Search:
Computing and Library Services - delivering an inspiring information environment

A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan

Kok, M. S., Abdelhameed, A. S., Ang, S., Morris, Gordon and Harding, S. E. (2009) A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan. Food Hydrocolloids, 23 (7). pp. 1910-1917. ISSN 0268-005X

This is the latest version of this item.

[img]
Preview
PDF - Accepted Version
Download (270kB) | Preview

    Abstract

    Konjac glucomannans have been widely considered in health food products although their hydrodynamic properties have been poorly understood. The weight-average molecular weight (Mw); sedimentation coefficient (s020,w) and intrinsic viscosities ([η]) have been estimated for five different preparations. The decrease in both intrinsic viscosity and sedimentation coefficient with molecular weight enables the estimation of molecular flexibility in terms of persistence length (Lp) using the traditional Bohdanecky-Bushin and Yamakawa-Fujii analyses for intrinsic viscosity and sedimentation data respectively. However, this requires an assumption of the mass per unit length ML. Advantage can now be taken of a recent development in data interpretation which allows the estimation of Lp from combined intrinsic viscosity and sedimentation coefficient data and also an estimate for ML. Using this "global" procedure an estimate of (13 ± 1) nm is found for Lp and a value of (330 ± 10) g mol-1 nm-1 for ML.. The value for Lp suggests a molecule of considerable flexibility, comparable to galactomannans (Lp ∼ 8-10 nm) but not as flexible as pullulan (Lp ∼ 1-2 nm). © 2009 Elsevier Ltd. All rights reserved.

    ▼ Jump to Download Statistics
    Item Type: Article
    Uncontrolled Keywords: Intrinsic viscosity Konjac glucomannan Molar mass Persistence length Semi-flexible coil
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    Related URLs:
    References:

    Language of Original Document: English
    Correspondence Address: Morris, G.A.; National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom; email: gordon.morris@nottingham.ac.uk
    References: Bohdanecky, M., New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers (1983) Macromolecules, 16, pp. 1483-1492; Bohdanecky, M., Petrus, V., Analysis of hydrodynamic data for denatured globular proteins in terms or the wormlike cylinder model (1991) International Journal of Biological Macromolecules, 13, pp. 231-234; Bushin, S.V., Tsvetkov, V.N., Lysenko, Y.B., Emel'yanov, V.N., Conformational properties and rigidity of molecules of ladder polyphenylsiloxane in solutions according the data of sedimentation-diffusion analysis and viscometry (1981) Vysokomolekulyarnye Soedineniya, A23, pp. 2494-2503; Cescutti, P., Campa, C., Delben, F., Rizzo, R., Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant amorphophallus konjac (2002) Carbohydrate Research, 337, pp. 2505-2511; Cheng, L.H., Abd Karim, A., Seow, C.C., Effects of acid modification on physical properties of konjac glucomannan (KGM) films (2007) Food Chemistry, 103, pp. 994-1002; Clegg, S.M., Phillips, G.O., Williams, P.A., Determination of the relative molar mass of konjac mannan (1990) Gums and stabilisers for the food industry, 5, pp. 463-471. , Phillips G.O., Williams P.A., and Wedlock D.J. (Eds), IRL Press, Oxford; Dea, I.C.M., Morris, E.R., Rees, D.A., Welsh, E.J., Barnes, H.A., Price, J., Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans interacting bacterial polysaccharides, and related systems (1977) Carbohydrate Research, 57, pp. 249-272; Dickinson, E., Protein-polysaccharide interaction in food colloids (1993) Food colloids and polymers: Stability and mechanical properties, pp. 77-93. , Dickinson E., and Walstra P. (Eds), Royal Society of Chemistry, Cambridge; Freire, J.J., Garcia de la Torre, J., Sedimentation coefficients of flexible chain polymers (1992) Analytical ultracentrifugation in biochemistry and polymer science, pp. 346-393. , Harding S.E., Rowe A.J., and Horton J.C. (Eds), Royal Society of Chemistry, Cambridge; Gao, S.J., Nishinari, K., Effect of degree of acetylation on gelation of konjac glucomannan (2004) Biomacromolecules, 5, pp. 175-185; Gralén, N., (1944) Sedimentation and diffusion measurements on cellulose and cellulose derivatives, , PhD Dissertation, University of Uppsala, Sweden; Green, A.A., The preparation of acetate and phosphate buffer solutions of known pH and ionic strength (1933) Journal of the American Chemical Society, 55, pp. 2331-2336; Harding, S.E., The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution (1997) Progress in Biophysics and Molecular Biology, 68, pp. 207-262; Harding, S.E., Analysis of polysaccharides size, shape and interactions (2005) Analytical ultracentrifugation techniques and methods, pp. 231-252. , Scott D.J., Harding S.E., and Rowe A.J. (Eds), Royal Society of Chemistry, Cambridge; Harding, S.E., Jumel, K., Kelly, R., Gudo, E., Horton, J.C., The structure and nature of protein-polysaccharide complexes (1993) Food proteins structure and functionality (4th symposium on food proteins "structure-functionality relationships"), pp. 216-226. , Schwenke K.D., and Mothes R. (Eds), Verlag Chemie, Weinheim; Harding, S.E., VÃ¥rum, K.M., Stokke, B.T., Smidsrød, O., Molecular weight determination of polysaccharides (1991) Advances in carbohydrate analysis, pp. 63-144. , White C.A. (Ed), JAI Press Ltd, Greenwich; Hearst, J.E., Stockmayer, W.H., Sedimentation constants of broken chains and wormlike coils (1962) Journal of Chemical Physics, 37, pp. 1425-1433; Hopman, W.P., Houben, P.G., Speth, P.A., Lamers, C.B., Glucomannan prevents postprandial hypoglycaemia in patients with previous gastric surgery (1988) Gut, 29, pp. 930-934; Huggins, M.L., The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration (1942) Journal of the American Chemical Society, 64, pp. 2716-2718; Hwang, J.K., Kokini, J.L., Structure and rheological function of side branches of carbohydrate polymers (1991) Journal of Texture Studies, 22, pp. 123-167; Jódar, L., Feavers, I.M., Salisbury, D., Granoff, D., Development of vaccines against meningococcal disease (2002) Lancet, 359, pp. 1499-1508; Kato, K., Matsuda, K., Studies on the chemical structure of konjac mannan. Part I. Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of the mannan (1969) Agricultural and Biological Chemistry, 33, pp. 1446-1453; Kato, K., Watanabe, T., Matsuda, K., Studies on the chemical structure of konjac mannan. Part II. Isolation and characterization of oligosaccharides from the enzymic hydrolysis of the mannan (1970) Agricultural and Biological Chemistry, 34, pp. 532-539; Katsuraya, K., Okuyama, K., Hatanaka, K., Oshima, K., Sato, T., Matsuzaki, K., Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy (2003) Carbohydrate Polymers, 53, pp. 183-189; Konig, E., (1993) Die Milcheiweissallergie - Ursachen, Diagnose, Behandlung, , PhD Dissertation, Milchwissenschaft, Giessen, Germany; Kraemer, E.O., Molecualr weights of cellulose and cellulose derviatives (1938) Industrial and Engineering Chemistry, 30, pp. 1200-1203; Kratky, O., Porod, G., Röntgenungtersuchung gelöster fadenmoleküle (1949) Recueil Des Travaux Chimiques Des Pays-Bas, 68, pp. 1106-1109; Maeda, M., Shimahara, H., Sugiyama, N., Detailed examination of the branched structure of konjac glucomannan (1980) Agricultural and Biological Chemistry, 44, pp. 245-252; Maekaji, K., Mechanism of gelation of konjac mannan (1974) Agricultural and Biological Chemistry, 38, pp. 315-321; Marsh, M.N., Gluten, major histocompatibility complex, and the small intestine: a molecular and immunobiologic approach to the spectrum of gluten-sensitivity ('celiac sprue') (1992) Gastroenterology, 102, pp. 330-354; van der Merwe, P.A., Barclay, A.N., Transient intercellular adhesion: the importance of weak protein-protein interactions (1994) Trends in Biochemical Sciences, 19, pp. 354-358; Morris, G.A., Foster, T.J., Harding, S.E., The effect of degree of esterification on the hydrodynamic properties of citrus pectin (2000) Food Hydrocolloids, 14, pp. 227-235; Morris, G.A., GarcÃa de la Torre, J., Ortega, A., Castille, J., Smith, A., Harding, S.E., Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis (2008) Food Hydrocolloids, 22, pp. 1435-1442; Morris, G.A., Patel, T.R., Picout, D.R., Ross-Murphy, S.B., Ortega, A., GarcÃa de la Torre, J., Global hydrodynamic analysis of the molecular flexibility of galactomannans (2008) Carbohydrate Polymers, 72, pp. 356-360; Nishinari, K., Williams, P.A., Phillips, G.O., Review of the physico-chemical characteristic and properties of konjac mannan (1992) Food Hydrocolloids, 6, pp. 199-222; Ortega, A., GarcÃa de la Torre, J., Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility (2007) Biomacromolecules, 8, pp. 2464-2475; Ozu, E.M., Baianu, I.C., Wei, L.-S., Physical and chemical properties of glucomannan gels and related polysaccharides (1993) Physical chemistry of food processes, 2, pp. 487-517. , Baianu I.C., Pressen H., and Kmosinski T.F. (Eds), Van Nostram Reinhold, New York; Patel, T.R., Harding, S.E., Ebringerová, A., Deszczynski, M., Hromadkova, Z., Togola, A., Weak self-association in a carbohydrate system (2007) Biophysical Journal, 93, pp. 741-747; Patel, T.R., Morris, G.A., Ebringerová, A., Vodenicarová, M., Velebny, V., Ortega, A., Global conformation analysis of irradiated xyloglucans (2008) Carbohydrate Polymers, 74, pp. 845-851; Patel, T.R., Morris, G.A., GarcÃa de la Torre, J., Ortega, A., Mischnik, P., Harding, S.E., Molecular flexibility of methylcelluloses of differing degree of substitution by combined sedimentation and viscosity analysis (2008) Macromolecular Bioscience, 8, pp. 1108-1115; Patel, T.R., Picout, D.R., Ross-Murphy, S.B., Harding, S.E., Pressure cell assisted solution characterisation of galactomannans 3. Application of analytical ultracentrifugation techniques (2006) Biomacromolecules, 7, pp. 3513-3520; Pavlov, G.M., Harding, S.E., Rowe, A.J., Normalized scaling relations as a natural classification of linear macromolecules according to size (1999) Progress in Colloid and Polymer Science, 113, pp. 76-80; Pavlov, G.M., Rowe, A.J., Harding, S.E., Conformation zoning of large molecules using the analytical ultracentrifuge (1997) Trends in Analytical Chemistry, 16, pp. 401-405; Picout, D.R., Ross-Murphy, S.B., Jumel, K., Harding, S.E., Pressure cell assisted solution characterization of polysaccharides. 2. Locust bean gum and tara gum (2002) Biomacromolecules, 3, pp. 761-767; Prawitwong, P., Takigami, S., Phillips, G.O., Effects of γ-irradiation on molar mass and properties of konjac mannan (2007) Food Hydrocolloids, 21, pp. 1362-1367; Ralston, G., (1993) Introduction to analytical ultracentrifugation, , Beckman Instruments Inc, Palo Alto pp. 27-28; Rowe, A.J., The concentration dependence of transport processes: a general description applicable to the sedimentation, translational diffusion and viscosity coefficients of macromolecular solutes (1977) Biopolymers, 16, pp. 2595-2611; Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the amm equation (1998) Biophysical Journal, 75, pp. 1503-1512; Schuck, P., Diffusion-deconvoluted sedimentation coefficient distributions for the analysis of interacting and non-interacting protein mixtures (2005) Analytical ultracentrifugation techniques and methods, pp. 26-50. , Scott D.J., Harding S.E., and Rowe A.J. (Eds), Royal Society of Chemistry, Cambridge; Shimahara, H., Suzuki, H., Sugiyama, N., Nishizawa, K., Isolation and characterization of oligosaccharides from an enzymic hydrolyzate of konjac mannan (1975) Agricultural and Biological Chemistry, 39, pp. 293-299; Smith, F., Srivastava, H.C., Constitution studies on the glucomannan of konjac flower (1959) Journal of American Chemical Society, 81, pp. 1715-1718; Sonnichsen, N., Apostoloff, E., (1992) Autoimmunkrankenheiten, , Gustav Fischer Verlag, Jena; Takahashi, R., Kusakabe, I., Kusama, S., Sakurai, Y., Murakami, K., Maekawa, A., Structures of glucomanno-oligosaccharides from the hydrolytic products of konjac glucomannan produced by a β-mannase from Streptomyces sp (1984) Agricultural and Biological Chemistry, 48, pp. 2943-2950; Takigami, S., Konjac mannan (2000) Handbook of hydrocolloids, pp. 413-424. , Phillips G.O., and Williams P.A. (Eds), Woodhead Publishing, Cambridge; Tanford, C., (1961) Physical chemistry of macromolecules, , John Wiley and Sons, New York; Tolstoguzov, V.B., Functional properties of food proteins. Role of interactions in protein systems (1993) Food proteins structure and functionality (4th symposium on food proteins "structure-functionality relationships"), pp. 203-209. , Schwenke K.D., and Mothes R. (Eds), Verlag Chemie, Weinheim; Tombs, M.P., Harding, S.E., (1998) An introduction to polysaccharide biotechnology, , Taylor and Francis, London pp. 14-20; Trowell, H., Southgate, D.A.T., Wolever, T.M.S., Leeds, A.R., Gassull, M.A., Jenkins, D.J.A., Dietary fi{dotless}bre redefi{dotless}ned (1976) Lancet, 307, p. 967; Vuksan, V., Jenkins, D.J., Spadafora, P., Sievenpiper, J.L., Owen, R., Vidgen, E., Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial (1999) Diabetes Care, 22, pp. 913-919; Wales, M., van Holde, K.E., The concentration dependence of the sedimentation constants of flexible macromolecules (1954) Journal of Polymer Science, 14, pp. 81-86; Wang, Q., Wood, P.J., Cui, W., Ross-Murphy, S.B., The dispersibility of polysaccharides in water and water-cadoxen mixtures (2000) Gums and stabilisers for the food industry, 10, pp. 82-88. , Williams P.A., and Phillips G.O. (Eds), The Royal Society of Chemistry, Cambridge; Wen, X., Wang, T., Wang, Z., Li, L., Zhao, C., Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix (2008) International Journal of Biological Macromolecules, 42, pp. 256-263; Williams, M.A.K., Foster, T.J., Martin, D.R., Norton, I.T., Yoshimura, M., Nishinari, K., A molecular description of the gelation mechanism of konjac mannan (2000) Biomacromolecules, 1, pp. 440-450; Yamakawa, H., Fujii, M., Translational friction coefficient of wormlike chains (1973) Macromolecules, 6, pp. 407-415; Yamauchi, F., Suetsuna, K., Immunological effects of dietary peptide derived from soybean protein (1993) Journal of Nutritional Biochemistry, 4, pp. 450-457; Yaseen, E.I., Herald, T.J., Aramouni, F.M., Alavi, S., Rheological properties of selected gum solutions (2005) Food Research International, 38, pp. 111-119

    Depositing User: Gordon Morris
    Date Deposited: 18 Sep 2012 14:21
    Last Modified: 18 Sep 2012 14:21
    URI: http://eprints.hud.ac.uk/id/eprint/14612

    Available Versions of this Item

    • A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan. (deposited 18 Sep 2012 14:21)[Currently Displayed]

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©