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ABSTRACT 
 
This paper proposes the use of a modified Morlet wavelet in order to demodulate fringe patterns in conjunction with the 
one-dimensional continuous wavelet transform (1D-CWT). Our investigations demonstrate that the modified Morlet 
wavelet produces better results compared to the conventional Morlet wavelet when used in fringe pattern analysis. This 
novel technique offers superior performance in analysing fringe patterns from objects that exhibit large height variations. 
This new technique has been used in conjunction with the direct maximum ridge extraction algorithm and an 
improvement in performance is observed. The algorithm has been tested using both computer-generated and real fringe 
patterns; and was found to be suitable for fringe pattern demodulation and robust in operation.  
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1. INTRODUCTION 
 
During the last decade, the wavelet transform (WT) has become a potential method of choice for use in the phase 
demodulation of fringe patterns. Fringe patterns tend to resemble non-stationary signals. The WT is an excellent tool for 
the processing of non-stationary signals due to its properties of being firstly a multi-resolution technique and secondly of 
offering good localisation in the time and frequency domains [1, 2]. In the literature, the one-dimensional continuous 
wavelet transform (1D-CWT) has been extensively used with the conventional Morlet wavelet in the phase demodulation 
of fringe patterns [3]. In this paper, a modified Morlet wavelet is adopted with the 1D-CWT. However, Wang et al. 
proposed the same concept with the 2D-CWT [4]. Our proposed one-dimensional modified Morlet continuous wavelet 
shows that it behaves much better than the conventional Morlet wavelet in the case of large variations in phase across the 
fringe patterns.  
 
In this paper, section 2 explains the 1D-CWT and the complex Morlet wavelet. In section 3, the direct maximum ridge 
extraction algorithm is described. The proposed modified Morlet wavelet is presented in section 4. The results of 
analysing computer-simulated and real fringe patterns using the conventional and the modified Morlet wavelets are 
discussed in section 5. 
 

2. THE ONE-DIMENSIONAL CONTINUOUS WAVELET TRANSFORM 
 
The wavelet transform is a suitable tool for the analysis of non-stationary signals and thus it has been developed as an 
alternative approach to the standard transforms currently available and traditionally used in fringe pattern analysis, such 
as the Fourier transform [5]. Moreover, it is worth mentioning that the wavelet transform has a multi-resolution property 
in the time and frequency domains, which overcomes the resolution problem inherent in other transforms. 

 
The term wavelet means a small wave of limited duration and it can be either real or complex. However, two conditions 
must be satisfied with respect to any wavelet, namely: the wavelet must have an average value of zero and finite energy. 
Many different types of mother wavelets are available, but for the application of phase evaluation in fringe patterns the 
most suitable mother wavelet is probably the complex Morlet [5]. This is because it provides superior localisation in both 
the spatial and frequency domains.  
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The conventional complex Morlet wavelet is a sine wave modulated by a Gaussian function [3], and is defined as 
 

)exp()exp()( 24/1 xmicxx −= πψ      (1) 
 
where c is a fixed spatial frequency, and chosen to be about 5 to 6 to satisfy the admissibility condition [5] and x  is the 
index to pixels in the x direction. Fig. 1(a) shows the real part (dashed line) and the imaginary part (solid line) of the 
conventional Morlet wavelet where the m parameter is set to 0.5. 
 
However, the phase of a fringe pattern is extracted row by row when using the 1D-CWT and the process can be 
described as follows. The one-dimensional continuous wavelet transform of a row ƒ(x) of a fringe pattern is obtained by 
translation on the x axis by b (with y fixed) and dilation by s of the complex mother wavelet ψ(x) as given by 
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where * denotes complex conjugation and W(s,b) is the set of calculated CWT coefficients, which refers to the closeness 
of the signal to the wavelet at a particular scale. W(s,b) is a two dimensional complex array and hence the modulus and 
the phase arrays can be calculated by equations (3) and (4) respectively. 
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Where ℜ{W(s,b)} and ℑ{W(s,b)} are the real and the imaginary parts of the CWT respectively. Once the row of the 
fringe pattern has been processed using the 1D-CWT, the phase of the row can be extracted by detecting the ridge of the 
WT from the modulus array. The next section explains the direct maximum algorithm that has been used in this work to 
extract the ridge of the CWT. 
 

3. DIRECT MAXIMUM RIDGE EXTRACTION ALGORITHM FOR 1D-CWT 
 
By definition, the ridge corresponds to the maximum of the CWT modulus and the modulus should have a maximum 
value when the complex Morlet wavelet frequency is very close to the frequency of the fringes [3]. In this paper, the 
direct maximum algorithm is employed to extract the ridge of the CWT. Other methods can be used to extract the ridge 
such as the cost function algorithm [7, 8]. 
 
The direct maximum ridge extraction algorithm was proposed by Carmona et al. [6]. In this approach, the ridge is 
extracted from the amplitude of the CWT as follows. The maximum value of each column in the modulus array is 
determined and then the corresponding phase is chosen from the phase array [3]. This process is repeated for all the rows 
of the fringe pattern and the final result is a wrapped phase map which needs to be subsequently unwrapped.  
 

4. THE MODIFIED MORLET WAVELET 
 
In the proposed algorithm, the complex Morlet wavelet is chosen and modified in order to cope with the large variations 
in phase within the fringe patterns. The modified Morlet wavelet is expressed by equation (1) with the parameter m set to 
2. Fig. 1(b) shows the real part (dashed line) and the imaginary part (solid line) of the modified complex Morlet wavelet. 
It has been demonstrated by previous experimental investigation using the 2D-CWT in [4], that using a modified 
complex Morlet wavelet with the m parameter set to a value of 2 gives superior results over traditional techniques which 
use a value of m = 0.5. The modified complex Morlet wavelet performs better than the conventional complex Morlet 

Proc. of SPIE Vol. 7000  70000Q-2



U.S

5*

-U.S

—l

-l S
-4 -3 -2

x
2 3 4

U.S

5*

-U.S

—l

-l S
-4 -3 -2

x
2 3 4

 

 

wavelet. This can be interpreted as follows. In CWT, the signal phase is assumed to be linear in the area covered by the 
Gaussian windows. If the fringe frequency varies dramatically, broad window size will generate error. Moreover, the 
window size is varying according to the signal frequency. It performs very poorly when the signal frequency is low, as it 
will automatically adjust the window size to be very large. This will generate errors because of the conflict with linear 
phase assumption. However, in this work, the superiority of using a value of m=2.0, as opposed to values of to m=0.5, 1 
and 1.5, has been demonstrated by the processing of a number of different experimental interferograms using the 1D-
CWT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                       
 

5. SIMULATION AND EXPERIMENTAL RESULTS 
 
For testing purposes, 512×512 pixels images of both simulated and real objects are used in this work. A computer-
generated object shown in Fig. 2(a) phase modulates fringes. The resulting fringe pattern is shown in Fig. 2(b) and it has 
been used to test the proposed algorithm. The computer-generated object is expressed by 
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and its fringe pattern is given by; 
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where ƒo is the spatial carrier frequency, which implies that the phase across the fringe pattern is monotonically 
increasing and it is set to 1/16 and 3.7 is the sensitivity of the simulated fringe pattern projection system. 
 
As mentioned in section 2, in using the 1D-CWT, the phase of the simulated or the real fringe pattern is extracted on a 
row by row basis. The direct maximum ridge extraction algorithms is employed with the conventional complex Morlet 
wavelet and secondly with the modified Morlet wavelet. The scale values in these tests have been set to {1,2, …64}. 
Hence with the simulated object, two wrapped phase maps result, as shown in Figs. 3(a) and (c), and they must then be 
unwrapped, as shown in Figs. 3(b) and (d). The previous procedures have been repeated for a real fringe pattern, namely 
the mannequin’s face object shown in Fig. 4(a). Again two unwrapped phase maps result, as shown in Figs. 4(b) & (c). 
The results of testing both the simulated and the real fringe patterns show that the modified complex Morlet wavelet 
behaves much better than the conventional one. In addition, some areas in the wrapped phase map shown in Fig. 3(a); 
and also visible in the unwrapped phase maps in Figs. 3(b) & 4(b), exhibit errors when using the conventional Morlet 
wavelet. These errors are eliminated when the modified Morlet wavelet is adopted, as shown in Figs 3(c), (d) and Fig. 
4(c). The proposed algorithm has succeeded in accurately demodulating both the simulated and the real objects, whilst 
the conventional Morlet wavelet has failed to do so. 

Fig. 1. The complex Morlet mother wavelet (a) the conventional and (b) the modified. 

)(a )(b
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Fig. 2. (a) A computer-simulated object and (b) its fringe pattern. 

)(a )(b

)(a )(b

)(c )(d
Fig. 3. (a) & (c) The wrapped phase of the simulated object using the conventional complex and modified Morlet wavelets 

respectively, (b) & (d) the unwrapped phase of the simulated object using the conventional complex and modified 
Morlet wavelets respectively. 
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Finally in terms of performance, the proposed 1D-CWT algorithm outperforms one of the most popular fringe pattern 
analysis techniques which is that of Fourier Transform Fringe Analysis (FTFA) [9]. In this paragraph, a brief comparison 
between the 1D-CWT technique in two forms, employing both the conventional and the modified Morlet wavelet, and 
the Fourier transform method will be carried out. The fringe pattern shown in Fig. 2(b) was demodulated using both the 
1D-CWT and FTFA methods. The mathematical difference between the unwrapped phase map and the original object 
shown in Fig. 2(a) is considered to be the error. For all cases, the root mean square error is calculated for the full image. 
Table 1 shows the results which demonstrate that the 1D-CWT employing the modified Morlet wavelet is more accurate 
than both the FTFA method and the 1D-CWT employing the conventional Morlet wavelet.  
 
 

Table 1. Root mean square errors for 1D-CWT and FTFA techniques. 
 

Fringe analysis technique Root mean square error (rad) 

Conventional Morlet (m=0.5) 0.0400 
Modified Morlet    (m=2.0) 0.0021 

Fourier Transform 0.0519 
 

)(a )(b

)(c

Fig. 4. (a) A fringe pattern of a mannequin’s face, (b) & (c) the unwrapped phase of the real object using the 
conventional and the modified complex Morlet wavelets respectively. 
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All the algorithms in this paper were programmed in the C language and executed on a Pentium 4 computer with a 3.60 
GHz clock speed and 2 GByte RAM memory. The execution time required to process the fringe pattern shown in Fig. 
2(b) using the modified and conventional Morlet 1D-CWT algorithms on this hardware platform was approximately 21 
seconds. Moreover, the fast Fourier transform algorithm has been used in the implementation of the 1D-CWT techniques 
to get faster calculation results. The unwrapped phase maps, both in simulation and experimental work, were produced 
using Herráez’s algorithm [10]. The C code for Herráez’s phase unwrapping algorithm can be freely downloaded from 
our website [11].  
 
 

6. CONCLUSION 
 
In this paper, a modified complex Morlet has been employed with the 1D-CWT. The direct maximum ridge extraction 
algorithm has been employed in order to extract the phase information from a fringe pattern. The performance of the 
proposed modified wavelet has been evaluated using both computer-generated and real fringe patterns. The resulting 
unwrapped phase maps from the proposed algorithm are confirmed to be smooth and accurate. In conclusion, the 
presented algorithm is shown to be reliable and very effective in demodulating fringe patterns. 
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