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Abstract Self-piercing riveting (SPR) is a high-speed mechanical fastening technique which is 

suitable for point-joining advanced lightweight sheet materials that are dissimilar, coated, and 

hard to weld. Major advances have been made in recent years in SPR technique. Latest literature 

relating to finite element analysis (FEA) of SPR joints is reviewed in this paper. The recent 

development in FEA of SPR joints are described with particular reference to three major factors 

that influence the success of SPR technique: SPR process, failure mechanism, and mechanical 

behavior of SPR joints. The main FE methods used in FEA of SPR joints are discussed and 

illustrated with brief case studies from the literature. Areas where further useful progress can be 

made are also identified. 
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1 Introduction 

Self-piercing riveting (SPR) is a cold-forming operation used to fasten two or more sheets 

of material by driving a semi-tubular rivet through the top sheet(s), piercing the bottom sheet, 

and spreading the rivet skirt under the guidance of a suitable die. As the process relies on a 

mechanical interlock rather than fusion, it can be used for a wide range of advanced materials 

that are dissimilar, coated, and hard to weld [1]. The principle of SPR is given in Fig. 1 [2]. 

Some general information on the SPR is available from Henrob [3], Bollhoff [4], Emhart [5], and 

TWI [6]. The SPR technique developed rapidly in recent years [7– 9]. Fratini and Ruisi [10] 

investigated the SPR for aluminum alloys-composites hybrid joints. Durandet et al. [11] studied 

the laser-assisted SPR of AZ31 magnesium alloy strips. Chenot et al. [12, 13] discussed some 

important numerical issues in metal-forming process, including meshing, remeshing and 

adaptivity, and parallel computing and coupling between work-piece and tools. Pickin et al. [14] 

reported the results from an investigation into the joining of lightweight sandwich sheets to 

aluminum using the SPR. Johnson et al. [15] proposed an online monitoring method of the SPR 



process to provide non-destructive testing of the mechanical interlock. Han et al. [16] reported a 

comparison of the mechanical behavior of SPR and resistance spot-welded joints under different 

loading conditions. Matsumura et al. [17] investigated dissimilar metal joint technology with the 

SPR to join aluminum alloyed roof panel with steel body. The complex joint geometry and its 

three dimensional nature combine to increase the difficulty of obtaining an overall system of 

governing equations for predicting the properties of the SPR joints. Finite element analyses 

(FEA) have been performed to achieve a deep understanding of the technique [18]. Latest 

literature relating to FEA of SPR joints is reviewed in this paper, in terms of SPR process, failure 

mechanism, and mechanical characteristics of the SPR joints. 

 

 
 

Fig. 1 Principle of self-piercing riveting [2] 

 

2 SPR process 

Due to the complicacy of the SPR process, it is very difficult to get insight into the joint 

during forming process. The effective way to analyze SPR joint during forming process is to 

perform numerical simulation. Several numerical techniques and different FEA software already 

allows the simulation of the SPR process. Mori et al. [19, 20] developed an SPR process for 

joining ultra-high-strength steel and aluminum alloy sheets. To attain better joining quality, the 

die shape was optimized by means of the finite-element (FE) simulation without changing 

mechanical properties of the rivet. Authors reported that the joint strength is greatly influenced 

by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower 

sheet to the total thickness. Abe et al. [21] investigated the effects of the flow stress of the 

highstrength steel sheets and the combination of the sheets on the joinability of the sheets by FE 

simulation and an experiment. They found that as the tensile strength of the high-strength steel 

sheet increases, the interlock for the upper high-strength steel sheet increases due to the increase 

in flaring during the driving through the upper sheet, whereas that for the lower high-strength 

steel sheet decreases. 

A 3D model was created by Atzeni et al. [22] in ABAQUS Explicit 6.4 and both the SPR 

process and the shear tests were simulated to take into account the strain and residual stress of 

the SPR joints. Comparisons with experimental results had shown good agreement, both in terms 

of deformed geometry and force-displacement curves. In a recent study, the same authors [23] 

presented a FE model for the analysis of the SPR processes. Correct model parameters were 

identified and numerical model validated in 2D simulations. In order to verify the capabilities of 



the software to predict joint resistance for given geometry and material properties, a 3D model 

was set up to generate a joint numerical model for simulating shearing tests. 

It is well kwon that strain hardening must be considered when analyzing large plastic 

deformation. Xu [24] employed a nonlinear model to simulate the SPR process for examining the 

physical attributes of SPR joints. The four-noded quadrilateral 2-D element was used in the 

numerical analysis and the remeshing element was set when element distortions were large. 

Based on a combination of numerical and experimental investigations, Haberkorn et al. [25] 

described an approach which starts with the SPR process simulation and ends in a manageable 

full car model. Casalino et al. [26] proposed equations for governing the onset and propagation 

of crack, the plastic deformation, the space discretization, the time integration, and the contact 

evolution during the SPR process. A case study of the SPR of two sheets of the 6060T4 

aluminum alloy with a steel rivet was performed using the LS-DYNA FE code. Some numerical 

problems entangled with the model setup and running were resolved and good agreement with 

experimental results was found in terms of joint cross-sectional shape and force–displacement 

curve. In Porcaro et al’s study [27], an LS-DYNA 2D axisymmetric SPR model was validated 

against experimental results and the results from the riveting process simulation were used to 

generate a 3D numerical model of the riveted connection. A plastic FE model was employed by 

Liu et al. [28] to simulate the deformation features of semi-tubular rivet and sheets in SPR 

process. Both the simulation and the test results shown that the plastic deformation were mainly 

in the contacting area between rivet end and sheets. 

Using DEFORM-2D software, Huang et al. [29] carried out an FE analysis of SPR process. 

The influence of raised altitude of concave die and rivet material on riveted joint performance 

was investigated. The results show that increasing raised altitude of concave die can enhance 

selflocking performance of riveted joint in certain scope. In another study [30], the SPR process 

with flat-bottom die joining 2A12 aluminum sheet and 08F steel sheet was simulated 

numerically in the same software. The authors reported that the stress and strain mainly 

concentrated in the region where the rivet contacts with the sheets, and the maximum stress was 

located in the rivet shank. Qu and Deng [31] presented a 2D axisymmetric FE model to predict 

the magnitude and distribution of deformation associated with the SPR process. In the study, the 

flow stress of the work-material was taken as a function of strain, strain rate, and temperature. 

The shape of the rivet joint and the stress, strain, and damage in both of the rivet and substrates 

were determined. Luo et al. [32] investigated the influence of die-rivet volume ratio on the SPR 

joints of Alto- steel and steel-to-Al combinations. The experimental results show that both of Al-

to-steel and steel-to-Al combinations have large undercut when die-rivet volume ratio is greater 

than 1. 

In Cacko et al’s papers [33, 34], initial trials carried out to optimize the SPR process using 

special algorithms implemented into commercial FEA codes were presented. The optimization of 

the FEA model referred to both real shapes of a joint and force history. The authors found that 

these two facts are crucial at the beginning of implementation of more sophisticated model 

taking into account complex stress state in the joint and relation with material separation. The 

numerical modeling of the SPR joint was verified by experimental stack-up. In another study, 

Cacko [35] presented a review of selected material separation criteria available in commercial 

MSC software applied for the SPR process simulation. 

The SPR technique is mainly applied to joining of two sheets. Preliminary research work 

has been made on multi-layer sheets SPR. In Kato et al.’s paper [36], an SPR process of three 

aluminum alloy sheets was simulated using LS-DYNA to find joinable conditions. In addition, 



the cross-tension test was also simulated by FEA to evaluate the joint strength. Abe et al. [37] 

investigated the joinability of the SPR process of three high-strength steel and aluminum alloy 

sheets. To improve the joinability with the high-strength steel sheets, the shape of the die was 

optimized by controlling the deforming behaviors of the sheets and rivet by means of the FE 

simulation. Huang et al. [38] carried out numerical simulation and experiment of multi-layer 

aluminum sheets SPR. The test results had shown that the transition point of the coneshaped 

head of the solid rivet, the size and position of groove affect directly the quality of the joints. The 

fillet at the transition point of the cone-shaped head of the solid rivet can decline the maximum 

stress of the rivet. Using Forge2005® FE software, Bouchard et al. [2] modeled large 

deformation of elastic–plastic materials for 2D and 3D configurations. They found that it is 

possible to export the mechanical fields of a 2D simulation onto a 3D mesh using an 

interpolation technique, and then to perform a 3D shearing test on the riveted structure. They 

also found that the mechanical history of the rivet/sheet assembly undergone during the SPR 

process plays a significant role in the numerical prediction of the final strength of the assembly. 

In order to evaluate the software robustness, numerical simulation of the SPR process was 

performed on three 1-mm-thick aluminum and steel sheets. Figure 2 shows the four different 

stages of the SPR of three sheets. 

The SPR process currently utilizes high-strength steel rivets. The combination between 

steel rivets with an aluminum car body not only makes recycling time consuming and costly, but 

also galvanic corrosion. Galvanic corrosion occurs when dissimilar, conductive materials are 

joined and the ingress of water forms an electrolytic cell. In this type of corrosion, the material is 

uniformly corroded as the anodic and cathodic regions moves and reverses from time to time [1]. 

Abe et al. [39] investigated the joinability of aluminum alloy sheets by aluminum self-pierce 

rivets. To pierce the upper sheet, the diameter and edge angle of the rivet were modified. The 

shape of the die was also designed from trial and error using FEA. The effectiveness of the 

designed rivet die was evaluated from an experiment. Hoang et al. [40] investigated the 

possibility of replacing steel self-piercing rivets with aluminum ones, when using a conventional 

die in accordance with the Boellhoff standards. An experimental program was carried out. The 

test results were exploited in terms of the riveting force–displacement curves and crosssectional 

geometries of the riveted joints. The test data were also used to validate a 2D-axisymmetric FE 

model. The mechanical behavior of a riveted connection using an aluminum rivet under quasi-

static loading conditions was experimentally studied and compared with corresponding tests 

using a steel rivet. 

 

3 Failure mechanism 

Although the SPR structures have been used in deferent industrial fields, especially in the 

automotive industry, there is still a lack of analytical description of mechanism of failure of the 

SPR structures. Numerical simulation may provide a means to overcoming these problems. Abe 

et al. [41] evaluated the SPR joinability of aluminum alloy and mild steel sheets through FE 

simulations and experiments. Defects in the riveting were categorized into the penetration 

through the lower sheet, the necking of the lower sheet, and the separation of sheets to obtain 

optimum joining conditions. Figure 3 shows the defects in the SPR joints. The results had shown 

that the SPR joinability for the upper steel sheet–lower aluminum sheet combination is better 

than that of the reverse combination. Eckstein et al. [42] characterized possible types of failure in 

the SPR structures. The paper differentiated four main fracture patterns in the joints. FE 

calculations were carried out using the program MSC Superform 2005 Release 3 with 



axisymmetric simplification for 2D analysis. It illustrated mechanical material investigations and 

simulations of fracture according to a micro-mechanical model of Rousselier. 

A model was created by Dannbauer et al. [43] which accounts for a correct local stiffness 

and enables lifetime assessments of SPR joints. Test results from various specimen types 

covering parameter variations of material type, sheet thickness, rivet diameter, and others were 

used in the model. The result is a substitution model similar to that applied to spot welding but 

by consideration of additional parameters to achieve a good agreement with the experiments. 

 

 
 

 

Fig. 2. Four different stages of the SPR of three sheets [2] 

 

Porcaro et al. [44] carried out an experimental and numerical study on the behavior of SPR 

joints in aluminum alloy AA6060 under quasi-static loading conditions. Factorial design was 

used in the planning of the experimental program and in the interpretation of results. A 3D model 



was generated using explicit FE code LS-DYNA and used to compute the force failure envelope 

in the specimen reference system as well as in the rivet reference system. 

 

 
 

Fig. 3. Defects in the SPR joints [41] 

 

4 Mechanical behavior of SPR joints 

Joints are often the structural weakest points of a mechanical system when considering 

strength. Consequently, a considerable amount of numerical studies has been carried out on the 

mechanical behavior of SPR joints. Research in this area has shown that SPR gives joints of 

comparable static strength and superior dynamic behavior. For efficient simulations of stiffness 

and operational strength behavior, a node-independent SPR model was developed by Ruprechter 

et al. [45]. Global and local stiffness were modeled in a proper way and it is possible to 

determine the local stresses needed for the fatigue life estimation. The simulation results were 

verified with experimental results. In research paper of Galtier and Duchet [46], the main 

parameters that influence the fatigue behavior of sheet material assemblies were presented and 

some comparisons were made within sheet material joining techniques. It was found that the 

SPR joint fatigue strength mainly depends on the grade and thickness of the sheet placed on the 

punch side. In Lim’s research paper [47], the simulations of various SPR specimens (coach-peel 

specimen, cross-tension specimen, tensile-shear specimen, pureshear specimen) were performed 

to predict the fatigue life of SPR connections under different shape combinations. FE models of 

various SPR specimens were developed using a FEMFAT SPOT SPR pre-processor. 

The SPR process needs a large setting force. This large setting force can cause severe joint 

distortion and this will affect the assembly dimensions. It was suggested that the inclusion of the 

SPR joint distortion is generally needed for accurate global assembly predictions. In Huang et 

al’s paper [48], a nonlinear FE model was built to study the joint distortion of SPR under 

different clamping force, blankholder diameter, and sheet size. The analysis results show that the 

clamping force and blankholder diameter are two important factors for the joint distortion while 

the sheet size has only minor effect. From the study, the relations of maximum joint distortion 

with clamping force, blankholder diameter, and sheet size were obtained, based on which the 

appropriate process parameters could be found to control the SPR joint distortion. Sui et al. [49] 

has built a FE model for simulating SPR process of 1.15 mm AA6016T4+1.5 mm AA5182O 



sheets. The results show that punching load was significantly affected by the deformation of rivet 

shank and the distortion of the joints was mainly affected by the binder force and the blankholder 

diameter. 

The structural behavior of the SPR joints under static and dynamic loading conditions and 

how they are modeled in large-scale crash analyses are crucial to the design of the overall 

structure. Therefore, there is a need to perform dynamic testing on elementary joints in order to 

study its dynamic behavior. Porcaro et al. [50] investigated the SPR connections under quasi-

static and dynamic loading conditions. Two new specimen geometries with a single rivet were 

designed in order to study the riveted connections under pull-out and shear impact loading 

conditions using a viscoelastic split Hopkinson pressure bar. 3D numerical simulations of the 

SPR connections were performed using the explicit FE code LS-DYNA. Static and dynamic tests 

were simulated using a simplified model that included only the specimen and the clamping 

blocks that connected the specimen to the bars. Figure 4 shows the 3D FE model of the test 

setup. 

 

 
 

 

Fig. 4. 3D models of the test setup: (a) pull-out; (b) shear. [50] 
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It is believed that the SPR joints act to augment mechanical system damping capacity. In 

the present author’s studies [51–53], free vibration characteristics of single lap-jointed 

cantilevered SPR beams were investigated theoretically using the 3D FEA. Numerical examples 

were provided to show the influence on the natural frequencies and natural frequency ratios of 

these beams caused by variations in the material properties of the substrate materials. Recent 

work by the present author and coworkers investigated in detail the free transverse vibration 

characteristics of single lap-joint SPR-bonded hybrid joints [54, 55]. The focus of the analysis 

was to reveal the influence on the transverse natural frequencies and mode shapes of the hybrid 

SPR joint of different characteristics of structural adhesives which encompass the entire 

spectrum of viscoelastic behavior ranging from the rubbery region to the rubber-to-glass 

transition region, then to the glassy region. It was found that the adhesive strength has a 

significant effect on odd mode shapes. When the adhesive is relatively soft, the mode shape at 

the lap joint is more pointed. But when the adhesive is relatively very stiff, the mode shape at the 

lap joint is fairly flat and there is a corresponding local stiffening effect. The consequence of this 

is that higher stresses will be developed in the stiffer adhesive than in the softer adhesive. 
 

5 Summary 

The SPR technique has become an increasingly popular mechanical joining method due to 

the growing use of alternative materials which are difficult or impossible to weld. Though it has 

been performed to achieve a deep understanding of the technique, the FEA of the SPR is still in 

its development phase. A literature survey on the FEA of the SPR technique has shown a limited 

number of relevant articles. In this paper, the research and progress in FEA of the SPR are 

critically reviewed from different perspectives, including process monitoring, process 

optimization, multilayer sheets riveting, aluminum rivet, fracture pattern, fatigue behavior, joint 

distortion, dynamic behavior, free vibration characteristics. To fully understand the behavior of 

the SPR, the FE model must include all the information from the riveting process and failure 

simulation. Thus there is also a requirement to determine the complex relationships between 

materials, SPR processes, and joint defects for the mechanical joint properties for both the static 

and dynamic cases. In other words, accurate, and reliable modeling of the SPR joint is still a very 

difficult task. The main goal of the paper is to review the latest literature relating to FEA of the 

SPR joints and to provide a basis for further research. 
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