Search:
Computing and Library Services - delivering an inspiring information environment

Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations

Ahmed, M., Gu, Fengshou and Ball, Andrew (2012) Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations. Journal of Physics: Conference Series, 364. 012133. ISSN 1742-6596

[img]
Preview
PDF - Accepted Version
Download (637kB) | Preview

    Abstract

    Traditional vibration monitoring techniques have found it difficult to determine a set of effective diagnostic features due to the high complexity of the vibration signals originating from the many different impact sources and wide ranges of practical operating conditions. In this paper Principal Component Analysis (PCA) is used for selecting vibration feature and detecting different faults in a reciprocating compressor. Vibration datasets were collected from the compressor under baseline condition and five common faults: valve leakage, inter-cooler leakage, suction valve leakage, loose drive belt combined with intercooler leakage and belt loose drive belt combined with suction valve leakage. A model using five PCs has been developed using the baseline data sets and the presence of faults can be detected by comparing the T2 and Q values from the features of fault vibration signals with corresponding thresholds developed from baseline data. However, the Q -statistic procedure produces a better detection as it can separate the five faults completely.

    Item Type: Article
    Subjects: T Technology > TJ Mechanical engineering and machinery
    Schools: School of Computing and Engineering
    School of Computing and Engineering > Automotive Engineering Research Group
    School of Computing and Engineering > Diagnostic Engineering Research Centre
    School of Computing and Engineering > Diagnostic Engineering Research Centre > Energy, Emissions and the Environment Research Group
    School of Computing and Engineering > Diagnostic Engineering Research Centre > Machinery Condition and Performance Monitoring Research Group
    School of Computing and Engineering > Diagnostic Engineering Research Centre > Measurement System and Signal Processing Research Group
    School of Computing and Engineering > Informatics Research Group
    School of Computing and Engineering > Informatics Research Group > XML, Database and Information Retrieval Research Group
    Related URLs:
    Depositing User: Cherry Edmunds
    Date Deposited: 11 Jul 2012 12:09
    Last Modified: 11 Jul 2012 12:09
    URI: http://eprints.hud.ac.uk/id/eprint/14197

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©