Search:
Computing and Library Services - delivering an inspiring information environment

Weak self-association in a carbohydrate system

Patel, T. R., Harding, S. E., Ebringerova, A., Deszczynski, M., Hromadkova, Z., Togola, A., Paulsen, B. S., Morris, Gordon and Rowe, A. J. (2007) Weak self-association in a carbohydrate system. Biophysical Journal, 93 (3). pp. 741-749. ISSN 0006-3495

This is the latest version of this item.

[img]
Preview
PDF - Accepted Version
Download (2311kB) | Preview

    Abstract

    The physiological importance of weak interactions between biological macromolecules (molar dissociation constants >10 μM) is now well recognized, particularly with regard to cell adhesion and immunological phenomena, and many weak interactions have been measured for proteins. The concomitant importance of carbohydrate-carbohydrate interactions has also been identified, although no weak interaction between pure carbohydrate systems has ever been measured. We now demonstrate for the first time to our knowledge using a powerful probe for weak interactions - sedimentation velocity in the analytical ultracentrifuge - that at least some carbohydrates (from the class of polysaccharides known as heteroxylans and demonstrated here to be biologically active) can show well-defined weak self-interactions of the "monomer- dimer" type frequently found in protein systems. The weak interaction between the heteroxylans is shown from a temperature dependence study to be likely to be hydrophobic in nature. © 2007 by the Biophysical Society.

    ▼ Jump to Download Statistics
    Item Type: Article
    Additional Information:
    Uncontrolled Keywords: carbohydrate cell protein polysaccharide xylan animal cell article carbohydrate analysis cell adhesion chemical interaction dissociation hydrophobicity macromolecule measurement molecular recognition nonhuman sedimentation rate temperature dependence ultracentrifugation Animals Carbohydrates Complement System Proteins Dietary Fiber Dimerization Kinetics Lymphocyte Activation Molecular Weight Monosaccharides Polysaccharides Rats Starch Xylans
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    Related URLs:
    References:

    PubMed ID: 17483161
    Language of Original Document: English
    Correspondence Address: Harding, S.E.; NCMH, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5 RD, United Kingdom; email: steve.harding@nottingham.ac.uk
    Chemicals/CAS: xylan, 9014-63-5; Carbohydrates; Complement System Proteins, 9007-36-7; Monosaccharides; Polysaccharides; Starch, 9005-25-8; Xylans
    References: Watson, J.D., (1970) Molecular Biology of the Gene, pp. 102-140. , W. A. Benjamin, Menlo Park, CA; van der Merwe, P.A., Barclay, A.N., Transient intercellular adhesion: The importance of weak protein-protein interactions (1994) Trends Biochem. Sci, 19, pp. 354-358; van der Merwe, P.A., Davis, S.J., Molecular interactions mediating T cell antigen recognition (2003) Annu. Rev. Immunol, 21, pp. 659-684; Vaynberg, J., Qin, J., Weak protein-protein interactions as probed by NMR spectroscopy (2006) Trends Biotechnol, 24, pp. 22-27; Springer, T.A., Adhesion receptors of the immune system (1990) Nature, 346, pp. 425-434; Springer, T.A., Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm (1994) Cell, 76, pp. 301-314; Leishman, A.J., Naidenko, O.V., Attinger, A., Koning, F., Lena, C.J., Xiong, Y., Chang, H.C., Cheroutre, H., T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL (2001) Science, 294, pp. 1936-1939; Wyer, J.R., Willcox, B.E., Gao, G.F., Gerth, U.C., Davis, S.J., Bell, J.I., van der Merwe, P.A., Jakobsen, B.K., T cell receptor and coreceptor CD8αα bind peptide-MHC independently and with distinct kinetics (1999) Immunity, 10, pp. 219-225; Kern, P., Hussey, R.E., Spoerl, R., Reinherz, E.L., Chang, H.C., Expression, purification, and functional analysis of murine ectodomain fragments of CD8αα and CD8αβ dimers (1999) J. Biol. Chem, 274, pp. 27237-27243; Gao, G.F., Willcox, B.E., Wyer, J.R., Boulter, J.M., O'Callaghan, C.A., Maenaka, K., Stuart, D.I., Jakobsen, B.K., Classical and nonclassical class I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8αα (2000) J. Biol. Chem, 275, pp. 15232-15238; Arcaro, A., Gregoire, C., Bakker, T.R., Baldi, L., Jordan, M., Goffin, L., Boucheron, N., Luescher, I.F., CD8β endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes (2001) J. Exp. Med, 194, pp. 1485-1495; Weber, S., Karjalainen, K., Mouse CD4 binds MHC class-II with extremely low affinity (1993) Int. Immunol, 5, pp. 695-698; Xiong, Y., Kern, P., Chang, H.C., Reinherz, E.L., T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4 (2001) J. Biol. Chem, 276, pp. 5659-5667; Van der Merwe, P.A., Barclay, A.N., Mason, D.W., Davies, E.A., Morgan, B.P., Tone, M., Krishnam, A.K.C., Davis, S.J., Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very-low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59 (1994) Biochemistry, 33, pp. 10149-10160; Silkowski, H., Davis, S.J., Barclay, A.N., Rowe, A.J., Harding, S.E., Byron, O., Characterisation of the low affinity interaction between rat cell adhesion molecules CD2 and CD48 by analytical ultracentrifugation (1997) Eur. Biophys. J, 25, pp. 455-462; Brown, M.H., Boles, K., van der Merwe, P.A., Kumar, V., Mathew, P.A., Barclay, A.N., 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48 (1998) J. Exp. Med, 188, pp. 2083-2090; Collins, A.V., Brodie, D.W., Gilbert, R.J.C., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D.I., Davis, S.J., The interaction properties of costimulatory molecules revisited (2002) Immunity, 17, pp. 201-210; Vales-Gomez, M., Reyburn, H.T., Mandelboim, M., Strominger, J.L., Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors (1998) Immunity, 9, pp. 337-344; Maenaka, K., Juji, T., Nakayama, T., Wyer, J.R., Gao, G.F., Maenaka, T., Zaccai, N.R., van der Merwe, P.A., Killer cell immunoglobulin receptors and T cell receptors bind peptide-major histocompatibility complex class I with distinct thermodynamic and kinetic properties (1999) J. Biol. Chem, 274, pp. 28329-28334; Wild, M.K., Huang, M.C., Schulze-Horsel, U., van der Merwe, P.A., Vestweber, D., Affinity, kinetics, and thermodynamics of E-selectin binding to E-selectin ligand-1 (2001) J. Biol. Chem, 276, pp. 31602-31612; Hakomori, S., Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization (2004) Glycoconj. J, 21, pp. 125-137; Harding, S.E., Winzor, D.J., Sedimentation velocity analytical ultracentrifugation (2001) Protein-Ligand Interactions: Hydrodynamics and Calorimetry, pp. 75-103. , S. E. Harding and B. Z. Chowdhry, editors. Oxford University Press, Oxford, UK; Rowe, A.J., Weak interactions: Optimal algorithms for their study in the AUC (2005) Analytical Ultracentrifugation Techniques and Methods, pp. 484-500. , D. J. Scott, S. E. Harding, and A. J. Rowe, editors. Royal Society of Chemistry, Cambridge, UK; Kanari, M., Tomoda, M., Gonda, R., Shimizu, N., Kimura, M., Kawaguchi, M., Kawabe, C., A reticuloendothelial system-activating arabinoxylan from the bark of Cinnamomum cassia (1989) Chem. Pharm. Bull. (Tokyo), 37, pp. 3191-3194; Samuelsen, A.B., Lund, I., Djahromi, J.M., Paulsen, B.S., Wold, J.K., Knutsen, S.H., Structural features and anti-complementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L (1999) Carbohydr. Polym, 38, pp. 133-143; Ogawa, K., Takeuchi, M., Nakamura, N., Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice (2005) Biosci. Biotechnol. Biochem, 69, pp. 19-25; Ghoneum, M., Jewett, A., Production of tumor necrosis factor-α and interferon-γ from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro (2000) Cancer Detect. Prev, 24, pp. 314-324; Ebringerová, A., Heinze, T., Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties (2000) Macromol. Rapid Commun, 21, pp. 542-556; Ebringerova, A., Hromadkova, Z., Hribalova, V., Structure and mitogenic activities of corn cob heteroxylans (1995) Int. J. Biol. Macromol, 17, pp. 327-331; Zhang, P.Y., Wampler, J.L., Bhunia, A.K., Burkholder, K.M., Patterson, J.A., Whistler, R.L., Effects of arabinoxylans on activation of murine macrophages and growth performance of broiler chicks (2004) Cereal Chem, 81, pp. 511-514; Fincher, G.B., Stone, B.A., Cell walls and their components in cereal grain technology (1986) Advances in Cereal Science and Technology, pp. 207-295. , Y. Pomeranz, editor. American Association of Cereal Chemists, St. Paul, MN; Rao, M.V.S.S.T., Muralikrishna, G., Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15) (2001) Food Chem, 72, pp. 187-192; Ishii, T., Structure and functions of feruloylated polysaccharides (1997) Plant Sci, 127, pp. 111-127; Ahluwalia, B., Fry, S.C., Barley endosperm cell-walls contain a feruloylated arabinoxylan and a non-feruloylated beta-glucan (1986) J. Cereal Sci, 4, pp. 287-295; Smith, M.M., Hartley, R.D., Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants (1983) Carbohydr. Res, 118, pp. 65-80; Ebringerova, A., Hromadkova, Z., Effect of ultrasound on the extractability of corn bran hemicelluloses (2002) Ultrason. Sonochem, 9, pp. 225-229; Schooneveld-Bergmans, M.E.F., Hopman, A.M.C.P., Beldman, G., Voragen, A.G.J., Extraction and partial characterization of feruloylated glucuronoarabinoxylans from wheat bran (1998) Carbohydr. Polym, 35, pp. 39-47; Kanari, M., Tomoda, M., Gonda, R., Shimizu, N., Kimura, M., Kawaguchi, M., Kawabe, C., A reticuloendothelial system-activating arabinoxylan from the bark of Cinnamomum cassia (1989) Chem. Pharm. Bull. (Tokyo), 37, pp. 3191-3194; Ogawa, K., Takeuchi, M., Nakamura, N., Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice (2005) Biosci. Biotechnol. Biochem, 69, pp. 19-25; Ghoneum, M., Jewett, A., Production of tumor necrosis factor-α and interferon-γ from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro (2000) Cancer Detect. Prev, 24, pp. 314-324; Schachman, H.K., Analytical ultracentrifugation reborn (1989) Nature, 341, pp. 259-260; Rowe, A.J., Concentration dependence of transport (1977) Biopolymers, 16, pp. 2595-2611; Gill, P.E., Murray, W., Algorithms for the solution of the nonlinear least-squares problem (1978) Siam J. Numer. Anal, 15, pp. 977-992; Hromádková, Z., Malovíková, A., Ebringerová, A., Vrchotová, N., Patel, T., Harding, S.E., Wheat bran heteroxylan-phenolic complexes and associated antioxidant activity (2005) European Carbohydrate Symposium, pp. 3rd,P089. , August 21-26, Bratislava, Slovaki; Green, A.A., The preparation of acetate and phosphate buffer solutions of known pH and ionic strength (1933) J. Am. Chem. Soc, 55, pp. 2331-2336; Gomez, C., Navarro, A., Manzanares, P., Horta, A., Carbonell, J.V., Physical and structural properties of barley (1→3),(1→4)- [β]-glucan. Part I. Determination of molecular weight and macromolecular radius by light scattering (1997) Carbohydr. Polym, 32, pp. 7-15; Hromadkova, Z., Ebringerova, A., Ultrasonic extraction of plant materials - investigation of hemicellulose release from buckwheat hulls (2003) Ultrason. Sonochem, 10, pp. 127-133; Izydorczyk, M.S., Biliaderis, C.G., Studies on the structure of wheat-endosperm arabinoxylans (1994) Carbohydr. Polym, 24, pp. 61-71; Iribe, H., Koga, T., Augmentation of the proliferative response of thymocytes to phytohemagglutinin by the muramyl dipeptide (1984) Cell. Immunol, 88, pp. 9-15; Ebringerova, A., Kardosova, A., Hromadkova, Z., Hribalova, V., Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants (2003) Fitoterapia, 74, pp. 52-61; Michaelsen, T.E., Gilje, A., Samuelsen, A.B., Hogasen, K., Paulsen, B.S., Interaction between human complement and a pectin type polysaccharide fraction, PMII, from the leaves of Plantago major L (2000) Scand. J. Immunol, 52, pp. 483-490; Nergard, C.S., Kiyohara, H., Reynolds, J.C., Thomas-Oates, J.E., Matsumoto, T., Yamada, H., Patel, T., Paulsen, B.S., Structures and structure-activity relationships of three mitogenic and complement fixing pectic arabino-galactans from the malian antiulcer plants Cochlospermum tinctorium A. Rich and Vernonia kotschyana Sch. Bip. ex Walp (2006) Biomacromolecules, 7, pp. 71-79; Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation (1998) Biophys. J, 75, pp. 1503-1512; Schuck, P., Rossmanith, P., Determination of the sedimentation coefficient distribution by least-squares boundary modeling (2000) Biopolymers, 54, pp. 328-341; Laue, T.M., Shah, B.D., Ridgeway, T.M., Pelletier, S.L., Computer-aided interpretation of analytical sedimentation data for proteins (1992) Analytical Ultracentrifugation in Biochemistry and Polymer, pp. 90-125. , Science. S. E. Harding, A. J. Rowe, and J. C. Horton, editors. Royal Society of Chemistry, Cambridge, UK; Gilbert, L.M., Gilbert, G.A., Sedimentation velocity measurement of protein association (1973) Methods in Enzymology, pp. 273-296. , C. H. W. Hirs and S. N. Timasheff, editors. Academic Press, New York; Rowe, A.J., (1979) Euromech 120 (Abstracts), , 5.3; Rowe, A.J., The concentration dependence of sedimentation (1992) Analytical Ultracentrifugation in Biochemistry and Polymer, pp. 394-406. , Science. S. E. Harding, A. J. Rowe, and J. C. Horton, editors. Royal Society of Chemistry, Cambridge, UK; Jacobs, D., Morrison, D., Inhibition of the mitogenic response to lipopolysaccharide (LPS) in mouse spleen cells by polymyxin B (1977) J. Immunol, 118, pp. 21-27; Tanford, C., (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, , Wiley Interscience, New York; Santacroce, P.V., Basu, A., Studies of the carbohydrate- carbohydrate interaction between lactose and GM3 using Langmuir monolayers and glycolipid micelles (2004) Glycoconj. J, 21, pp. 89-95; Basu, A., (2006), http://www.brown.edu/Research/Basu_Research_Group. 02/02/2006Harding, S.E., Challenges for the modern analytical ultracentrifuge analysis of polysaccharides (2005) Carbohydr. Res, 340, pp. 811-826; Stewart, R.J., Boggs, J.M., A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: Dependence on the glycolipid ceramide composition (1993) Biochemistry, 32, pp. 10666-10674; Kojima, N., Hakomori, S., Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells (1989) J. Biol. Chem, 264, pp. 20159-20162; Armin, G., Gege, C., Schmidt, R.R., Calcium-dependent carbohydrate-carbohydrate recognition between lewisx blood group antigens (2000) Angew. Chem. Int. Ed. Engl, 39, pp. 3245-3249; Kojima, N., Fenderson, B., Stroud, M., Goldberg, R., Habermann, R., Toyokuni, T., Hakomori, S.-I., Further studies on cell adhesion based on Lex-Lex interaction, with new approaches: Embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Lex expression (1994) Glycoconj. J, 11, pp. 238-248; Fenderson, B., Zehavi, U., Hakomori, S., A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective (1984) J. Exp. Med, 160, pp. 1591-1596; Eggens, I., Fenderson, B., Toyokuni, T., Dean, B., Stroud, M., Hakomori, S., Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells (1989) J. Biol. Chem, 264, pp. 9476-9484; Cavallaro, U., Christofori, G., Cell adhesion and signalling by cadherins and Ig-CAMs in cancer (2004) Nat. Rev. Cancer, 4, pp. 118-132; Kojima, N., Hakomori, S., Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction (1991) J. Biol. Chem, 266, pp. 17552-17558; Menikh, A., Nyholm, P.G., Boggs, J.M., Characterization of the interaction of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling (1997) Biochemistry, 36, pp. 3438-3447; Humphreys, T., Chemical dissolution and in vitro reconstruction of sponge cell adhesions: I. Isolation and functional demonstration of the components involved (1963) Dev. Biol, 8, pp. 27-47; Henkart, P., Humphreys, S., Humphreys, T., Characterization of sponge aggregation factor. A unique proteoglycan complex (1973) Biochemistry, 31, pp. 3045-3050; Jumblatt, J.E., Schlup, V., Burger, M.M., Cell-cell recognition: Specific binding of Microciona sponge aggregation factor to homotypic cells and the role of calcium ions (1980) Biochemistry, 19, pp. 1038-1042; Bucior, I., Burger, M.M., Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition (2004) Glycoconj. J, 21, pp. 111-123; Matsuura, K., Oda, R., Kitakouji, H., Kiso, M., Kitajima, K., Kobayashi, K., Surface plasmon resonance study of carbohydrate-carbohydrate interaction between various gangliosides and Gg3-carrying polystyrene (2004) Biomacromolecules, 5, pp. 937-941; Turner, S.R., Burger, M.M., Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells (1973) Nature, 244, pp. 509-510; Yu, S., Kojima, N., Hakomori, S.-I., Kudo, S., Inoue, S., Inoue, Y., Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN)GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 2854-2859; Song, Y., Withers, D.A., Hakomori, S., Globoside-dependent adhesion

    Depositing User: Gordon Morris
    Date Deposited: 18 Sep 2012 14:09
    Last Modified: 18 Sep 2012 14:09
    URI: http://eprints.hud.ac.uk/id/eprint/14609

    Available Versions of this Item

    • Weak self-association in a carbohydrate system. (deposited 18 Sep 2012 14:09)[Currently Displayed]

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©