Search:
Computing and Library Services - delivering an inspiring information environment

Medium-energy ion scattering structural study of the Ni(111)(√3×√3)R30°-Pb surface phase

Brown, D., Quinn, P., Woodruff, D., Bailey, Paul and Noakes, T. (2000) Medium-energy ion scattering structural study of the Ni(111)(√3×√3)R30°-Pb surface phase. Physical Review B, 61 (11). pp. 7706-7715. ISSN 0163-1829

Metadata only available from this repository.

Abstract

The structure of the Ni(111)(√3×√3)R30°-Pb surface phase formed by a nominal 1/3 monolayer of Pb has been investigated by medium-energy ion scattering using 100 keV H+ ions in three different incidence directions. The results show clearly that the Pb atoms occupy fcc hollow sites at the surface, but also favor a structure in which these are surrounded by Ni atoms to form a surface alloy phase. A surface alloy with a surface stacking fault, as has been found for the (√3×√3) surface alloy phases formed by Sb adsorption on Cu(111) and Ag(111), can be clearly excluded. The preference for a surface alloy structure is consistent with the results of an earlier low-energy ion scattering study, but we find significant differences in the quantitative structural parameters. This structural model also implies a considerable reduction of the effective radius of the Pb atoms relative to their size in bulk Pb, and this is discussed in the context of other quantitative structural studies of substitutional surface alloy phases

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
Schools: School of Applied Sciences
Related URLs:
Depositing User: Sharon Beastall
Date Deposited: 06 Sep 2012 11:54
Last Modified: 06 Sep 2012 11:54
URI: http://eprints.hud.ac.uk/id/eprint/14735

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©