input signals: error (e), change in error 
(ce) and integral of error (ie). The error signal is obtained 
from the difference between the setpoint (r) and the 
measured plant output (y), the change in error signal and 
the integral of error signals are produced by passing the 
signals through derivative and integral blocks 
respectively. The inputs have scaling gains: gain of error 

(GE), gain of change in error (GE) and gain of integral 
error (GIE). These gains along with the output gain (GU) 
can be tuned to achieve better performance [3, 10, 15-17].  
Adjusting these gains is used frequently for tuning fuzzy 
controllers and it has been regarded as an effective 
approach [12, 15, 16, 18-21]. First of all, they have a 
global effect on the performance of the controller; their 
effects can be easily observed [18]. Secondly, there are 
few parameters to tune, thus the tuning process is 
computationally efficient in contrast with other methods, 
where there are several parameters to tune. Finally, they 
can be considered as conventional controller gain 
parameters; therefore, they are convenient to tune and 
some ideas from conventional controller tuning can be 
borrowed [12, 16, 18-21]. 

 The controller output (u) is formed by adding the 
integral of error (ie) to the output of the fuzzy PD 
controller (cu).  

To represent the values of the e, ce and cu, five 
symmetric triangle shape membership functions (except 
trapezoid for the two at the extreme ends for e and ce) 
with 50% of overlap were chosen [3, 10]. Although the 
choice of membership function shape and width is 
subjective, triangular shapes were chosen, because they 
are more popular and convenient [10, 11]. The interval of 
[-1, 1] was used for the universes of discourse of the input 
variables, while [-2, 2] was used for the output variable. 
The linguistic descriptions of the input and output 
membership functions are negative large (NL), negative 
small (NS), zero (ZE), positive small (PS) and positive 
large (PL). These are shown in Fig. 3 and Fig. 4 
respectively. 

 

 
 

Figure 3: Error and change of error membership functions 

 

 
 

Figure 4: Output membership functions 

 

The minimum operator was selected as an implication 
method, and the most popular and standard method of 
defuzzification process known as the centre of gratify 
(CoG) was selected.  

The fuzzy rule-base is a mapping between the inputs, e 
and ce and the output, cu. A sample of the rule has the 
following form: 



If error is PL and change in error is PL, then control 
signal is PL 

The rule implies that if the error is positive large 
(measured output far away from the set point) and the 
change of error is positive large, then the control signal 
should be positive large to return back the output near the 
setpoint.  

As there are 5 linguistic variables for each input, 25 
rules were created using Fuzzy Logic Toolbox, Table I 
shows the rules. 

TABLE I.  RULE-BASE FOR THE FUZZY CONTROLLER  

  ce 

e NL NS ZE PS PL 

NL NL NL NS NS ZE 

NS NL NS NS ZE PS 

ZE NS NS ZE PS PS 

PS NS ZE PS PS PL 

PL ZE PS PS PL PL 

  

Three standard closed-loop performance criteria were 
chosen as design specifications to measure the 
performance of the controller [2]: maximum percentage 
overshoot (Mp), rise time (tr) and settling time (ts)  

Finally, a script code was developed to simulate the 
model, calculate the Mp, the tr and the ts and generate the 
required plots.  

B. PID controller 

In order to compare the performance of the FPD+I 
controller with a conventional PID controller, a simulation 
model of a PID controller with auto tuning capability was 
created, this is shown in Fig. 5. 

 

 
 

Figure 5: Simulink model of conventional PID controller in a closed-

loop control structure. 

 
The model contains a plant block that represents the 

desired transfer function to be controlled and a PID 
controller block with auto tuning capability. Also for this 
design, the same performance measures were chosen and a 
script code was developed to simulate the model.  

IV. RESULTS AND DISCUSSIONS 

A. Tests 

In order to evaluate the design, three different systems: 
stable, marginally stable and unstable were simulated 
using the FPD+I and the conventional PID models. The 
transfer functions of these systems are provided in Table 
II.  

TABLE II.  DIFFERENT SYSTEM TRANSFER FUNCTIONS 

System Transfer Function Stability 

1 
 

Stable 

2 
 

Marginally stable 

3 
 

Unstable 

 
Initially, the gains of the FPD+I controller GE, GCE, 

GIE and GU are set to 1, and then tuned to achieve zero 
overshoot with a fast rise time and short settling time, the 
tuned values are shown in Table III. 

TABLE III.  F PD+I CONTROLLER TUNED GAIN VALUES 

System GE GCE GIE GU 

1 1 0.6 0.25 5 

2 1 0.4 0.15 12 

3 0.8 0.025 0.01 2800 

 
For the conventional PID controller, the Matlab PID 

auto tuner was used to obtain the values of PID gains (P, I 
and D), these values are shown in Table IV. 

TABLE IV.  CONVENTIONAL PID CONTROLLER  GAIN 

VALUES  

System P I D 

1 11.74 0.85 8.85 

2 12.04 1.09 12.088 

3 3273.19 6345.72 325.43 

 
The step responses of the three systems for the FPD+I 

and the conventional PID are combined together and 
shown in the Fig. 5 - Fig. 7. 



 
Figure 6: Simulation results for the first system: (a) open-loop. (b) 

Conventional PID (c) Fuzzy PD+I. 

 
Figure 7: Simulation results for the second system: (a) open-loop. (b) 

Conventional PID (c) Fuzzy PD+I. 

 
Figure 8: Simulation results for the third system: (a) open-loop. (b) 

Conventional PID (c) Fuzzy PD+I. 

 

The performance measures of each controller are shown 

in Table V. 

 

The performance measures of each controller and 

systems. 

S
y
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Performance 

measure 
Open-loop 

Conventional 

PID 

Fuzzy 

PD+I 

1 

Mp % 44.43 % 0 % 0.0 

tr  1.25 1.63 1.10 

ts  14.11 5.92 1.97 

2 

Mp % 100.0 % 0.43 % 0.0 

tr  1.01 1.97 0.67 

ts  Not known 3.42 1.16 

3 

Mp % 1.28 e+19 % 11.12 % 0.0 

tr  0.13 0.14 0.041 

ts  Not known 1.22 0.06 

The results obtained from the fuzzy PD+I clearly 
indicate substantial improvements in transient response of 
systems have been achieved. 

 

B. Case study 

The transfer function of a chemical process shown in 
(1)  has been used by other researchers [6] to achieve zero 
overshoot in the closed-loop response. Accordingly, the 
parameters of the PID controller were calculated (P=7.2, 
I=0.972 and D=6.99).  

 

G(s) = (1) 

 
Three tests were conducted on the above system: the 

FPD+I controller with tuned gains, a conventional PID 
controller using the parameters proposed by the method in 
[6] and the conventional PID controller using Matlab auto 
tuner. The parameters of the three controllers were as 
follows: FPD+I (GE = 1, GCE = 0.7, GIE = 0.04, GU = 
20), PID controller using the method in [6] (P = 7.2, I = 
0.72, D = 6.99) (The original values were for KC, Ti and 
Td, they were converted to the values of P, I and D to be 
used within the setting of Matlab PID controller) and for 
the conventional PID controller using Matlab auto tuner 
(P = 1.74, I = 0.20, D = -4.58).  

The closed-loop step responses of the three controllers 
along with the open-loop step response are shown in Fig. 
9. 

 
Figure 9: Simulation results: (a) open-loop. (b) Conventional PID 

(parameters found using Matlab auto tuner). (c) Conventional PID 
(parameters found using the method in [6]. (d) FPD+I. 

The performance measures of the controller are shown 
in Table VI. 

The performance measures of each controller. 

PM  
Open-

loop 

Conventional 

PID 

(parameters 

found using the 

method in [6]) 

Fuzzy 

PD+I 

Conventional 

PID 

(parameters 

found using 

Matlab auto 

tuner) 

Mp % 0.0 % 0.0 % 0.0 % 8.92 

tr  22.14 3.96 1.77 7.8546 

ts  40.17 6.90 3.05 24.53 



C. Discussions 

It is evident from the results, that the FPD+I controller 
has achieved zero overshoot with faster rise time and shorter 
settling time compared to the conventional PID controller. 
Although the conventional PID controller has achieved zero 
overshoot for the first and second systems, it has been at the 
expense of the rise time and the settling time. Additionally, 
in the third system and in the case study the performance of 
the conventional PID controller was degraded as the 
response resulted with some overshoot.   

 

V. CONCLUSIONS 

A fuzzy PID controller was applied to a stable, 
marginally stable and unstable second order system. The 
results showed that fuzzy PID controller outperformed the 
conventional PID controllers in achieving zero overshoot and 
produced a faster transient response. This is an ongoing 
research and the next phase of the work will encompass the 
ability to fine tune the fuzzy gains automatically. Inclusion 
of predictive and intelligent agents in the fuzzy algorithms 
will reduce the tuning time.  
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