Computing and Library Services - delivering an inspiring information environment

Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives

Pohl, M., Morris, Gordon, Harding, S. E. and Heinze, T. (2009) Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives. European Polymer Journal, 45 (4). pp. 1098-1110. ISSN 0014-3057

This is the latest version of this item.

Studies_of_Molecular_Flexibility_of_Novel_Dendronized_Carboxymethyl_Cellulose_Derivatives.pdf - Accepted Version

Download (803kB) | Preview


Water-soluble deoxy-azido cellulose derivatives were synthesized by heterogeneous carboxymethylation, applying 2-propanol/aqueous NaOH as slurry medium. The novel, carboxymethyl deoxy-azido cellulose provides a convenient starting material for the selective dendronization of cellulose via the copper-catalyzed Huisgen reaction yielding water-soluble carboxymethyl 6-deoxy-(1-N-[1,2,3-triazolo]-4-polyamidoamine) cellulose derivatives of first (degree of substitution, DS 0.51), second (DS 0.44) and third generation (DS 0.39). The novel biopolymer derivatives were characterized by FT-IR and NMR spectroscopy, intrinsic viscosity, sedimentation coefficient and weight average molar mass. Solution conformation and flexibility were estimated qualitatively using conformation zoning and quantitatively (persistence length) using the combined global method. Sedimentation conformation zoning showed a semi-flexible coil conformation and the global method applied to each carboxymethyl deoxy-azido cellulose and carboxymethyl 6-deoxy-(1-N-[1,2,3-triazolo]-4-polyamidoamine) cellulose derivative yielded persistence length all within the range of 2.8-4.0 nm with no evidence of any change in flexibility with dendronization. © 2009 Elsevier Ltd. All rights reserved.

▼ Jump to Download Statistics
Item Type: Article
Uncontrolled Keywords: Cellulose Conformation analysis Dendronization Dendronized cellulose Polysaccharides Ultracentrifugation Biopolymers Cellulose derivatives Centrifugation Dendrimers Dielectric relaxation Land use Nuclear magnetic resonance spectroscopy Polymers Synthesis (chemical) Zoning Carboxy methyl cellulose Carboxymethyl Carboxymethylation Degree of substitutions Flexible coils Global methods Intrinsic viscosities IR and NMR spectroscopies Molecular flexibilities Persistence lengths Polyamidoamine Sedimentation coefficients Solution conformations Starting materials Third generations Carboxymethyl Cellulose Flexibility Molecular Structure Nuclear Magnetic Resonance Relaxation Sedimentation
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:

Language of Original Document: English
Correspondence Address: Heinze, T.; Center of Excellence for Polysaccharide Research, the Thuringian Institute for Textile and Plastics Research, Breitscheidstraße 97, D-07407 Rudolstadt, Germany; email:
References: Th, H., Chemical Functionalization of Cellulose (2004) Polysaccharides: Structural Diversity and Functional Versatility, pp. 551-590. , Dumitriu S, editor, 2nd ed. New York, Basel, Hong Kong: Marcel Dekker, Inc, and references cited therein; Klemm, D., Heublein, B., Fink, H.-P., Bohn, A., Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff (2005) Angew Chem, 117, pp. 3422-3458; Liebert, T., Heinze, T., Tailored Cellulose Esters: Synthesis and Structure Determination (2005) Biomacromolecules, 6, pp. 333-340; Pohl, M., Schaller, J., Meister, F., Heinze, T., Novel Bulky Esters of Biopolymers: Dendritic Cellulose (2008) Macromol Symp, 262, pp. 119-128. , and references cited therein; Zhang, C., Price, L.M., Daly, W.H., Synthesis and Characterization of a Comp Copolymer with a Cellulose Backbone and with Hydrophilic Brushes on Amphiphilic Teeth (2004) Polym Prepr, 45, pp. 421-422; Zhang, C., Daly, W.H., Synthesis and Characterization of a Trifunctional Aminoamide Cellulose Derivative (2005) Polym Prepr, 46, p. 707; Zhang, C., Daly, W.H., Price, L.M., Synthesis and Characterization of a Trifunctional Aminoamide Cellulose Derivative (2006) Biomacromolecules, 7, pp. 139-145; Hassan, M.L., Moorefield, C.N., Newkome, G.R., Regioselective Dendritic Functionalization of Cellulose (2004) Macromol Rapid Commun, 25, pp. 1999-2002; Hassan, M.L., Moorefield, C.N., Kotta, K.K., Newkome, G.R., Regioselective combinatorial-type synthesis, characterization, and physical properties of dendronized cellulose (2005) Polymer, 46, pp. 8947-8955; Pohl, M., Schaller, J., Meister, F., Heinze, T., Selectively Dendronized Cellulose: Synthesis and Characterization (2008) Macromol Rapid Commun, 29, pp. 142-148; Heinze, T., Schöbitz, M., Pohl, M., Meister, F., Interactions of Ionic Liquids with Polysaccharides. IV. Dendronization of 6-Azido-6-Deoxy Cellulose (2008) J Polym Sci Part A: Polym Chem, 46, pp. 3853-3859; Pohl, M., Heinze, T., Novel biopolymer structures synthesized by dendronization of 6-deoxy-6-amino-propargyl cellulose (2008) Macromol Rapid Commun, 29, pp. 1739-1745; Östmark, E., Lindqvist, J., Nyström, D., Malmström, E., Dendronized Hydroxypropyl Cellulose: Synthesis and Characterization of Biobased Nanoobjects (2007) Biomacromolecules, 8, pp. 3815-3822; Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W., Comprehensive cellulose chemistry (1998) Functionalization of cellulose, 2, p. 221. , Chichester: Wiley;; Schlüter, A.D., Rabe, J.P., Dendronisierte Polymere: Synthese, Charakterisierung, Grenzflächenverhalten und Manipulation. (2000) Angew Chem, 112, pp. 860-880. , and references cited therein; Heinze, T., Koschella, A., Brackhagen, M., Engelhardt, J., Nachtkamp, K., Studies on Non-natural Deoxyammonium Cellulose (2006) Macromol Symp, 244, pp. 74-82; Liebert, T., Hänsch, C., Heinze, T., Click Chemistry with Polysaccharides (2006) Macromol Rapid Commun, 27, pp. 208-213; Harding, S.E., Analysis of polysaccharides size, shape and interactions (2005) Analytical ultracentrifugation techniques and methods, pp. 231-252. , Scott DJ, Harding SE, Rowe AJ, editors, Cambridge: Royal Society of Chemistry;; Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation (1998) Biophys J, 75, pp. 1503-1512; Ralston, G., (1993) Introduction to analytical ultracentrifugation, p. 27. , Palo Alto: Beckman Instruments, Inc; Pavlov, G.M., Michaeilova, N., Tarabukina, E., Korneeva, E., Velocity sedimentation of water-soluble methyl cellulose (1995) Prog Colloid Polym Sci, 99, pp. 109-113; Gralén, N., (1944) Sedimentation and diffusion measurements on cellulose and cellulose derivatives, , Ph.D. Dissertation. Sweden: University of Uppsala;; Rowe, A.J., The concentration dependence of transport processes: a general description applicable to the sedimentation, translational diffusion and viscosity coefficients of macromolecular solutes (1977) Biopolymers, 16, pp. 2595-2611; Rahn, K., Diamantoglou, M., Klemm, D., Berghmans, H., Heinze, T., Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system (1996) Angew Makromol Chem, 238, pp. 143-163; Lee, J.W., Kim, J.H., Kim, B.K., Synthesis of azide-functionalized PAMAM dendrons at the focal point and their application for synthesis of PAMAM-like dendrimers (2006) Tetrahedron Lett, 47, pp. 2683-2686; Lee, J.W., Kim, J.H., Han, S.C., Kim, W.R., Kim, B.K., Kim, J.H., Huh, D.S., Jin, S.-H., Synthesis of Diblock Codendrimers by Fusion of the Fréchet-Type and the PAMAM Dendrons (2007) Macromol Symp, 249-250, pp. 357-364; Lee, J.W., Kim, B.K., Kim, H.J., Han, S.C., Shin, W.S., Jin, S.-H., Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers (2006) Macromolecules, 39, pp. 2418-2422; Eyler, R.W., Klug, E.D., Diephuis, F., Determination of Degree of Substitution of Sodium Carboxymethylcellulose (1947) Anal Chem, 19, pp. 24-27; Heinze, T., Pfeifer, K., Studies on the synthesis and characterization of Carboxymethylcellulose (1999) Angew Macromol Chem, 266, pp. 37-45; Ottiviani, M.F., Montalti, F., Turro, N.J., Tomalia, D.A., Characterization of Starburst Dendrimers by the EPR Technique. Copper(II) Ions Binding Full-Generation Dendrimers (1997) J Phys Chem B, 101, pp. 158-166; Balogh, L., Tomalia, D.A., Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters (1998) J Am Chem Soc, 120, pp. 7355-7356. , and references cited therein; Arndt, K.F., Müller, G., (1996) Polymercharakterisierung, p. 344. , München: Hanser Fachbuchverlag;; Kulicke, W.M., Kull, A.H., Kull, W., Thielking, H., Characterization of aqueous carboxymethylcellulose solutions in terms of their molecular structure and its influence on rheological behaviour (1996) Polymer, 37 (13), pp. 2723-2731; Tanford, C., (1961) Physical chemistry of macromolecules, , John Wiley and Sons, New York; Ortega, A., García de la Torre, J., Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility (2007) Biomacromolecules, 8, pp. 2464-2475; Pavlov, G.M., Rowe, A.J., Harding, S.E., Conformation zoning of large molecules using the analytical ultracentrifuge (1997) Trends Anal Chem, 16, pp. 401-405; Kratky, O., Porod, G., Röntgenuntersuchung gelöster Fadenmoleküle (1949) Recl Trav Chim Pays-Bas, 68, pp. 1106-1109; Tombs, M.P., Harding, S.E., (1998) An introduction to polysaccharide biotechnology, , Taylor and Francis, London p. 14; Bushin, S.V., Tsvetkov, V.N., Lysenko, J.B., Emel'yanov, V.N., Conformational properties and rigidity of molecules of ladder polyphenylsiloxane in solutions according the data of sedimentation-diffusion analysis and viscometry (1981) Vysokomol Soedin, A23, pp. 2494-2503; Bohdanecky, M., New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers (1983) Macromolecules, 16, pp. 1483-1493; Hearst, J.E., Rotatory diffusion constants of stiff-chain macromolecules (1963) J Chem Phys, 38, pp. 1062-1065; Stockmayer, W.H., Fixman, M.J., On the estimation of unperturbed dimensions from intrinsic viscositiesxcin (1963) J Polym Sci Part C, 1, pp. 137-141; Yamakawa, H., Fujii, M., Translational friction coefficient of wormlike chains (1973) Macromolecules, 6, pp. 407-415; Hearst, J.E., Stockmayer, W.H., Sedimentation constants of broken chains and wormlike coils (1962) J Chem Phys, 37, pp. 1425-1433; Patel, T.R., Morris, G.A., García de la Torre, J., Ortega, A., Mischnick, P., Harding, S.E., Molecular Flexibility of Methylcelluloses of Differing Degree of Substitution by Combined Sedimentation and Viscosity Analysis (2008) Macromol Biosci, 8, pp. 1108-1115

Depositing User: Gordon Morris
Date Deposited: 18 Sep 2012 13:13
Last Modified: 18 Sep 2012 13:13

Available Versions of this Item

  • Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives. (deposited 18 Sep 2012 13:13) [Currently Displayed]


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©