Morris, Gordon, Ralet, M.C., Bonnin, E., Thibault, J.F. and Harding, S. E. (2010) Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydrate Polymers, 82 (4). pp. 1161-1167. ISSN 0144-8617

This is the latest version of this item.

Abstract

Acid extracted sugar beet (Beta vulgaris) pectin was subjected to enzymatic hydrolysis using fungal pectin methyl esterase (f-PME) and two endopolygalacturonanases (PGs I and II). From the hydrolysate, the RG-I fraction was separated and purified by chromatographic techniques. This RG-I fraction was shown to be of high weight average molar mass (188,000 g/mol), but low intrinsic viscosity (36 ml/g), which is consistent with a random coil conformation (Lp = 1.4 nm). The HG fraction was prepared by mild acid hydrolysis of acid extracted pectin. The HG fraction was found to have a relatively low weight average molar mass (20,000 g/mol), but a rather high intrinsic viscosity (77 ml/g), which is consistent with the HG fraction being rigid in solution (Lp = 9.8 nm). Lower molar mass pectins are richer in HG regions and pectins of higher molar mass are richer in RG-I regions. We conclude that the degradation of the HG region has an important impact on intrinsic viscosity, but less on molar mass and the inverse is true for the degradation of RG-I region. This has important consequences in terms of the functionality of sugar beet pectin molecules. © 2010 Elsevier Ltd.

Information
Library
Documents
[img]
Preview
Physical_Characterisation_of_the_Rhamnogalacturonan_and_Homogalacturonan_Fractions_of_Sugar_Beet_(Beta_vulgaris)_Pectin.pdf

Download (3MB) | Preview
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email