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Abstract—This paper investigates the use of time domain 

vibration features for detection and diagnosis of different 

faults from a multi stage reciprocating compressor. 

Principal Component Analysis (PCA) is based to develop a 

detection and diagnosis framework in that the effective 

diagnostic features are selected from the PCA of 14 

potential features and a PCA model based detection method 

using    and   statistics is subsequently developed to detect 

various faults including valve leakage, suction valve leakage, 

inter-cooler leakage, loose drive belt, discharge valve 

leakage combined with suction valve leakage, suction valve 

leakage combined with intercooler leakage and discharge 

valve leakage combined with intercooler leakage. Moreover 

a study of Q-contributions has found two original features: 

Histogram Lower Bound and Normal Negative log- 

likelihood which allow full classification of different 

simulated faults. 

 

Keywords; Fault detection, Vibration, Reciprocating 

compressor, Principles component analysis, contribution 

plots. 

I. INTRODUCTION 
Principal component analysis (PCA) has been applied 

successfully in the condition monitoring systems[1]. 
Many statistical techniques for extracting process 
information from massive data sets and interpreting this 
information have been developed in various fields [2, 3]. 
PCA has been widely used with the main objective of 
reducing the dimensionality of the original dataset by 
projecting it onto a lower dimensional space. Such a 
procedure was first proposed in 1933 by Hotelling [4] to 
solve the problem of decorrelating the statistical 
dependency between variables in multivariate statistical 
data derived from exam scores.  

 In the PCA approach, the first principal component 
corresponds to the direction in which the projected 
observations have the largest variance. The second 
component is then orthogonal to the first one and again 
maximizes the variance of the data points projected on it. 
Since one approach that has proved particularly powerful 
for monitoring and diagnosis is the use of PCA in 
combination with    charts,   charts, and contribution 
plots [5]. Chemometric techniques for multivariate 
process monitoring have been described in several review 
papers [6]. Misra et al., applied PCA technique to 
industrial data from a reactor system and compared its 

performance with that of a multi-scale PCA approach [7]. 
Some researchers have used different extensions of PCA 
such as nonlinear, multi-scale or exponentially weighted 
PCA [8]. Roskovic used PCA to analyze automatic fault 
detection and identification of process measurement 
equipment or sensors [9]. 

In this work, PCA is used not only as an approach for 
feature space dimensionality reduction but also use of 
contribution plots. 

A contribution plot shows the contribution of each 
process variable to the statistic calculated. A high 
contribution of a process variable usually indicates a 
problem with this specific variable. This approach has 
been used and successfully work in practice [10, 11]. As 
it does not need the historical information of the results. 
Kourti and MacGregor [12] applied the contribution plots 
of quality variables and process variables to find faulty 
variables of a high-pressure low-density polyethylene 
reactor. They remarked that the contribution plots may 
not reveal the assignable causes of abnormal events; 
however, the group of variables contributed to the 
detected events will be unveiled for further investigation. 
Manabu Kano, Shinji Hasebe and Iori Hashimoto [13] 
presented a contribution of each process variable to the 
dissimilarity index used in DISSIM is introduced for 
identifying the variables that contribute significantly to an 
out of control value of the dissimilarity index, and then 
the effectiveness of the contribution plot is evaluated. Qin 
et al [14] decentralized a complex chemical process into 
several blocks; hierarchically investigating block and 
variable contributions to isolate faulty variables. Since 
the monitored variables have been arranged into blocks 
according to the process knowledge, the fault isolation 
tasks are easier to perform than an investigation of all 
variables. Yoon and MacGregor [15]comprehensively 
compared the model-based and data-driven approaches 
for fault detection and isolation, and summarized that the 
contribution plots provide for the easy isolation of simple 
faults, but that additional information about operating the 
process is needed to isolate complex faults. This paper is 
organized as follows. Section 2 presents an overview of 
PCA for detection faults of    statistic and    statistic. In 
section 3 the contribution plots    statistic. 
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II. BASIC THEORY 

A. Data Modelling using PCA 

A primary objective of PCA is for dimensionality 
reduction or data compression to achieve efficient data 
analysis. PCA forms a new smaller set of variables with 
minimal loss of information, compared with original data 
size. Based on this unique characteristic, PCA is extended 
to be used for classification of variables and hence early 
identification of abnormalities in the data structure, i.e. 
detection of faults. 

The PCA creates a covariance matrix (or correlation 
matrix) by transforming the original correlated variables 
into a new set of uncorrelated variables. Let the variables 
describing the machine being investigated be the m–
dimensional data set:                 , the PCA 
decomposes the observation vector,  , into a set of new 
directions P as [16]: 

          
      

        
  ∑     

  
    (1) 

where    is an eigenvector of the covariance matrix of 
  .   is defined as the principal component loading matrix 
and   is defined to be the score matrix of the principal 
components (PCs).  

The loading matrix helps identify which of the 
variables contribute most to individual PCs, whilst the 
score provides information on sample clustering and 
identifies transitions between different operating 
conditions.  

The expectation with PCA is that the original 
variables are sufficiently well correlated that the only a 
relatively small number of the new variables (PCs) 
account for most of the variance. In this case no essential 
information is lost by using only the first few PCs for 
further analysis and Equation (1) can be expressed as 
[17]: 

         ∑     
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where   represents a residual error matrix. For 
example, if only the first three PCs represent a 
sufficiently large part of the total variance,   will be 
calculated by 

     [    
      

      
 ] (3) 

In certain applications such as process monitoring, 
when a plant malfunctions, original variables have 
minimal impact on the first few PCs, but dominate the 
higher orders. Thus in process engineering use of these 
higher order components may be needed to provide the 
necessary diagnostic information [16]. In this way   can 
be very useful to measure these changes. 

B. PCA Model Based Detection 

PCA based fault detection is usually based on two 
detection indices: Hotelling’s    statistic and    statistic. 

Hotelling’s   statistic is a measure to major variation 
of measurement variation and detects a new data if the 

variation in the latent variables is greater than the 
variation explained by the model or baseline condition. 
For a new measurement feature vector x,    statistic 
detection can be conducted by: 

                
  (4) 

Where the           control limit for   
  is 

calculated by means of a F-distribution as [18]: 

   
  

      

   
           (5) 

Where            is an F-distribution with   and 
      degrees of freedom, with chosen level of 
significance  ,   is the number of PC vectors retained in 
the PCA model, and m is the number of samples used to 
develop the model.    statistic, also represented as    , 
is the squared prediction error. It is a measurement of 
goodness of fit of the new sample to the model. The 
   statistic based detection can be done by: 

     ‖        ‖     (6) 

The           control upper limit   [12]: 
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where:  

    ∑   
  

       (8) 

      
     

   
  (9) 

New events (faults) can be detected using the   or 
   ; the  -contribution plot represents the significance 
of each variable on the index as a function of the variable 
number for a certain sample, and can be used to diagnose 
the fault. When the   or     breaks the threshold, the 
contribution of the individual variables to the    or 
    can be identified, and the variable making a large 
contribution to the    or     is indicated to be the 
potential fault source. In general, when an unusual event 
occurs and it produces a change in the covariance 
structure of the model, it will be detected by a high value 
of  . 

C. Contribution Plots of Statistics   and   

Once an abnormal has been detected, it is important to 
diagnosis the special event to find an assignable cause. 
The contribution of the measurement variable and time 
periods to the deviation observed in the   and   statistics 
can be displayed for helping one to hypothesize for an 
assignable cause. Using the distributions, confidence 
limits for the two statistics can be obtained. For the 
monitoring of new batches, the process data of the new 
batch          ) is projected onto the model. 
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The  -statistic for the new batch,      is defined as 

follows: 

          
         (11) 

where 

                   

the  -statistic for the new batch,      is defined as 

follows: 

      ∑          
   

     (12) 

D. Contribution of the Process Variables to the   

Statistic and   Statistic. 

If, for a specific new batch, a disturbance was 
detected in the  -chart of the residuals, then the 
contribution of the variables to the  -statistic should be 

investigated. The contribution    
 

 of process variable   at 

time   to the  -statistic for this batch equal: 

   
 

          
            ̂       

  (13) 

 where         is the   th element of              , 
 ̂       is the part of this element predicted by the model, 

and         is the residual. In order to find at disturbance 

occurred, all contributions    
 

 can be plotted and 

examined [19]. The next stage of this approach is to 
calculate the D-statistic. This approach calculates 
contributions of each process variable to the  -statistic of 
the separate scores.  
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The  -statistic for new batch          ) is defined 
as: 
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The contribution of element      to the  -statistic 
equal: 

    
      

     [          
        ]  (16) 

Here,     
      

          and     is the inverse of 
the covariance matrix of the scores   model[19].  

III. VIBRATION DATA AND FEATURE 

CALCULATION 

A. Vibration Data Acquisition 

Vibration datasets were collected from a two-stage, 
single-acting Broom Wade TS9 reciprocating 
compressor, which has two cylinders, designed to deliver 
compressed air between 0.55MPa and 0.8MPa to a 
horizontal air receiver tank with a maximum working 
pressure of about 1.38MPa. As shown in Figure 1, the 
driving motor was a three phase, squirrel cage, air cooled, 
type KX-C184, 2.5kW induction motor. It was mounted 
on the top of the receiver and transfers its power to the 
compressor through a pulley belt system. The 
transmission ratio is 3.2, which results in a crank shaft 
speed of 440 rpm when the motor runs at its rated speed 
of 1420 rpm. The air in the first cylinder is compressed 
and passed to the higher pressure cylinder via an air 
cooled intercooler.  

 

Figure 1 Reciprocating compressor test system. 

For characterising vibrations under different faults, 
four common faults were seeded into the compressor: a 
leaky discharge valve in the high pressure cylinder, 
suction valve leakage, a leaky intercooler, a loose drive 
belt, discharge valve leakage combined with suction 
valve leakage, suction valve leakage combined with 
intercooler leakage and discharge valve leakage 
combined with intercooler leakage which are denoted as 
fault 1, fault 2, fault 3, fault 4, fault 5, fault 6 and fault 7 
respectively. These faults produce little noticeable 
influence on the performance of generating pressures but 
do need to consume more electrical energy than a healthy 
compressor. 

Vibrations of the two-stage compressor were 
measured using two accelerometers mounted respectively 
on the low stage and high stage cylinder heads near the 
inlet and outlet valves. As shown in Figure 2. In addition, 
the pressures, temperatures and speed were also measured 
simultaneously for comparisons. The data segment 
collected is 30642 samples at different discharge 
pressures ranged from 0.2 to 1.2MPa in steps of 0.1MPa. 
As the sampling rate is 62.5 kHz, each segment of data 
includes more than three working cycles of the 
compressor, which is sufficient for obtaining stable 
results. In total, 4×11=44 data records were collected for 
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Figure 2 Vibration transducers 

B. Time Domain Features   

Many features can be extracted from the raw vibration 
signals through the statically parameters for fault 
detection and diagnosis. The parameters are used in in 
this study that most commonly used in CM and have been 
demonstrated previously by many researchers are 
effective to represent vibration signals for condition 
monitoring.  

The features extracted from raw vibration signals are 
the statistical measures including, peak factor, root mean 
square (RMS), histogram lower bound (HLB), histogram 
upper bound (HUB), entropy, crest factor, absolute value, 
shape factor, clearance factor, variance, skewness, 
kurtosis[20], normal negative log-likelihood value (Nnl) 
and Weibull negative log-likelihood value (Wnl).  

Weibull negative log-likelihood value and normal 
log-likelihood value were used recently for features 
extraction from vibration signals as input features [21]. 
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where           is the probabilty density function. 
For Weibull negative log-likelihood function and normal 
negative log-likelihood function, the pdfs are calculated 
as follows: 

Weibull pdf            
 

 
 (

  

 
)
   

    (
  
 
)
 

 

Normal pdf           
 

 √  
                

where   and   denote the mean and standard deviation 
respectively. 

IV. DETECTION AND DIAGNOSIS RESULTS 

A. PCA Model Development 

From the figure 3 the selected variables to calculate 
principal components analysis are the fourteenth 
variables and the number of principal components, 
calculated using PCA model with 99% maximum 
variance level, are six, which means that the subspace 
composed of those six PCs contains enough variation 
information of the original features, and this PC subspace 
can be regarded to detect the damage of reciprocating 
compressor during working.  

 

Figure 3. Principal component selection. 

. 

Figure 4 Model evaluation 

B. PCA Model Based Detection 

From the figure 4a and 4b the results presented in if 
the reciprocating compressor to operate in a normal 
condition the    show little fluctuation above a present 
threshold at points 35, 63 and 68. The   show little 
fluctuation above a present threshold at points 20 and 40. 
This can be due to the characteristics of the vibration 
signal which has non-stationary behaviour and the 
accurately of PCA to detect the change. Which may be 
acceptable from statistical point of view and also means 
confidence level is selected appropriately 
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Figure 5 Discharge valve leakage detection by    and  statistics. 

The reciprocating compressor under valve leakage 
fault is shown in figure 5. It can be noted that both   
and    statistics detected a fault at points 33, 55 and 65 
that exceeds the present threshold, which shows too 
much contents reflected by the latent PCs and indicates 
the presence of a fault. 

 

Figure 6 Suction valve leakage detection by    and   statistics. 

The performance of the   and    methods with the 
leaky suction valve is shown in figure 6. It can be seen 
that the     value exceeds the threshold value many 
times which indicates the occurrence of major faults.

  

Figure 7 Intercooler detection by    and   statistics. 

For the intercooler leakage fault illustrated in figure 7 

both   and    statistics can be clearly seen that the 

    values cross the threshold in the same position but 

with large deviation amplitude in   method.

 

Figure 8 Loose belt detection by    and   statistics. 

Figure 8 depicts the performance    and   methods 
of the loose belt fault. From the obtained result it can be 
seen that the     values cross the threshold many times 
in   method, which indicates the occurrence of the major 
faults. While the   -statistic has crossed the threshold in 
some points with low amplitude. 
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Figure 9 Discharge valve leakage +Suction valve leakage detection by 

   and   statistics. 

The performance of    and   statistics models 
considering combined faults of the fault with compiled 
discharge valve leakage and suction valve leakage is 
presented in figure 9 .It can be seen that    method are a 
considerable occasions that     values exceeds in 
threshold value. In the meantime the   statistics clearly 
shown the     plot crossed the threshold in all times 
which indicates the occurrence of major faults. This 
proves the ability of the    method in detecting combined 
faults. 

Figure 10 Suction valve leakage+ intercooler leakage detection by    

and   statistics. 

For the combined fault Suction valve leakage and 
intercooler leakage, both    and   statistics have 
detected the same faults as demonstrated in figure 10 
where it can be clearly seen that many data points 
exceeds the threshold. Which means both models 
exhibited similar performance for detection this fault with 
high amplitude in   statistics. 

Figure 11 Dishcarge valve leakage+intercooler leakage detection by    

and   statistics. 

From the figure 11, the combined fault discharge 
valve leakage and intercooler leakage, it can be seen that 
many data points exceeds the present threshold by the 
both    and   statistics and hence indicate severer faults. 

 

Figure 12 Overall Q contribution charts for 14cases based on PCA 

model. 

C. PCA Model Based Diagnoses 

Once a fault has been detected, it is important to 
identify an assignable cause. Identification of the source 
of the fault is facilitated by inspecting plots showing the 
contributions of the various measurement variables to the 
deviations observed in the monitoring metric. Such 
contribution or diagnostic charts can be immediately 
displayed on line by the system, as soon as the special 
event is detected. Although they may not provide an 
unequivocal diagnosis, they should at least clearly 
indicate the group of variables that are primarily 
responsible for detected fault. The contribution plots 
obtained from the data in different cases as shown in 
figure 12, a contribution of each variable is different. The 
major variables contributing in these deviations were 
mostly variables 10, 11 and 13 along with variables 2, 3, 
4 and 14. The contribution of variable 10 and 13 is the 
largest one. The variables contribution significantly to the 
 -statistic are 10 and 13. This result implies that a fault 
or disturbance related to a pressure in the process occurs. 
On the other hand, the variables contributing significantly 
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to the dissimilarity are 2,3,4,11 and 14. These variables 
are slightly different from the variables contributing in 
the process occurs. Therefore, the information obtained 
from the contribution plots is useful for investigating the 
cause of the fault. 

  

Figure 13    contribution charts for fault classification based on feature 
11 and 13. 

The contribution plots of different faults indicates that 
variable 11and 13 makes the greatest contributions to  -
statactics. The result as shown in figure 13 that the 
variable 11 records the largest contribution for the loose 
drive belt fault and discharge valve leakage combined 
with suction valve. Furthermore the variable 13 has very 
high contribution for discharge valve leakage combined 
with suction valve. Fault that would help the process 
operator to take appropriate action to correct the 
abnormality 

 

 
Figure 14 .Fault classifications based on feature 11 and 13 combination. 

We can therefore represent that faults as combinations 
of variables. Figure 14 presents a way to achieve 
separation between the normal operation and any of these 
faults. It provides the best combination of variables, with 
which one can detect faults most sensitively. It can be 
shown that the best combination of variables is given by 
the  -statistics are variable 11 and 13. This combination 
gives a direction in the multivariate tool-state variable 
space, onto which the data can be projected, which can be 

used for detecting a specific class of fault. This is 
depicted in last figure. For each fault that is classified. 

V. CONCULSION 
It has demonstrated in this study that the PCA model 

based approaches allows the detection of single and 
multiple faults in a reciprocating compressor. The model 
developed from baseline consists of the six most 
important PCs which explains nearly 99% of the 
variances from 14 original vibration features. The 
presence of faults can be detected by comparing the 
feature values from the time domain of the vibration 
signal with the    and   statistics. However, the  -
statistic produces a better detection for all the five faults 
cases. Furthermore, the contribution to the  -statistic, 
was presented which can be used for any latent variable 
component or regression model to detect the specific 
progress variable  

The  -contributions show large values at variable 10 
and 13 and the minimum difference between different 
cases are larger. So they are selected to be able to 
separate the faults case. 
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