
University of Huddersfield Repository

Flouris, Giorgos, Konstantinidis, George, Antoniou, Grigoris and Christophides, Vassilis

Formal Foundations for RDF/S KB Evolution

Original Citation

Flouris, Giorgos, Konstantinidis, George, Antoniou, Grigoris and Christophides, Vassilis (2013)
Formal Foundations for RDF/S KB Evolution. Knowledge and Information Systems, 35 (1). pp.
153-191. ISSN 0219-1377

This version is available at http://eprints.hud.ac.uk/id/eprint/14001/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

1

Formal Foundations for RDF/S KB Evolution
Giorgos Flouris, George Konstantinidis, Grigoris Antoniou, and Vassilis Christophides

Abstract—There are ongoing efforts to provide declarative formalisms of integrity constraints over RDF/S data. In this context,
addressing the evolution of RDF/S knowledge bases while respecting associated constraints is a challenging issue, yet to receive
a formal treatment. We provide a theoretical framework for dealing with both schema and data change requests. We define the notion
of a rational change operator as one that satisfies the belief revision principles of Success, Validity and Minimal Change. The semantics
of such an operator are designed to be subject to customization, by tuning the properties that a rational change should adhere to. We
prove some interesting theoretical results and propose a general-purpose algorithm for implementing rational change operators in
knowledge bases with integrity constraints, which allows us to handle uniformly any possible change request in a provably rational and
consistent manner. Then, we apply our framework to a well-studied RDF/S variant, for which we suggest a specific notion of minimality.
For efficiency purposes, we also describe specialized versions of the general evolution algorithm for the RDF/S case, which provably
have the same semantics as the general-purpose one for a limited set of (useful in practice) types of change requests.

F

1 INTRODUCTION

R ECENTLY, we have been witnessing an explosion on
the number and size of curated Knowledge Bases

(KBs)1, published in RDF/S [1], [2] in the context of the
W3C Linked Open Data Initiative2. Several works [3],
[4], [5], [6], [7], [8], [9] have acknowledged the need
for introducing integrity constraints in KBs (and RDF/S
KBs in particular). This is motivated by the ongoing
discussion about the rule level of the Semantic Web [6],
as well as by the need to support various applications,
such as semantic interoperability [5], the integration
of ontologies with relational databases [4], [8], query
optimization [3] and efficient query answering [7], [9].

Given that RDF/S does not impose any constraints
on the data, any application-specific constraints (e.g.,
functional properties) or semantics (e.g., acyclicity in
subsumptions) can only be captured using declarative
formalisms for representing constraints on top of RDF/S
data. In this paper, we will use the term RDF/S KB
to denote possibly interlinked and populated RDF/S
ontologies (and their instance data) with associated in-
tegrity constraints.

RDF/S KBs are often subject to change for various
reasons, including changes to the modeled world, new
information on the domain (e.g., due to extracted meta-
data from text [10]), newly-gained access to information
previously unknown or classified (e.g., due to entity
resolution or disambiguation [11]), and other eventuali-
ties [12], [13], [14]. To address this problem, we propose
a change framework that supports arbitrarily complex

• G. Konstantinidis is with the Computer Science Department, University
of Southern California, Los Angeles.
E-mail: konstant@usc.edu

• G. Flouris, G. Antoniou, and V. Christophides are with the Institute of
Computer Science, Foundation for Research and Technology Hellas.
E-mail: {fgeo,antoniou,christop}@ics.forth.gr

1. http://www.w3.org/wiki/DataSetRDFDumps
2. http://linkeddata.org/

change requests in RDF/S KBs, as well as customizable
semantics for the change operator. We consider both
schema change requests (affecting the schema part of the
RDF/S KB, i.e., classes and properties) and data change
requests (affecting the data part, i.e., individuals), as well
as combinations of the two. Note that the problem of
determining the result of a change operation is com-
plicated by the constraints associated with RDF/S KBs,
because the result should be valid, i.e., it should satisfy
the associated validity model, represented by the integrity
constraints.

Our approach is driven by ideas of the belief revision
literature [15]. In particular, we adopt the principles
of Success (a change request must be implemented if
possible) and Validity (the result should satisfy the va-
lidity model). To apply a given change request to an
RDF/S KB, we first check whether a direct application
would result to a valid KB. For example, if the integrity
constraints state that the class subsumption hierarchy
must be acyclic, then the addition of a class subsumption
causing a cycle would result to an invalidity. In such
a case, additional changes (called side-effects) should be
applied on top of the original change request, to enforce
validity; in our example, the cycle could be broken
by removing one of the subsumptions causing it. In
most cases, there are various alternatives for the side-
effects to be used, so a selection mechanism is necessary
to determine the best (i.e., preferred) option; such a
mechanism should implement the Principle of Minimal
Change [15], which states that a change operation should
have the minimal possible impact upon an RDF/S KB
(under some application-specific notion of minimality).
Any change operator respecting these principles will be
called rational.

As RDF/S KBs are usually backended by relational
databases, we will use the relational model as an ab-
straction to formalize KBs and integrity constraints. In
particular, we consider DED constraints [16] (disjunctive
embedded dependencies), which can capture several inter-

2

esting types of constraints, including constraints mainly
used in the relational context, such as primary key and
foreign key constraints (used, e.g., in [5]), and constraints
used in the RDF/S and ontological context, such as
acyclicity and transitivity constraints (as in [3]) and
cardinality constraints (used in [4]). In addition, DEDs
can be used to detect and resolve invalidities efficiently,
using only syntactical manipulations which avoid the
need to perform standard (and inefficient) reasoning.
Our mechanism for selecting the preferred (minimal) side-
effects is modeled as a user-defined ordering between the
various solutions; as a result, it can be freely defined and
customized depending on the needs of the application
at hand. Using these abstractions, we provide a general
framework for changing a KB in the presence of integrity
constraints; our approach will be initially described using
the general abstraction and then we will show how these
ideas can be applied to RDF/S.

In addition, we describe a general-purpose algorithm
which, given a customization (i.e., a specific set of in-
tegrity constraints and selection mechanism), implements
a rational change operator for the given setting. The al-
gorithm uses a recursive process. In each step of the
recursion one violated integrity constraint is selected,
and we determine all the possible ways to resolve this
violation. Each resolution option may have unforeseen
implications, so the resolution that will lead to the most
preferable overall result (set of side-effects) cannot be,
in general, determined a priori. Therefore, we have to
consider each of the different options, as side-effects, in
alternative recursive branches. Then, another violated
integrity constraint is selected (possibly different for
each branch) and the process is repeated. At the end
of the recursion, there will be no violated constraints,
and the accumulated side-effects (one set per recursion
branch) are compared using the selection mechanism;
the preferred one is singled out and returned. Due to its
generality, this algorithm is NP-hard even for the RDF/S
case; for this reason, we also develop efficient specializa-
tions of the general-purpose algorithm, which exhibit the
same behavior and semantics, but are applicable only for
a specific setting.

This paper is structured as follows: in Section 2 we
present an example that helps identifying the main chal-
lenges associated with the problem we consider; this ex-
ample will be used for illustration purposes throughout
the paper. In Section 3, we provide a general modeling of
the problem of changing KBs in the presence of integrity
constraints. In Sections 4, 5, 6, we formalize the three
guiding principles of this work (Success, Validity and
Minimal Change respectively), as well as the validity
model and the selection mechanism. In Section 7, we
provide an algebraic viewpoint for our framework, by
defining rational change operators and proving that each
different parameterization (validity model and selection
mechanism) defines uniquely a rational change operator.
In Section 8, we describe the general algorithm that can
be used to implement a rational change operator and

TABLE 1
Motivating Example

Paper
DB Paper

RDF Paper
Cool Paper

PublishedIn
DB Paper KAIS

RDF Paper KAIS
Cool Paper Cool Journal

Journal
KAIS

Cool Journal

Cites
DB Paper Cool Paper

RDF Paper DB Paper
Cool Paper RDF Paper

show its correctness. Section 9 shows how the abstract
ideas of the previous sections can be applied to the case
of changes upon RDF/S KBs, and Section 10 describes
efficient algorithms that specialize the general-purpose
one to implement a rational change operator for the
RDF/S setting. Section 11 provides a summary of related
work, whereas Section 12 concludes the paper. Finally,
we include an Appendix containing the proofs of all the
formal results appearing in the paper. This paper is an
extended and highly revised version of [17]; additional
contributions include a better formalization and proofs,
revised algorithms, more complete comparison to related
work, more detailed description of the special-purpose
algorithms and a number of complexity results.

2 MOTIVATING EXAMPLE

As explained above, RDF/S KBs are backended by rela-
tional databases, so we will abstract and formalize our
framework for RDF/S KB evolution using relational con-
cepts. For illustration purposes, we will use throughout
the paper the example of Table 2, which shows a simple
relational database with 4 tables, indicating papers that
are published in journals, as well as the papers’ citations.

Let us suppose that we would like to impose some
constraints on the above schema, which are formally
expressed as shown below:
• σ1 = ∀x, yPublishedIn(x, y)→ Paper(x)
• σ2 = ∀x, yPublishedIn(x, y)→ Journal(y)
• σ3 = ∀x, yCites(x, y)→ Paper(x)
• σ4 = ∀x, yCites(x, y)→ Paper(y)
• σ5 = ∀xPaper(x)→ ∃yPublishedIn(x, y)
• σ6 = ∀x, y, zPublishedIn(x, y)∧PublishedIn(x, z)→

(y = z)
• σ7 = ∀xPaper(x)→ ∃y(Cites(x, y) ∧ (x 6= y))

The intuitive meaning of these constraints is that
papers are published in journals (σ1), and papers cite
papers (σ2). Each paper must be published (σ5), but the
same paper cannot be published to two different journals
(σ6). Finally, each paper must cite at least one other paper
(σ7).

Let us now suppose that a user notices
that Cool Paper is not actually published in
Cool Journal, and issues an update request to
delete PublishedIn(Cool Paper, Cool Journal). If
we go ahead and implement this change, we notice

3

that σ5 will be violated, because Cool Paper will
not be associated to any journal via the PublishedIn
relationship any more. This is not acceptable, per the
Principle of Validity; on the other hand, the Principle of
Success forces us to implement this change, as it is the
user’s desire to have the specific tuple removed. Our
only way out of the deadlock is to implement other
changes, in addition to the one explicitly requested by
the user, in order to resolve the constraint violation.
These changes are called side-effects. In this particular
example, we have two options:

1) To decide that Cool Paper is actually published in
some other journal, and introduce a new tuple, in
this case PublishedIn(Cool Paper,KAIS). Further
checks would determine that no other constraint is
violated and the process can stop, having as side-
effect only the addition of the above tuple.

2) To decide that Cool Paper is an erroneous record
(i.e., that Cool Paper is not a paper at all) and
must be deleted. In this case, deleting the tu-
ple Paper(Cool Paper) causes further problems,
namely that all the tuples in Cites that involve
Cool Paper must be deleted (otherwise, σ3, σ4 will
be violated). Continuing recursively, we realize
that the deletion of Cites(DB Paper, Cool Paper)
would further cause σ7 to be violated, because
now DB Paper does not cite any other paper,
causing further side-effects, which can be resolved
as above.

In the above example, it makes sense to follow the first
solution, as it causes a much smaller set of side-effects;
this is in accordance to the Principle of Minimal Change.

Note that the above problem could be resolved via
user interaction, i.e., by informing the user about the vio-
lation that his change is about to cause and asking him to
resolve it manually; this is the approach usually followed
by ontology editors and other interactive tools [18], [19].
However, this could quickly lead to user frustration, as
well as poor update results, especially in case of complex
datasets and/or constraints where the user is unable
to understand or predict the full ramifications of his
choices.

In the following sections, we will elaborate in more
details the above process, and formalize our approach
for determining the change result.

3 PROBLEM ABSTRACTION

3.1 Knowledge Bases and Change Requests
As explained above, we will use the relational model
as an abstraction mechanism for our framework. Thus,
knowledge will be expressed using expressions of the
form p(~a), where p is a predicate symbol and ~a is a vector
of constants (a1, . . . , an); we will call these expressions
ground facts. Expressions of the form ¬p(~a) will be called
negated ground facts. For simplicity of notation, we will
often use the symbols g,¬g to denote (negated) ground
facts.

A Knowledge Base (KB) is a finite set of
positive ground facts. Under the relational
notation, the KB of the example of Section 2 is:
K = {Paper(DB Paper), Paper(RDF Paper),
Paper(Cool Paper), PublishedIn(DB Paper,KAIS),
PublishedIn(RDF Paper,KAIS),
PublishedIn(Cool Paper, Cool Journal),
Journal(KAIS), Journal(Cool Journal),
Cites(DB Paper, Cool Paper),
Cites(RDF Paper,DB Paper),
Cites(Cool Paper,RDF Paper)}.

Per the standard relational semantics, for a KB K and
a ground fact g, it holds that K ` g iff g ∈ K. Thus,
in the above example we have: K ` Journal(KAIS)
and K 0 Cites(DB Paper,RDF Paper). This is in
accordance with the closed world semantics adopted by
relational databases, but also by standard RDF/S query
languages [20]. The semantics can be easily extended to
logical formulas, e.g., K ` g → g′ iff g /∈ K or g′ ∈ K. For
a set of formulas Φ, K ` Φ iff K ` φ for all φ ∈ Φ.

A change request C is a request to add and/or remove
information (ground facts) to/from the KB and will be
modeled as a finite set of (possibly negated) ground
facts. Positive ground facts correspond to additions,
whereas negated ones correspond to deletions; for exam-
ple C = {g1, g2,¬g3} is a request to add g1, g2 and remove
g3. In the motivating example, the request to remove
PublishedIn(Cool Paper, Cool Journal) is modeled as:
C = {¬PublishedIn(Cool Paper, Cool Journal)}.

3.2 Integrity Constraints and Change Operators

Integrity constraints will be represented using
DEDs [16], in particular the slightly richer class DED 6=,
which also supports inequality axioms. Formulas in
DED 6= are of the form ∀~xp̂(~x) → ∨i=1,...,n∃~yiq̂i(~x, ~yi),
where ~x, ~yi are tuples of variables and p̂(~x), q̂i(~yi) are
conjunctions of ground facts and (in)equality atoms of
the form (w = w′), (w 6= w′), where w,w′ are variables
or constants (note that p̂ may be the empty conjunction).

The class of constraints DED 6= is expressive enough
for capturing several types of constraints, including for-
eign key constraints (see, e.g., σ5 in Section 2), primary
key constraints (e.g., σ6), inclusion dependencies (e.g.,
σ1, σ2, σ3, σ4), transitive, symmetric or acyclic relations,
cardinality constraints and others [16]; note that this
covers the needs that have appeared in the related lit-
erature in both the ontological and the relational setting
(e.g., [3], [4], [5], [7], [8], [21], [22]) as well as the needs
of our RDF/S modelling (see Subsection 9.3). Moreover,
DEDs will prove suitable for constructing a convenient
mechanism for detecting and repairing invalidities.

A validity model is a finite set of DED constraints
Σ = {σ1, . . . , σn}. Given a constraint σ and an
assignment of the variables in ~x to constants ~a,
we define the grounded instance of (or simply instance of)
σ with respect to ~a (denoted by σ(~a)), to be the formula
that is produced by replacing all variables from ~x in σ by

4

their corresponding assignment in ~a. Returning to our
motivating example, σ3(Cool Paper,RDF Paper) =
Cites(Cool Paper,RDF Paper) →
Paper(Cool Paper). As we will see later, the detection
and resolution of violations will be based on constraint
instances.

Regarding the instances of constraints that contain
(in)equality axioms, a special note is necessary. In this
work, we employ the unique name assumption, which
means that different constants correspond (by default) to
different real-world entities. This assumption is suitable
for the RDF/S context, where different URIs correspond
to different resources (same for literals). This assumption
means that, given two different constants a1, a2, the
(in)equality axiom a1 = a2 (a1 6= a2) always evaluates
to false (true), whereas a1 = a1 (a1 6= a1) obviously
evaluates to true (false) respectively.

Thanks to this assumption, equality axioms can
always be eliminated from constraint instances. For
example, σ6(Cool Paper,KAIS,Cool Journal) =
PublishedIn(Cool Paper,KAIS)∧
PublishedIn(Cool Paper, Cool Journal) → false,
because KAIS = Cool Journal evaluates to
false; thus, σ6(Cool Paper,KAIS,Cool Journal) is
equivalent to ¬PublishedIn(Cool Paper,KAIS) ∨
¬PublishedIn(Cool Paper, Cool Journal). On the other
hand, σ6(Cool Paper,KAIS,KAIS) = true, because
KAIS = KAIS evaluates to false.

This is not entirely true for inequality axioms: we
can eliminate the inequality axioms that involve uni-
versally quantified variables and/or constants, but not
those that involve existentially quantified variables. For
example, σ7(Cool Paper) = Paper(Cool Paper) →
∃y(Cites(Cool Paper, y) ∧ (Cool Paper 6= y)).

We say that an RDF/S KB K satisfies the (instance of
the) constraint σ (σ(~a)), iff K ` σ (K ` σ(~a)). Similarly,
K satisfies a validity model Σ = {σ1, . . . , σn} (denoted by
K ` Σ) iff K ` σi for i = 1, . . . , n. A constraint instance
(or constraint, or validity model) is violated by a KB K iff
it is not satisfied. A KB that satisfies a validity model Σ
is called a valid KB with respect to Σ. It is trivial to note
that, for a KB K, K ` σ iff K ` σ(~a) for all ~a; similarly,
K ` Σ iff K ` σ(~a) for all σ ∈ Σ and ~a.

A change operator • is an operator that takes in the
input a KB and a change request and returns a new
KB. In this work we are interested in rational change
operators, which satisfy the principles of Success, Validity
and Minimal Change, introduced in the next sections.

4 PRINCIPLE OF SUCCESS

The Principle of Success informally states that the change
request should be implemented. Thus, given a change
request C = {g1, . . . , gn,¬g′1, . . . ,¬g′m} and a KB K, a
change operator • respects the Principle of Success iff
gi ∈ K • C, g′j /∈ K • C for all i = 1, . . . , n, j = 1, . . . ,m.
This condition can be more compactly (and equivalently)
formulated as: K•C ` C. Obviously, the above condition

cannot be satisfied if the change request requires both
the addition and the deletion of the same ground fact,
i.e., if g,¬g ∈ C, so we restrict our attention to change
requests for which this does not hold. It is easy to
devise operators that respect the Principle of Success.
The following operator will be of special interest for the
following:

Def. 1. The raw application of a change request C upon a
KB K (denoted by K+C) is defined as: K+C = (K ∪{g|g ∈
C}) \ {g|¬g ∈ C}.

As an example, taking the KB K and change
request C of Section 2 (see Subsection 3.1 for
their representation using ground facts), we get:
K1 = K+C = {Paper(DB Paper), Paper(RDF Paper),
Paper(Cool Paper), PublishedIn(DB Paper,KAIS),
PublishedIn(RDF Paper,KAIS),
Journal(KAIS), Journal(Cool Journal),
Cites(DB Paper, Cool Paper),
Cites(RDF Paper,DB Paper),
Cites(Cool Paper,RDF Paper)}.

It is trivial to show that the operator + respects the
Principle of Success. In fact, the raw application is the
straightforward way to apply a change request when no
integrity constraints are present. However, in the case
of associated constraints, this naive way of applying a
change request gives us no guarantees that the result
will be valid (e.g., K1 violates σ5(Cool Paper)). In the
next section, we will refine + to satisfy the Principle of
Validity as well.

5 PRINCIPLE OF VALIDITY

The Principle of Validity states that the resulting KB
should be valid. Formally, given a validity model Σ, a
KB K and a change request C, a change operator respects
the Principle of Validity iff K•C ` Σ. To develop a change
operator that satisfies the Principles of Success and Va-
lidity, we will start with the raw application operator
(+) and adapt it to take into account the validity model.
The underlying idea is that, given a KB K and a change
request C, we consider K1 = K+C; if K1 is not valid, we
apply additional changes to it, called side-effects, to make
it valid. To do so, we must first identify each invalidity,
i.e., each constraint instance σ(~a) for which K1 0 σ(~a),
and determine how it can be resolved, i.e., identify the
possible side-effect(s) that could be applied upon K1 to
guarantee that the result will satisfy σ(~a). Repeating this
process for all invalidities, we will eventually reach a
KB Kn which is valid. In the following subsections, we
describe the above process in detail.

5.1 Detection and Resolution of Invalidities
The DED form of constraints and the semantics de-
scribed in Subsection 3.1 allow both the easy detection
of an invalidity, and the determination of all possible op-
tions for repairing it, using just syntactical manipulations
over the violated constraint instances.

5

This can be easily seen with an example: let us take
the constraint instance σ1(Cool Paper, Cool Journal)
from Section 2. Then, per our semantics, given
some KB K, K ` σ1(Cool Paper, Cool Journal)
iff PublishedIn(Cool Paper, Cool Journal) /∈
K or Paper(Cool Paper) ∈ K. If K 0
σ1(Cool Paper, Cool Journal), then none of the above
conditions holds, so we can resolve this invalidity
by making one or more of those conditions true, i.e.,
by removing PublishedIn(Cool Paper, Cool Journal)
from K, or by adding Paper(Cool Paper) to K. For
the KB of Section 2, K ` σ1(Cool Paper, Cool Journal)
because Paper(Cool Paper) ∈ K.

The idea can be easily extended to DEDs
that contain existential quantifiers. For the case
of σ5(Cool Paper), K ` σ5(Cool Paper) iff
Paper(Cool Paper) /∈ K or there is some constant
b such that PublishedIn(Cool Paper, b) ∈ K. As before,
if K 0 σ5(Cool Paper) then the invalidity can be
resolved by removing Paper(Cool Paper) from K,
or by adding PublishedIn(Cool Paper, b) to K for
some constant b. Note that when existential quantifiers
are involved, we have many potential side-effects,
namely one for each different constant b. In our
motivating example, K ` σ5(Cool Paper) because
PublishedIn(Cool Paper, Cool Journal) ∈ K, but
K1 0 σ5(Cool Paper) because Paper(Cool Paper) ∈
K1 and there is no tuple of the form
PublishedIn(Cool Paper, b) ∈ K1 for any b. The
two resolution options described in Section 2
(adding PublishedIn(Cool Paper,KAIS) or removing
Paper(Cool Paper)), are in accordance to the options
discussed above.

Finally, note that equality axioms in a constraint
need not be considered, because they are eliminated
in each of its instances (see Subsection 3.2). Inequality
axioms can appear inside existential quantifiers, in which
case they simply overrule some of the options. For
example, if σ7(Cool Paper) is violated, we can remove
Paper(Cool Paper) or we can add Cites(Cool Paper, b)
for some constant b 6= Cool Paper.

The above process determines the different potential
side-effects that can be applied upon a KB in order to
resolve a particular invalidity. Each of these side-effects
is a set S of additions or deletions of ground facts, so
S will be formally modeled as a set of possibly negated
ground facts; note that this set is usually a singleton (e.g.,
in our examples it is always a singleton), but in some
cases (depending on the form of the constraint) it could
contain more than one additions/deletions.

We define the resolution set of a constraint instance
σ(~a) (denoted by Res(σ(~a))) to be the set of all Si that
can be used to resolve a violation of the constraint
instance. These are easy to identify by the constraint’s
syntax: we first transform the constraint instance into
its disjunctive normal form3, and use each disjunct to

3. http://en.wikipedia.org/wiki/Disjunctive normal form

form a Si, by putting all conjuncts in said disjunct in
Si. For example, Res(σ1(Cool Paper, Cool Journal)) =
{ {¬PublishedIn(Cool Paper, Cool Journal)},
{Paper(Cool Paper)} }, because
σ1(Cool Paper, Cool Journal) can be written
as: ¬PublishedIn(Cool Paper, Cool Journal) ∨
Paper(Cool Paper).

Based on the analysis above, it is easy to show the
following propositions4:

Prop. 1. Consider a KB K and a constraint instance σ(~a).
Then K ` σ(~a) iff there exists some S ∈ Res(σ(~a)) such that
K ` S.

Prop. 2. Consider a KB K and a constraint instance σ(~a). If
K 0 σ(~a) then for any S ∈ Res(σ(~a)) it holds that K+ S `
σ(~a). Moreover, this is the minimal way (with respect to ⊆)
to resolve this invalidity, i.e., for any S ′ such that K + S ′ `
σ(~a), there is some S ∈ Res(σ(~a)) such that for all (possibly
negated) ground facts g ∈ S it holds that K ` g or g ∈ S ′.

Proposition 1 shows how to detect an invalidity.
Proposition 2 shows how a detected invalidity can be
resolved, and verifies that our resolution method is both
correct and complete, in the sense that any other side-
effects used to resolve a given invalidity would have to
include at least the side-effects in some S ∈ Res(σ(~a))
(except from the ground facts that are already implied
by K).

In practice, it makes sense to assume that the KB
being changed is valid to begin with. Under this as-
sumption, any invalidities in K + C will be introduced
due to the raw application of C, so it limits the con-
straint instances that need to be considered for viola-
tion. In the example of Section 2, the change request
C = {¬PublishedIn(Cool Paper, Cool Journal)} could
only cause the violation of σ5(Cool Paper), i.e., this is
the only constraint instance that needs to be checked for
violation after the raw application of C. Formally:

Prop. 3. Consider a valid KB K, a change request C, and a
constraint instance σ(~a). If K+ C 0 σ(~a), then there is some
S ∈ Res(σ(~a)) and some (positive or negative) ground fact g
such that g ∈ C and ¬g ∈ S.

Note that the condition of Proposition 3 is necessary
but not sufficient for a constraint violation.

5.2 Refining Raw Application

Now the process outlined in the beginning of this section
can be described as follows: given a valid KB K and a
change request C, we first compute K1 = K + C. Then,
we select one constraint instance that is violated by the
result (say σ(~a)) and one possible set of side-effects that
resolve it (say S ∈ Res(σ(~a))), and apply it on K1, to
get K2 = K1 + S. Then we repeat the process, selecting
another violated constraint instance and a corresponding

4. Proofs for all propositions can be found in the Appendix.

6

set of side-effects, until reaching a valid KB, which is
returned as the result.

There are certain things that need to be noted in the
above process. First, we make the assumption that K
is valid, so as to use Proposition 3 and check a small
number of constraint instances for violation. Second,
more than one violations can be caused by a single
change request, and side-effects applied in previous
steps may also cause violations of their own. Therefore,
at each step, we should check the constraints that are
possibly violated by the change request, as well as by
all the side-effects that have so far been applied. This
cascading effect (side-effects causing side-effects of their
own), may lead to complicated sequences of side-effects
and resolutions which are difficult to foresee in the
general case.

Another important point is that the applied side-
effects should not conflict with the change request
itself. In the example of Section 2, the violation of
σ5(Cool Paper) could also be resolved by the ad-
dition of PublishedIn(Cool Paper, Cool Journal), and
this is also included in Res(σ5(Cool Paper)); nev-
ertheless, this option should be ignored, because it
directly contradicts the change request to remove
PublishedIn(Cool Paper, Cool Journal), so considering
it would violate the Principle of Success. A similar
comment is that one should also not apply side-effects
that conflict with previously applied side-effects, as this
could cause violations to previously resolved constraint
instances, eventually leading the process into an infinite
loop.

Another problem with the refined raw application is
that it does not specify the order in which the violated
constraint instances will be considered, nor a selection
process for the side-effects to apply (as there will usu-
ally be more than one options). The former issue will
be addressed in Section 8, where we will show that
the presented process satisfies the required principles,
regardless of order. The latter issue is related to the
Principle of Minimal Change and will be resolved using
a selection mechanism, to be described in Section 6.

One could devise change requests for
which the above process cannot lead to
any result. For example, the change request:
Cbad = {PublishedIn(DB Paper, Cool Journal),
¬Paper(DB Paper)} specifies that DB Paper was
published in Cool Journal, but, at the same time,
requires the deletion of DB Paper. It is obvious
that any operator that respects the Principle
of Success would lead to a result containing
PublishedIn(DB Paper, Cool Journal), and not
containing Paper(DB Paper); such a result cannot
respect the Principle of Validity (as it does not satisfy
σ1(DB Paper, Cool Journal)). The case studied in
Section 4 where there is some ground fact g such that
g,¬g ∈ C is a similar case. Change requests with this
property are called infeasible. Formally:

Def. 2. Consider a validity model Σ. A change request C is
called feasible with respect to Σ iff there is some valid KB K
such that K ` C. It is called infeasible otherwise.

6 PRINCIPLE OF MINIMAL CHANGE

The Principle of Minimal Change informally states that
the result of a change operation should be as close as
possible to the original KB. Thus, to formally define this
principle, we need to (a) define the notion of “distance”
between KBs, and, (b) devise a way to “compare dis-
tances”, in order to determine the preferred result. Given
these tools, we can then modify the process described
in Subsection 5.2 so that it does not select the side-
effects to apply during each resolution randomly, but in
such a way that the accumulated impact upon the KB is
minimal (according to the distance and the comparison
method discussed). The following subsections explain in
detail these notions.

6.1 Deltas
The most straightforward way to determine the distance
between KBs is using deltas, such as those introduced
in [23], [24], [25], [26], [27]. A delta is actually a descrip-
tion of the differences between two KBs. In our context,
we formalize deltas as sets of (possibly negated) ground
facts:

Def. 3. Consider two KBs K1,K2. We define the delta
between K1,K2, denoted by ∆(K1,K2) (or simply ∆, when
K1,K2 are irrelevant, or obvious from the context) as follows:
∆(K1,K2) = {g|g ∈ K2 \ K1} ∪ {¬g|g ∈ K1 \ K2}

It is trivial to see that ∆(K1,K2) = {g|K2 ` g and K1 0
g}∪{¬g|K2 ` ¬g and K1 0 ¬g} and that K1+∆(K1,K2) =
K2. Thus, ∆(K1,K2) contains exactly the changes that
must be raw applied upon K1 to get K2. In this sense,
∆(K1,K2) captures accurately the notion of distance.

6.2 Comparing Deltas
Our next step is to find a way to compare deltas.
Consider a KB K, a change request C, and a set of
deltas which represent the candidate sets of changes that
could be applied to respect the Principles of Success
and Validity; the comparison is used to determine which
delta represents the minimal change, i.e., which of the
candidate deltas is preferred for application. To do this,
we will use an ordering ≤K between deltas, with the
intuitive meaning that ∆1 ≤K ∆2 iff ∆1 represents a
set of changes that are preferable to apply upon K,
compared to ∆2. Recall that this comparison is needed to
allow us to make the optimal set of choices for the side-
effects to apply during the resolutions of the violated
constraint instances. The ordering depends on K; this
is necessary, because some changes (ground facts) in
a delta may be considered more, or less, important,
depending on the contents of the KB itself. For example,
in the RDF/S context, the removal of a class that is

7

low in the class hierarchy may be preferable than the
removal of a class that is higher in the hierarchy (see
also Subsection 9.4).

Some properties need to be imposed on said ordering
for it to be suitable as a selection mechanism. First, we
require it to be total, so that all deltas are comparable.
Second, we impose antisymmetry, to guarantee that there
will not be more than a single minimum. Third, we re-
quire the order to be wellfounded, i.e., that there is always
a minimum. These three properties together guarantee
that any set of deltas has a single minimum, so we will
always be able to determine the most preferable delta
out of a set of deltas.

The fourth required property is transitivity, dictated by
the intuitive fact that if ∆1 is preferred over ∆2, and ∆2

is preferred over ∆3, then ∆1 should be preferred over
∆3. Fifth, we impose the monotonicity property, which
intuitively states that adding ground facts to a delta
cannot make it most preferable, i.e., if ∆1 ⊆ ∆2 then
∆1 ≤K ∆2; this is dictated by our intuition behind the
Principle of Minimal Change.

Combining the above properties, we conclude that
≤K should be a well-order that satisfies the monotonicity
property; such orderings will be called change-generating:

Def. 4. Consider a KB K. An ordering ≤K is called change-
generating iff for all ∆1,∆2,∆3:
• Totality: ∆1 ≤K ∆2 or ∆2 ≤K ∆1.
• Antisymmetry: ∆1 ≤K ∆2 and ∆2 ≤K ∆1 implies

∆1 = ∆2.
• Wellfoundedness: for any non-empty set of deltas Z ,

there is some ∆ ∈ Z such that there is no ∆′ ∈ Z for
which ∆′ <K ∆.

• Transitivity: ∆1 ≤K ∆2 and ∆2 ≤K ∆3 implies
∆1 ≤K ∆3.

• Monotonicity: ∆1 ⊆ ∆2 implies ∆1 ≤K ∆2.

Note that a simple cardinality-based comparison is
not change-generating, because it is not wellfounded.
However, it is easy to show that a change-generating
order can always be defined; for example, we could use
cardinality comparison, and apply some wellorder in
case of a tie (wellorders can always be defined, per the
wellordering theorem5), e.g., by assigning priorities on
the addition/removal of tuples from certain relations. An
example of a change-generating ordering that is useful
for the RDF/S context will appear in Subsection 9.4.

Now consider a set of deltas Z which are candidates
for application upon a KB K in response to a change
request C; then, as explained above, a change-generating
ordering ≤K allows us to select the most preferable
delta to apply upon K; such a delta will be denoted
by minK(Z). Similarly, a family of change-generating
orderings �= {≤K |K: valid KB, ≤K: change-generating}
allows us to select the most preferable delta to apply
upon each valid KB and will be called a selection mecha-
nism.

5. http://en.wikipedia.org/wiki/Well-ordering theorem

Note that the selection mechanism selects deltas,
rather than resulting KBs; this is reasonable, because the
distance of two KBs K, K′ is determined by ∆(K,K′).
However, our ultimate goal is to select the KB whose
delta (distance) from the original KB is minimal. For this
reason, we will often abuse notation and write K1 ≤K K2

to denote that ∆(K,K1) ≤K ∆(K,K2); similarly, for a set
of KBs Ω, we write minK(Ω) to denote the KB K0 for
which ∆(K,K0) = minK({∆(K,K′)|K′ ∈ Ω}).

6.3 Formalizing the Principle of Minimal Change
The Principle of Minimal Change dictates that a change
operator should select the KB which is closest to the orig-
inal KB, over all other potential results, i.e., results that
satisfy other conditions related to the change operator
(in our case, the Principles of Success and Validity). So,
given a KB K and a change request C, and supposing
a set Ω of potential results, the Principle of Minimal
Change states that K • C = minK(Ω).

To modify the process described in Subsection 5.2 to
respect the Principle of Minimal Change, we need to
make sure that the resolution selected in each step will
lead to the preferred delta. Note that we require the
delta as a whole to be preferred, not each resolution
in isolation, therefore a greedy strategy selecting the
locally preferred resolution (i.e., the set of side-effects
S ∈ Res(σ(~a)) that is preferred according to �) would
not work. Instead, we need to consider all possible op-
tions independently to form the set of candidate deltas,
Z , and then select the preferred one (according to �).
Details on this process will appear in Section 8.

7 RATIONAL CHANGE OPERATORS

Rational change operators are those which satisfy the
Principles of Success, Validity and Minimal Change.
Formally:

Def. 5. Consider a validity model Σ and a selection mech-
anism �. A change operator • will be called rational with
respect to Σ, � iff for all valid KBs K and feasible change
requests C it holds that K • C = minK(Ω), where Ω =
{K′|K′ ` C,K′ ` Σ}. Moreover, whenever K is invalid or
C is infeasible, it holds that K • C = K.

Note that infeasible change requests have been ex-
empted from the requirement to satisfy the principles.
Also, the input KB is assumed to be valid (this is
necessary to use Proposition 3). According to Defini-
tions 2 and 4 a rational change operator always exists.
In addition, it is unique, because by the definition of �,
there is a unique minimum:

Prop. 4. For any given validity model Σ and selection
mechanism �, there is a unique rational change operator.

A rational change operator cannot be easily defined in
a declarative way, because one needs to take into account
all possible combinations of KBs and change requests,
and all possible invalidities that a change request could

8

cause on any given KB. On the other hand, Proposition 4
shows that each selection mechanism uniquely identifies
a rational change operator, so one could indirectly use
this feature to define a rational change operator by
defining a selection mechanism. A procedural way to
define rational change operators will be explained in
Section 8 below.

8 ALGORITHM

In this section, we will formalize and elaborate on
the algorithm sketch provided in Subsection 6.3. In
a nutshell, we first raw apply C upon K, and check
for constraint instance violations. Then, for each such
violation, σ(~a), we explore all possible resolutions, i.e.,
all different S ∈ Res(σ(~a)). Each different resolution
spawns a new recursive branch, and the above process is
repeated recursively. Eventually, a multitude of different
sets of resolutions are generated, each corresponding to
a delta; we compare those deltas using �, and return the
preferred (minimal) one.

More specifically, the algorithm will be based on a
recursive function, Change (see Algorithm 1), which
takes as input the set Crem of ground facts that remain
to be applied to the KB, a valid KB K0, and the most
preferred delta (∆pref) that has been calculated so far
for Crem, so as to stop exploring potential solutions if
they are already less preferred than ∆pref (exploiting
the monotonicity and transitivity properties of ≤K). The
Change function returns the preferred set of ground facts
that are required to apply Crem to K0; this set contains
the ground facts in Crem, plus all their side-effects, but
does not contain any ground facts already implied by K0.
For implementation purposes, we assume a special delta,
denoted by ∆∞, which is used to mark unacceptable
resolution branches and is assumed to be less preferable
than any other delta.

In the first call to Change, Crem is set equal to the
original change request C, K0 is the original KB K (and
does not change between the recursive calls) and ∆pref

is set to ∆∞, so as to allow any solution to constitute
the first potentially preferred result; hence, ∆pref is
either equal to ∆∞ (for as long as no complete solution
has been found), or equal to the most preferred of the
complete solutions that have been found so far. So, the
first call (Change(C,K,∆∞)) returns the preferred set of
effects and side-effects (delta) for the original change
request upon K. Note that this call should be made
through another procedure that will check whether K
is valid and will, upon return of Change, apply its
output to K (using raw application), unless the output
is ∆∞ (denoting that the original update was infeasible
– see also Proposition 5). This procedure is simple and
omitted.
Change relies on a recursive process. In line 1 we

check whether it makes sense to continue exploring
this recursive branch. If Crem is contradictory, then the
previously selected resolution options contradict each

other, so the current resolution branch must be dropped.
Similarly, if the cost of applying Crem is larger than
∆pref , then the current branch cannot lead to a preferred
solution, so it need not be explored further. In both cases,
the branch is rejected by returning ∆∞ (see line 2). If, on
the other hand, K0+Crem is valid (line 4), then a solution
has been reached, so the recursion stops, returning the
effects and side-effects found (∆(K0,K0 + Crem)).

If none of the above is true, then there are still viola-
tions that need to be considered. One of them is arbitrar-
ily selected in line 7 (say σ(~a)); note how Proposition 3 is
used here to avoid checking all constraint instances. To
resolve the given violation, we need to take one or more
S ′ ∈ Res(σ(~a)), different from S, i.e., different from the
one that allowed us to identify the violation and is part
of Crem. If there are no such S ′, then we return ∆∞ in line
13 (this can happen only when Res(σ(~a)) is a singleton).
If such an S ′ exists, then it is added to our side-effects.
Given that we cannot know a priori which S ′ will lead to
the preferred solution, we consider them all separately:
each S ′ is added to the current Crem, and a new instance
of Change (in effect, a new recursive subtree) is spawned
to calculate the consequences of this choice, i.e., S ′ (lines
9-11). The returned delta of each alternative is compared
with the best that has been found so far (∆pref), and the
next S ′ is considered. Eventually, one branch will return
the preferred delta, which will be recursively propagated
to the caller through line 15.

Algorithm 1: Change Function
(Change(Crem,K0,∆pref))

1: if there is a ground fact g such that g,¬g ∈ Crem or
∆pref ≤K0 ∆(K0,K0 + Crem) then

2: return ∆∞
3: end if
4: if K0 + Crem: valid then
5: return ∆(K0,K0 + Crem)
6: end if
7: Take a (possibly negated) ground fact g ∈ Crem such

that there exists a constraint instance σ(~a) for
which ¬g ∈ S for some S ∈ Res(σ(~a)) and
K0 + Crem 0 σ(~a)

8: if there is at least one S ′ ∈ Res(σ(~a)) such that
S ′ 6= S then

9: for all S ′ ∈ Res(σ(~a)), S ′ 6= S do
10: ∆pref :=

minK0
({∆pref , Change(Crem ∪ S ′,K0,∆pref)})

11: end for
12: else
13: return ∆∞
14: end if
15: return ∆pref

In all comparisons, any delta is preferable over ∆∞;
if any two alternatives are equally preferred, then they
must be equal (antisymmetry). Upon termination, the
output of the algorithm (say ∆out) is the delta that

9

should be raw applied upon K (to produce the result,
K + ∆out), unless ∆∞ is returned, in which case the
original change is infeasible.

Example 1. Let us see how this algorithm
would handle the example of Section 2. Initially,
Change will be called with parameters: Crem =
{¬PublishedIn(Cool Paper, Cool Journal)}, K0 = K
and ∆pref = ∆∞. The check of line 1 will fail, so the
algorithm will proceed to compute K0 + Crem (line 4); let’s
denote this result by K1. As explained before, K1 is not
valid because it violates σ5(Cool Paper), so the check of
line 4 will fail and line 7 will identify this violation and
set: g = ¬PublishedIn(Cool Paper, Cool Journal),
σ(~a) = σ5(Cool Paper) and S =
{PublishedIn(Cool Paper, Cool Journal)}. For
the particular constraint instance it holds that:
Res(σ5(Cool Paper)) = {{¬Paper(Cool Paper)},
{PublishedIn(Cool Paper,KAIS)},
{PublishedIn(Cool Paper, Cool Journal)}. Thus,
the FOR loop of line 9 will iterate over the first two sets
of side-effects (which also correspond to the two options
described in Section 2).

For the sake of this example, let’s assume that
S ′ = {PublishedIn(Cool Paper,KAIS)} is
considered first. Then, line 10 will call the function:
Change({¬PublishedIn(Cool Paper, Cool Journal),
PublishedIn(Cool Paper,KAIS)}, K, ∆∞). In this
new recursive call, the check of line 1 is again false, but
the check of line 4 is true, because no rule is violated
for the new KB, as Cool Paper appears now to be
published in some other journal (KAIS). Thus, line 5
will return {¬PublishedIn(Cool Paper, Cool Journal),
PublishedIn(Cool Paper,KAIS)}; this corresponds to a
candidate full solution for the set of side-effects to apply upon
the original KB.

After the recursive call returns, the original Change
function will execute line 10 and, since ∆pref = ∆∞, it will
set ∆pref = {¬PublishedIn(Cool Paper, Cool Journal),
PublishedIn(Cool Paper,KAIS)}. Then, the
second S ′ will be considered, namely S ′ =
{¬Paper(Cool Paper)}, spawning a new recursive call:
Change({¬PublishedIn(Cool Paper, Cool Journal),
¬Paper(Cool Paper)}, K, ∆pref).

In this new recursive call, line 1 will determine
whether {¬PublishedIn(Cool Paper, Cool Journal),
PublishedIn(Cool Paper,KAIS)} ≤K0

{¬PublishedIn(Cool Paper, Cool Journal),
¬Paper(Cool Paper)}. This, of course, depends on
the definition of ≤K0 , so let’s assume that the comparison
is based on the cardinality of the deltas (smaller deltas
are preferred); in case of equal cardinality, one prefers the
deltas that remove (rather than add) tuples; in case of a
further tie, the actual tuples are considered, taking into
account both the relations and the constants involved (details
are irrelevant and omitted). For the particular selection
mechanism, the check fails, so we proceed with line 4, which
identifies an invalidity. In particular, line 7 will identify

that σ3(Cool Paper,RDF Paper) is violated because for
g = ¬Paper(Cool Paper), S = {Paper(Cool Paper)}
the conditions of line 7 hold.

The only S ′ ∈ Res(σ3(Cool Paper,RDF Paper)
for which S 6= S ′ is S ′ =
{¬Cites(Cool Paper,RDF Paper)}. Thus, a new
recursive call will be spawned, namely: Change(
{¬PublishedIn(Cool Paper, Cool Journal),
¬Paper(Cool Paper), ¬Cites(Cool Paper,RDF Paper)},
K, ∆pref). However, for this recursive call, the
check of line 1 will succeed because ∆pref =
{¬PublishedIn(Cool Paper, Cool Journal),
PublishedIn(Cool Paper,KAIS)} ≤K0

{¬PublishedIn(Cool Paper, Cool Journal),
¬Paper(Cool Paper), ¬Cites(Cool Paper,RDF Paper)},
as the former has cardinality 2, whereas the latter has
cardinality 3. This will force the final recursive call to return
∆∞.

Line 10 of the old recursive call will now compare ∆∞
with ∆pref and keep ∆pref to return to the original
call, which, in turn will also keep ∆pref in its own
comparison of line 10, eventually returning it. Thus,
the result of said change operation is K + ∆pref ,
i.e., {Paper(DB Paper), Paper(RDF Paper),
Paper(Cool Paper), PublishedIn(DB Paper,KAIS),
PublishedIn(RDF Paper,KAIS),
PublishedIn(Cool Paper,KAIS),
Journal(KAIS), Journal(Cool Journal),
Cites(DB Paper, Cool Paper),
Cites(RDF Paper,DB Paper),
Cites(Cool Paper,RDF Paper)}.

It can be shown that the Change function described
in Algorithm 1 implements a rational change operator:

Prop. 5. Consider a validity model Σ, a selection mechanism
�, and the corresponding rational change operator •. Consider
also some valid KB K and a change request C. Suppose that
the call Change(C,K,∆∞) terminates with output ∆out. If
C: feasible, then ∆out 6= ∆∞ and K + ∆out = K • C. If
C:infeasible then ∆out = ∆∞.

Note that the Change function (Algorithm 1) does not
specify the order in which the rules are considered in
line 7 (see also the related discussion in Subsection 5.2);
Proposition 5 shows that this is not an issue, as the
algorithm will report the correct result, regardless of the
order.

The computational properties (termination and com-
plexity) of Algorithm 1 depend on the actual validity
model and selection mechanism employed. Since these
are not specified in the above general discussion, one
cannot predict, e.g., the complexity of comparing deltas
in lines 1 and 10, which could range to anything from
constant to undecidable, depending on the actual selec-
tion mechanism. Similarly, the validity checking in lines
4, 7 depends on the actual constraints considered; an
extensive complexity analysis for this problem under
various assumptions appears in [21], [28]. In the next

10

sections, we will confine ourselves to the RDF/S context
and show how the presented framework can be applied
to RDF/S KB evolution, as well as the related termina-
tion results.

9 TAILORING THE FRAMEWORK TO RDF/S
To apply our framework to a given evolution context
(such as RDF/S KB evolution), we need to:
• determine the predicates and constants that will be

used to model the information (ground facts) in the
corresponding KBs;

• define, using DED 6= constraints, the validity model
that expresses the constraints/semantics of said con-
text;

• define a selection mechanism that captures the in-
tuition of the knowledge engineer regarding the
preferred delta to apply upon a KB for the specific
context.

In this section, we will perform this exercise for the
RDF/S context under the semantics proposed in [3]; a
similar approach can be used for other contexts (includ-
ing other RDF/S formalizations).

9.1 An Introduction to RDF/S

RDF [1] uses resources to represent real-world entities.
Triples of the form (subject, predicate, object) are used to
describe resources. The set U×U× (U∪L) is the set of
all triples, where U, L are two disjoint and infinite sets
denoting the URIs (identifiers for resources) and literals
respectively.

RDFS [2] introduces typing and inference semantics to
RDF. Typing semantics determines whether a resource
is a particular object in the real world (i.e., it is an
individual), or it is a collection of other resources (i.e., it is
a class) or it is a binary relation between resources (i.e., it
is a property) [3]. Inference semantics allows us to infer
knowledge that is not explicit in the RDF/S KB (e.g.,
implicit subsumption relations) [3]. In addition, RDFS
introduces special URIs (e.g., rdfs:subClassOf), which
allow triples to describe, for example, subsumption and
instantiation relationships, or to determine the domain
and range of a property. For more details on typing,
inference, and the semantics of the various RDFS con-
structs, see [2], [3].

An RDF/S KB K is defined as a finite set of RDF triples
that adhere to the semantics of RDFS. In the following,
we will use the term RDF/S to denote RDF triples or
features that adhere to the RDFS semantics.

For simplicity, we focus on the semantical information
of RDF/S, so certain features like bags, lists, comments,
reification, blank nodes etc are not considered in this ver-
sion of the work. Moreover, metaclasses (collections of
classes) and metaproperties (collections of properties) [3]
can be easily handled, and are omitted for simplicity. The
ideas presented in this paper can easily be extended to
include these features (see also [29]).

9.2 Modeling RDF/S KBs Using Ground Facts

The semantical information contained in RDF/S triples
can easily be mapped to ground facts. The basic idea
is that each triple type is associated with some predi-
cate that models this type of information, whereas the
constants used are the URIs and literals (U ∪ L). We
define the set Sp ⊂ U which contains all the RDF/S
URIs which have special semantics, such as: rdf :type,
rdfs:Class , rdf :Property , rdfs:Resource, rdfs:subClassOf ,
rdfs:subPropertyOf , rdfs:domain , rdfs:range , etc. Con-
stants in Sp will be called special URIs, whereas URIs
in U \ Sp will be called custom URIs.

The used predicates are those shown in Table 2. The
predicates Cl, Pr, Ind are used to determine the type
of a given custom URI. The rest of the predicates (CSub,
PSub, Dom, Rng, CI , PI) are used to determine various
relationships between URIs and/or literals (subsump-
tion, domain, instantiation etc), as described in the table.

Table 3 shows how the different RDF/S triples are
associated with particular ground facts and allows the
transformation of a set of triples into a set of ground
facts (and vice-versa). Note that the constants A,B that
appear in Table 3 are assumed to be custom URIs,
whereas C (that appears in the last row) may be a custom
URI or a literal. These associations follow the seman-
tics described in [3]. The typing semantics of RDF/S
is determined by the three special RDF/S resources,
rdfs:Class , rdf :Property , rdfs:Resource, as shown in the
first three rows of Table 3. The other triple types express
factual information, like class/property subsumption,
the specification of the domain/range of a property, and
class/property instantiation. In the last row, B in triple
(A, B, C) is the property which is being instantiated
by the pair (A,C) (associated with the ground fact
PI(A,C,B)).

Using Table 3, a set of triples can easily be trans-
formed into a set of ground facts (and vice-versa). The
only thing that should be noted is that the originally
provided triples may be incomplete, in the sense that
certain implicit information may be missing. For ex-
ample, seeing the triple (A, rdf :type, rdfs:Class) we
conclude that A is a class and add Cl(A), accord-
ing to Table 3; however, all classes are subclasses of
rdfs:Resource, but this fact is often omitted (i.e., the triple
(A, rdfs:subClassOf , rdfs:Resource) may not be in the
RDF/S KB, so CSub(A, rdfs:Resource) will not be added),
even though it is actually an indispensable part of the
knowledge that A is a class. Similarly, implicit (transi-
tive) instantiations or subsumptions are often omitted.
Identifying this missing information and adding it to
the RDF/S KB can be done in a post-processing phase
that would use rules to identify which triples (or ground
facts) follow from other triples (or ground facts). As
this is a purely technical process that poses no research
challenges, it is omitted.

Note that we could alternatively use logical proposi-
tions to express certain triples; for example, class sub-

11

TABLE 2
Predicates for RDF/S Modeling

Predicate Intuitive Meaning
Cl(A) A is a custom URI, and represents a class
Pr(A) A is a custom URI, and represents a property
Ind(A) A is a custom URI, and represents an individual
CSub(A,B) A is a subclass of B
PSub(A,B) A is a subproperty of B
Dom(A,B) B is the domain of property A
Rng(A,B) B is the range of property A
CI(A,B) A is an instance of class B
PI(A,B,C) A has property C with value B (i.e., the pair

(A,B) is an instance of property C)

TABLE 3
Association of RDF/S Triples with Ground Facts

RDF/S Triple Ground Fact
(A, rdf :type, rdfs:Class) Cl(A)
(A, rdf :type, rdf :Property) Pr(A)
(A, rdf :type, rdfs:Resource) Ind(A)
(A, rdf :type, B) CI(A,B)
(A, rdfs:subClassOf , rdfs:Resource) CSub(A, rdfs:Resource)
(A, rdfs:subClassOf , B) CSub(A,B)
(A, rdfs:subPropertyOf , B) PSub(A,B)
(A, rdfs:domain, rdfs:Resource) Dom(A, rdfs:Resource)
(A, rdfs:domain, B) Dom(A,B)
(A, rdfs:range, rdfs:Resource) Rng(A, rdfs:Resource)
(A, rdfs:range, rdfs:Literal) Rng(A, rdfs:Literal)
(A, rdfs:range, B) Rng(A,B)
(A, B, C) PI(A,C,B)

sumption between two classes A,B is often captured
using a formula of the form ∀xA(x) → B(x). This ap-
proach is often called schema-aware because the relations
used for the representation are the classes and properties
of the schema.

On the other hand, our approach is schema-agnostic,
because the same relations are used for the representa-
tion of any RDF/S KB, regardless of the classes or prop-
erties appearing in it. The schema-agnostic approach is
more adequate for our purposes because it allows us
to capture assertions of the form “A is a class”, and,
consequently, support operations such as the addition
and removal of classes, properties etc [30].

9.3 An RDF/S Validity Model

As already mentioned, this work uses the RDF/S model
which was proposed in [3] in an effort to provide a
group of sound and complete algorithms for RDF/S
query containment and minimization. This model en-
forces a clear role distinction between types (classes,
properties, individuals), requires explicitly specified and
unique domains/ranges for properties, no cycles in the
subsumptions, while property subsumption and instan-
tiation respects corresponding domain/range subsump-
tion/instantiation relationships. Similar semantics for
RDF/S have also been recognized and suggested in [31]
in an effort to provide compatibility between RDF/S and
OWL DL.

Table 4 shows the integrity constraints that we impose
on RDF/S KBs to capture the semantics of RDF/S (e.g.,
R10.1 ensures transitivity of class subsumption), as well
as the restrictions imposed by [3] (e.g., R13 guarantees
that the domain of a property is unique). For simplicity,
Table 4 uses the additional predicates URI , Lit to repre-
sent custom URIs and literals respectively, i.e., URI(x)
(Lit(x)) is true iff x ∈ U \ Sp (x ∈ L); URI(x), Lit(x)
should be replaced by true or false depending on the
value of x in each constraint instance.

In Table 4, constraints R1.1 − R7.3 determine the
required types for the constants that appear in each
of the predicates. Constraints R8.1 − R8.3 guarantee
the role distinction between different custom URIs, i.e.,
that classes, properties and individuals are disjoint. The
special URI rdfs:Resource is the root of the class hierar-
chy, so all individuals are instantiated under it, and all
classes are subsumed by it (R9.1, R9.2). The constraints
R10.1− R11.2 guarantee that CSub, PSub are transitive
and irreflexive; the former property is imposed by RDFS,
whereas the latter stems from the requirement expressed
in [3] for acyclic hierarchies. Note that ⊥, appearing in
R10.2, R11.2 is the logical falsehood; to transform those
constraints to the standard DED 6= form, we can replace
⊥ with, e.g., (x 6= x). The existence and uniqueness
of the domain/range of a property is imposed through
R12−R14. Inheritance of instantiation is imposed using
R15, R16. Finally, the domain and range of a property
should be respected by subsumed properties and by
property instances, as described by R17.1−R18.2.

9.4 An RDF/S Selection Mechanism
In this subsection, we describe the third and final step
towards applying our evolution approach, which is to
propose a selection mechanism suitable for RDF/S. To
do so, we consider an ordering over predicates and
define that the preferred delta is the one that contains
less changes involving the least preferable predicates; in
case of a tie, a further ordering over constants (URIs and
literals) allows us to define an ordering over ground facts
that have the same predicate and break the tie (to satisfy
the requirement for the ordering to be wellfounded).

Even though the assumptions and intuitions under-
lying our proposal are reasonable for most applications
(and, in particular, for the evolution of curated RDF/S
KBs), we understand that there may be applications
where it fares poorly; in fact, we argue that no single
selection mechanism is suitable for all evolution con-
texts/applications, because it should reflect the appli-
cation’s peculiarities. Therefore, our proposal should be
viewed as a general guideline, and as an example of how
the intuition regarding a selection mechanism can be
formalized and used to define a rational change operator.

The basic idea is that certain changes on the KB
are more disruptive than others. For example, deleting
a class is a more important change than deleting a
class subsumption relationship, so side-effects contain-
ing ground facts of the form ¬Cl(A) are less preferable

12

TABLE 4
Integrity Constraints for RDF/S

Integrity Constraint Intuitive Meaning
R1.1: ∀xCl(x)→ URI(x)
R1.2: ∀xPr(x)→ URI(x)
R1.3: ∀xInd(x)→ URI(x)

Allowable constants forCl,
Pr, Ind

R2.1: ∀x, y CSub(x, y)→ Cl(x)
R2.2: ∀x, y CSub(x, y) → Cl(y) ∨ (y =
rdfs:Resource)

Typing of CSub

R3.1: ∀x, y PSub(x, y)→ Pr(x)
R3.2: ∀x, y PSub(x, y)→ Pr(y)

Typing of PSub

R4.1: ∀x, y Dom(x, y)→ Pr(x)
R4.2: ∀x, y Dom(x, y) → Cl(y) ∨ (y =
rdfs:Resource)

Typing of Dom

R5.1: ∀x, y Rng(x, y)→ Pr(x)
R5.2: ∀x, y Rng(x, y) → Cl(y) ∨ (y =
rdfs:Resource) ∨ (y = rdfs:Literal)

Typing of Rng

R6.1: ∀x, y CI(x, y)→ Ind(x)
R6.2: ∀x, y CI(x, y) → Cl(y) ∨ (y =
rdfs:Resource)

Typing of CI

R7.1: ∀x, y, z PI(x, y, z)→ Ind(x)
R7.2: ∀x, y, z PI(x, y, z)→ Ind(y)∨Lit(y)
R7.3: ∀x, y, z PI(x, y, z)→ PS(z)

Typing of PI

R8.1: ∀x, y Cl(x) ∧ Pr(y)→ (x 6= y)
R8.2: ∀x, y Cl(x) ∧ Ind(y)→ (x 6= y)
R8.3: ∀x, y Pr(x) ∧ Ind(y)→ (x 6= y)

Classes, properties and in-
dividuals are disjoint

R9.1: ∀x Cl(x)→ CSub(x, rdfs:Resource)
R9.2: ∀x Ind(x)→ CI(x, rdfs:Resource)

Semantics for
rdfs:Resource (root
of the class hierarchy)

R10.1: ∀x, y, z CSub(x, y) ∧ CSub(y, z)→
CSub(x, z)
R10.2: ∀x, y CSub(x, y)∧CSub(y, x)→ ⊥

Semantics for CSub (tran-
sitive, irreflexive)

R11.1: ∀x, y, z PSub(x, y) ∧ PSub(y, z)→
PSub(x, z)
R11.2: ∀x, y PSub(x, y)∧PSub(y, x)→ ⊥

Semantics for PSub (tran-
sitive, irreflexive)

R12: ∀x PS(x) → ∃y, z(Dom(x, y) ∧
Rng(x, z))

Each property has a do-
main and a range

R13: ∀x, y, z Dom(x, y) ∧ Dom(x, z) →
(y = z)

Unique property domain

R14: ∀x, y, z Rng(x, y)∧Rng(x, z)→ (y =
z)

Unique property range

R15: ∀x, y, z CI(x, y) ∧ CSub(y, z) →
CI(x, z)

Class instance propagation

R16: ∀x, y, z, w PI(x, y, z)∧PSub(z, w)→
PI(x, y, w)

Property instance propaga-
tion

R17.1: ∀x, y, z, w PSub(x, y)∧Dom(x, z)∧
Dom(y, w)→ CSub(z, w) ∨ (z = w)
R17.2: ∀x, y, z, w PSub(x, y)∧Rng(x, z)∧
Rng(y, w)→ CSub(z, w) ∨ (z = w)

Subsumption between
properties reflects in their
domains/ranges

R18.1: ∀x, y, z, w PI(x, y, z) ∧
Dom(z, w)→ CI(x,w)
R18.2: ∀x, y, z, w PI(x, y, z)∧Rng(z, w)→
CI(y, w) ∨ (Lit(y) ∧ (w = rdfs:Literal))

Correct property instantia-
tion

than side-effects containing ground facts of the form
¬CSub(B,C). This intuition is encoded as an order
(denoted by ≤P) over predicates and negated predicates,
and is shown in Table 5. The table shows that the less
preferred changes are the addition of new resources
(classes, properties, individuals), followed by the intro-
duction of new domains/ranges of properties; this is
based on the idea that adding new, artificial resources
as side-effects is a change that should be avoided if pos-
sible (same for new domains/ranges). Deleting resources
and domains/ranges follows; thus, it is preferable to
delete an existing resource (or domain/range) than to
add a new one. On the contrary, adding subsump-
tion/instantiation relationships is preferable than delet-
ing said relationships because it is intuitively preferable
to enhance our knowledge with new facts, rather than
delete existing facts. Deleting/adding instantiation rela-
tionships is preferable than deleting/adding subsump-

TABLE 5
Ordering of Predicates (≤P)

PI ≤P CI ≤P PSub ≤P CSub ≤P ¬PI ≤P ¬CI ≤P

¬PSub ≤P ¬CSub ≤P ¬Dom ≤P ¬Rng ≤P ¬Ind ≤P

¬Pr ≤P ¬Cl ≤P Dom ≤P Rng ≤P Ind ≤P Pr ≤P Cl

tion relationships (as the latter refer to the schema part of
the RDF/S KB), but all such changes are preferable than
the addition/deletion of resources or domains/ranges.

The idea behind ≤P is driven one step further to allow
the comparison of deltas: intuitively, ∆1 is preferable
over ∆2 iff ∆1 contains less important changes than
∆2, i.e., if the ground facts in ∆1 use less important
predicates, according to ≤P . Thus, the comparison is not
based on the number of ground facts that a delta (as a
whole) contains, but on the number of the “important”
ground facts that it contains, as determined by the
predicates they use. So, in order to compare ∆1,∆2, we
start with the least preferred predicate (according to ≤P ,
i.e., predicate Cl) and count the number of ground facts
in ∆1,∆2 that use Cl (less is preferable). In case of a tie,
we proceed to the next predicate (Pr in this case) and
repeat the process until we reach a conclusion. A conse-
quence of this fact is that a delta containing any number
of less disruptive changes is more preferable than a
delta containing even a single more disruptive one,
e.g.: {¬CSub(A1, B1),¬CSub(A2, B2), PSub(A3, B3)} is
preferred over {¬Cl(A)}. This is similar to the notion
of component-cardinality repairs [21] that has been used
in the context of database repairs; unlike component-
cardinality repairs however, where all predicates are
considered of equal importance, here we impose a strict
ordering between predicates (and their negations).

In some cases, it could happen that two deltas contain
the same number of ground facts for all predicates; in
such cases, we need a more fine-grained criterion to
determine the preferred one. This criterion is based on
a comparison of the individual ground facts based on
their arguments (used constants), and identifies the least
preferred delta as the one that contains the most impor-
tant ground fact. To compare ground facts that use the
same predicate, we consider the constants that they use,
and determine their importance based on the constants’
position in the corresponding hierarchy. This is based on
the intuition that, e.g., a class that is high in the class
subsumption hierarchy represents an abstract, general
concept, that is usually important conceptually, so it is
less prone to change; therefore, deleting such a class
should be less preferred than deleting a lower-level class.
Similar arguments can be given for other predicates: for
example, a class subsumption is more important if the
subsumed class represents a concrete concept (low in
the hierarchy) whereas the subsuming class represents
an abstract concept (high in the hierarchy). In rare cases,
it could happen that this criterion is not a tie-breaker
either (e.g., when comparing the deletion of two sibling
classes); to resolve such ties we could use any arbitrary

13

wellorder over U∪L. We will denote this ordering using
≤UL Note that such an ordering always exists, by the
well-ordering theorem.

To formalize the above ideas we need to define some
notions. First, we say that a constant A ∈ U ∪ L
appears in an RDF/S KB K iff there is some ground fact
p(A1, ..., An) ∈ K such that A = Ai for some i = 1, 2, ..., n.
For A,B ∈ U, we say that A is a direct subclass of B
in K iff CSub(A,B) ∈ K and there is no C such that
CSub(A,C) ∈ K and CSub(C,B) ∈ K. Similar notions
can be defined for properties, as well as for instantiation
relationships (e.g., an individual A is a direct instance
of B iff CI(A,B) ∈ K and there is no C such that
CI(A,C) ∈ K and CSub(C,B) ∈ K). We use the general
term direct sub-resource to describe those notions. We say
that A ∈ U is a top resource in K iff A appears in K
and there is no B ∈ U such that A is a direct sub-
resource of B. The intuitive meaning of these definitions
in RDF/S KBs are obvious: direct sub-resources are those
pairs of resources that are related through a direct (i.e.,
non-redundant) subsumption or instantiation relation,
whereas a top resource is one that is no sub-resource
of any resource.

A path from A to the top in K is a sequence S of the
form S = 〈A1, A2, . . . , An〉 where A1 = A, An is a top
resource in K and for all i = 1, 2, . . . , n− 1, it holds that
Ai is a direct sub-resource of Ai+1. The length of S =
〈A1, A2, . . . , An〉 is n. Note that if A does not appear in K,
or if it is a literal, then there is no path from A to the top.
If A is a top resource, then the only path from A to the
top is 〈A〉, whose length is 1. In general however, there
may be many top resources and/or more than one paths
from any given A to (each of) the top resource(s); in such
cases, we are interested in the shortest path from A to the
top (given that K is finite and no cycles are allowed in the
subsumption relationships by the integrity constraints,
there will always be a shortest path). Given a constant
A (URI or literal) we set Dist(A) to be the length of the
shortest path from A to the top; if no such path exists
(e.g., if A does not appear in K), we set Dist(A) = 0.
Note that Dist represents the position of a constant in
its corresponding hierarchy, in the sense that resources
higher in the hierarchy have a lower Dist.

To define the wellorder ≤UL that is necessary as the
ultimate tie-breaker, we will treat URIs and literals as
strings and use the so-called shortlex order6. The shortlex
order compares the length of two strings (shortest one
comes first); in case of equal size, the standard lexico-
graphic ordering is used to determine the order. Shortlex
can be easily shown to be a wellorder7.

Combining the above, the fine-grained ordering on
ground facts is defined as shown in Table 6. Whenever
two ground facts are using a different predicate, their
order is determined using ≤P ; if they use the same
predicate, we resort to comparing the constants involved

6. http://en.wikipedia.org/wiki/Shortlex order
7. http://en.wikipedia.org/wiki/Lexicographical order

TABLE 6
Ordering of Ground Facts (≤G)

Predicate
Arity

Ground Fact Order

Arity 1:
q(x)
(Cl, Pr,
Ind)

Assuming q(a1), q(a2) such that q(a1) 6= q(a2) then:
q(a1) <G q(a2) iff Dist(a1) > Dist(a2);
if tied, q(a1) <G q(a2) iff a1 <UL a2.

Arity 2:
q(a, b)
(CSub,
PSub,
Dom,
Rng, CI)

Assuming q(a1, b1), q(a2, b2) such that q(a1, b1) 6=
q(a2, b2) then:
q(a1, b1) <G q(a2, b2) iff Dist(a1) > Dist(a2);
if tied, q(a1, b1) <G q(a2, b2) iff Dist(b1) < Dist(b2);
if tied, q(a1, b1) <G q(a2, b2) iff a1 <UL a2);
if tied, q(a1, b1) <G q(a2, b2) iff b1 <UL b2).

Arity 3:
q(x, y, z)
(PI)

Assuming q(a1, b1, c1), q(a2, b2, c2) such that
q(a1, b1, c1) 6= q(a2, b2, c2) then:
q(a1, b1, c1) <G q(a2, b2, c2) iff Dist(a1) > Dist(a2);
if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff
Dist(b1) > Dist(b2);
if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff
Dist(c1) < Dist(c2);
if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff a1 <UL a2);
if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff b1 <UL b2);
if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff c1 <UL c2).

using Dist and ≤UL, as shown in Table 6.
Now we have all the necessary formalisms to define

our selection mechanism. In Definition 6 below, ∆q is
a set containing the ground facts from ∆ that use the
(possibly negated) predicate q.

Def. 6. Consider two deltas ∆1,∆2 and a valid KB K. We
define an ordering ≤K such that ∆1 ≤K ∆2 iff any of the
following is true:

1) There is some (possibly negated) predicate q such that
|∆q

1| < |∆
q
2| and for all predicates q′ such that q <P q′

it holds that |∆q′

1 |=|∆
q′

2 |.
2) For all (possibly negated) predicates q it holds that
|∆q

1| = |∆q
2| and there is some g ∈ ∆1 \ ∆2, such

that g <G g′ for all g′ ∈ ∆2 \∆1.
3) ∆1 = ∆2.

This definition formally captures the intuitive descrip-
tion provided above. Our definitions guarantee that the
ordering ≤K is change-generating, so it can be used to
define a selection mechanism. Formally:

Prop. 6. The set �= {≤K |K : valid KB} (where ≤K as in
Definition 6) is a selection mechanism.

Note that some of the orderings imposed by ≤P (e.g.,
Dom ≤P Rng), may seem artificial, but are necessary
in order for ≤K to be antisymmetric (thus, change-
generating, cf. Definition 4). However, a detailed exam-
ination of our integrity constraints and the algorithm
itself can reveal that, in practical change scenarios, de-
termining the preferred delta cannot boil down to such a
comparison. Similarly, using shortlex is arguably an ar-
bitrary choice, but necessary to guarantee antisymmetry
when all else fails; for this reason, it constitutes our last
resort in the rare case when two deltas are very similar.
An alternative approach here would be to drop the
antisymmetry requirement from Definition 4; this would

14

essentially allow deltas to be equally preferable, so the
change operator could return more than one results. This
scenario could be viable only for applications where
it is desirable (and possible) to directly involve the
knowledge engineer in the evolution process. We plan
to consider such a relaxation as a future work.

9.5 Algorithm: Termination and Complexity

Algorithm 1 can be used as-is for the RDF/S setting, with
the modeling, validity model and selection mechanism
as described in the previous subsections. One thing that
should be noted is that, given a KB K and a change
request C, we only need to consider constants that
appear in K and C, plus one “fresh” URI (i.e., a URI
not appearing in K, C), say γ, that is the minimum
(according to ≤UL) of the custom URIs that do not
appear in K or C; we denote this set of constants by
Γ. This is a useful assumption for both intuitive and
practical purposes, but is also correct from a formal point
of view, because even if we considered arbitrary URIs,
all solutions (potential change results) containing them
would be rejected as non-preferred due to the preference
ordering (see Proposition 7). As a result, the FOR loop
in lines 9-11 of Algorithm 1 need only consider those
S ′ which use constants from Γ (because all other S ′
cannot possibly lead to the correct result). We denote
this modified algorithm by ChangeRDF (the pseudocode
is almost identical to Algorithm 1 and omitted). This
modification guarantees termination, without jeopardiz-
ing correctness:

Prop. 7. Consider the validity model Σ defined in Subsec-
tion 9.3, the selection mechanism � defined in Subsection 9.4,
and the corresponding rational change operator •. Consider
also some valid RDF/S KB K and a change request C. Then,
the call ChangeRDF (C,K,∆∞) terminates. Supposing that
the output of ChangeRDF (C,K,∆∞) is ∆out, then if C:
feasible, then ∆out 6= ∆∞ and K+∆out = K•C; if C:infeasible
then ∆out = ∆∞.

Even though termination and correctness are guar-
anteed for the specific validity model and selection
mechanism, the algorithm is, in the worst-case scenario,
exponential, because the recursive tree of evaluation gen-
erated by the ChangeRDF function can be exponential in
size. However, it should be emphasized that this is an
inherent property of the problem, rather than an artifact
of the proposed solution. To see that, let us consider the
easier subproblem “find a set of side-effects that would
lead to a valid KB”; it is easy to note that this problem is
equivalent to finding one set of ground facts satisfying
all constraints, i.e., it is a satisfiability problem, which for
the particular DED 6= constraints (Table 4) is equivalent
to SAT; thus, implementing a rational change operator is
NP-hard. This issue is addressed using special-purpose al-
gorithms, in which we trade generality for computational
efficiency to develop optimized (and fast) algorithms
that partially implement rational change operators for

a given setting (RDF/S in our case); this process will be
discussed in the next section.

10 SPECIAL-PURPOSE ALGORITHMS

Special-purpose algorithms are based on the idea that,
once we fix the setting (predicates, validity model, selec-
tion mechanism), we can determine the preferred way
to handle certain types of change requests at design
time, without having to recursively check all possible
options; this leads to more efficient implementations.
On the other hand, special-purpose algorithms do not
enjoy the same generality as the general-purpose one,
because they work only for the given setting, and only
for the given types of change requests; for other change
requests, one has to resort to the general-purpose algo-
rithm.

In order to make sure that the special-purpose algo-
rithms respect our principles (Success, Validity and Min-
imal Change), one should verify that they produce the
same results as the general-purpose one for the change
requests that they tackle, i.e., that each of them (partially)
implements a rational change operator. Towards this
end, the development of the general-purpose algorithm
and the related theory is an essential first step, as (i) it
allows proving that a special-purpose algorithm exhibits
the required properties, something that would not be
possible without the theoretical framework presented in
the previous sections, and, (ii) it allows us to handle any
unforeseen change requests.

Algorithms 2, 3, 4, 5, 6 show five of the special-purpose
algorithms that we developed. Each of these algorithms
corresponds to one type of change request, namely:
• Add CI(K, I, C) corresponds to the change request
C = {CI(I, C)}, i.e., it implements the operation K•
{CI(I, C)}.

• Add Cl(K, C) corresponds to C = {Cl(C)}.
• Rem Ind(K, I) corresponds to C = {¬Ind(I)}.
• Rem Dom(K, P, C) corresponds to C =
{¬Dom(P,C)}.

• Rem PSub(K, P1, P2) corresponds to
C = {¬PSub(P1, P2)}.

In total, we developed 18 special-purpose operations,
each of which corresponds to one of the 18 types of
singular change requests that can be defined (due to
space limitations, we do not describe them all here –
a full list can be found in [29]). One could define more,
if interested in addressing some other type of change
request in an efficient manner.

The algorithms have the same general structure: first,
we check whether the change request that corresponds
to said algorithm is already implied by the KB, in which
case we return without reporting any effects or side-
effects (this could happen, for example, if we are asked to
add an already existing class). Otherwise, we determine
which constraints from Table 4 can be violated via said
change request. In most cases, we can determine (at de-
sign time) the best invalidity resolution to follow for each

15

Algorithm 2: Add Class Instantiation
(Add CI(K, I, C))

1: if CI(I, C) ∈ K then
2: return ∅
3: else
4: ∆ := {CI(I, C)}
5: end if
6: if Ind(I) /∈ K then
7: ∆0 := Add Ind(K, I)
8: if ∆0 = ∆∞ then
9: return ∆∞

10: else
11: ∆ := ∆ ∪∆0

12: end if
13: end if
14: if Cl(C) /∈ K then
15: ∆0 := Add Cl(K, C)
16: if ∆0 = ∆∞ then
17: return ∆∞
18: else
19: ∆ := ∆ ∪∆0

20: end if
21: end if
22: for all CSub(C,A) ∈ K do
23: ∆ := ∆ ∪ {CI(I, A)}
24: end for
25: return ∆

Algorithm 3: Add Class (Add Cl(K, C))
1: if Cl(C) ∈ K then
2: return ∅
3: else
4: ∆ := {Cl(C), CSub(C, rdfs:Resource)}
5: end if
6: if C: is not a custom URI (C /∈ U \ Sp) then
7: return ∆∞
8: end if
9: if Pr(C) ∈ K then

10: return ∆ ∪Rem Pr(K, C)
11: end if
12: if Ind(C) ∈ K then
13: return ∆ ∪Rem Ind(K, C)
14: end if
15: return ∆

violated constraint, so the selection mechanism is hard-
coded in the algorithm. For example, in Algorithm 5,
the removal of a domain would violate rule R12, which
could be resolved either by the removal of the associated
property or by the addition of a new domain; however,
we can show that the latter option will always lead to
non-preferred deltas (due to the ≤P ordering), so we
only consider the former. In other cases, it is not clear
which is the best option, as, e.g., in Algorithm 6 where
several options are evaluated before determining the

Algorithm 4: Remove Individual (Rem Ind(K, I))
1: if Ind(I) /∈ K then
2: return ∅
3: else
4: ∆ := {¬Ind(I)}
5: end if
6: for all CI(I, A) ∈ K do
7: ∆ := ∆ ∪ {¬CI(I,A)}
8: end for
9: for all PI(I, A,B) ∈ K do

10: ∆ := ∆ ∪ {¬PI(I, A,B)}
11: end for
12: for all PI(A, I,B) ∈ K do
13: ∆ := ∆ ∪ {¬PI(A, I,B)}
14: end for
15: return ∆

Algorithm 5: Remove Domain (Rem Dom(K, P, C))
1: if Dom(P,C) /∈ K then
2: return ∅
3: else
4: return {¬Dom(P,C)} ∪Del Pr(K, P)
5: end if

result.
Taking Algorithm 2 as an illustrative example, we

note that the addition of CI(I, C) can only cause the
violation of constraints R6.1, R6.2 and R15. These are
checked and resolved in lines 6-13, 14-21 and 22-24
respectively. In particular, line 6 checks whether R6.1 is
violated; if so, the only possible resolution is by adding
Ind(I), so another special purpose algorithm is called to
perform this operation (line 7). Similarly, line 14 checks
whether R6.2 is violated and, if so, it resolves it by
calling Add Cl(K, C) (line 15). Finally, line 22 determines
all the instances of R15 that are violated, and resolves
the violation by adding the corresponding CI ground
fact (line 23); note that the other resolution option (re-
moving CSub(C,A)) is not considered, because it will
always lead to non-preferred deltas (adding CI(I, A)

Algorithm 6: Remove Property Subsumption
(Rem PSub(K, P1, P2))

1: if PSub(P1, P2) /∈ K then
2: return ∅
3: end if
4: Find all sets Si := {PSub(Aj−1, Aj)|j = 1, . . . , ni)}

such that PSub(Aj−1, Aj) ∈ K for all j = 1, . . . , ni
and A0 = P1, Ani

= P2, ni ≥ 1
5: Find all minimal hitting sets of the family {Si}, and

name them ∆1, . . . ,∆n

6: ∆ := minK({∆i|i = 1, . . . , n})
7: return ∆

16

has no further side-effects, and CI <P CSub). This
argumentation is the sketch of the proof showing that
Algorithm 2 is equivalent to the general-purpose one
(for the specific change request), so it implements part
of a rational change operator. More details on the proof
of this correctness result (as well as the corresponding
results for the other special-purpose algorithms) are
omitted due to lack of space.

Note that it is not correct to use the above algorithms
for more complicated change requests. For example, the
change request C = {CI(I, C),¬Ind(I)} should not be
handled through a call to Add CI(K, I, C) followed by a
call to Rem Ind(K, I); the above sequence of operations
would return some result, whereas C itself is infeasible.
The same holds even for feasible change requests. For
example, consider the removal of a property subsump-
tion relationship, say ¬PSub(P1, P2). Algorithm 6 will
determine the shortest path of subsumptions between
P1, P2 and remove these as side-effects. If, however,
a change request contains an additional subsumption
removal (say ¬PSub(P3, P4)), then taking the short-
est paths between P1, P2 and P3, P4 may give a non-
preferred compound set of side-effects. An interesting
subject of future work is to determine conditions of irrel-
evance, i.e., conditions under which complicated change
requests can be handled as sequences of independent
(and simpler) change requests without jeopardizing the
correctness of the change result.

It is trivial to show that the above algorithms exhibit
much better computational complexity than the general
purpose one. In fact, half of the algorithms (9 out of 18)
exhibit linear complexity with respect to the size of K
(O(|K|)), some (5) quadratic (O(|K|2)), whereas the rest
(4) can be shown to be NP-complete. Table 7 summarizes
the related complexity results.

NP-completeness appears in the algorithms that are
related to the subsumption relationships. For example, in
Algorithm 6, due to transitivity (R10.2), we must find all
subsumption paths that connect P1 and P2, and remove
one link in each; by the selection mechanism, a minimal
number of links must be removed. As the paths may
have intersections in the case of DAG hierarchies, the
problem of finding such a minimal set is actually an
instance of the MINIMUM HITTING SET problem (see line
5), which is an NP-complete problem. The same prob-
lem appears in all operations that directly or indirectly
involve the removal of a subsumption relationship in
a DAG hierarchy. Fortunately, few real-world schemata
are DAGs, and even in those, most pairs of classes
are connected with a single (or very few) subsumption
path(s) [32]; thus, these algorithms are expected to be
efficient in practical cases.

11 RELATED WORK
This work is related to different research fields, including
ontology evolution [14], belief revision [15], database
repairs [21], [33], ontology debugging [14] and updating
databases through views [34], [35].

TABLE 7
Special-purpose Algorithms and their Complexity

Complexity Special-purpose Algorithms
O(|K|) Add Cls, Add Pr, Add Ind, Add CI , Rem Pr,

Rem Ind, Rem Dom, Rem Rng, Rem PI
O(|K|2) Add Dom, Add Rng, Add PI , Rem Cl,

Rem CI
NP-complete Add CSub, Add PSub, Rem CSub, Rem PSub

Ontology evolution deals with adapting an ontology
to changes in its domain or conceptualization [14]. The
integrity constraints considered are special constraints
on certain relations (e.g., acyclicity/transitivity of sub-
sumption) or property-related constraints (e.g., func-
tional properties); in many cases though, there are no
constraints considered at all. In addition, most of the
works in this field employ simple and informal method-
ologies, with limited customization capabilities, and/or
address only changes upon the data part of an ontology.

A detailed survey of the field appears in [14]. Some
works address the problem using ontology editors [18]
or other frameworks that help the engineers decide and
implement manually the required changes in their pre-
ferred manner [19]. However, it has been argued ([17],
[18]) that manual application of changes is insufficient.
In response to this need, some works like [36], [37],
[38], [39], [40] have proposed and implemented change
semantics, by determining, a priori, the side-effects nec-
essary for each type of change request. This approach
requires a highly tedious and error-prone design process,
during which all possible problems (invalidities) caused
by the supported requests need to be anticipated and
resolved a priori, giving no formal guarantees that all
cases have been considered or that the various resolution
choices made are consistent, as there is no general theo-
retic treatment to determine the desired result. In certain
cases, some flexibility is provided to independently cus-
tomize [37] the semantics of some of the operations; this
is similar to our selection mechanism, but it is restricted
to certain operations only. Similarly, in [41], one can
explicitly define the semantics of change operators in
an event-driven manner. Given the infinite number of
potential change requests however, the set of supported
changes in all these works is necessarily incomplete [40],
unlike in our work. In [42], a declarative approach for the
evolution of RDF/S KBs is presented, which can handle
all possible changes on the data part of an RDF/S KB,
but it is based on fixed semantics, and cannot handle
the schema part. In [43], the authors adopt the set of
constraints found in [44] and study the “determinism”
of changes by providing a characterization of when a
deletion of a single triple can be applied unambiguously.
In addition, they provide an algorithm which rejects
changes that would cause side-effects. Note that our
work can also handle side-effects, as well as changes
involving more than a single triple.

Belief revision also addresses the problem of dynamic

17

knowledge, but it is usually applied for standard logical
formalisms like propositional or first-order logic [15]. In
addition, most of the works in belief revision do not
consider integrity constraints; as a result, the Principle
of Validity in that context amounts to making sure that
the resulting KB is consistent (in the standard logical
sense).

The use of belief revision approaches for ontology
evolution has been advocated in several works, but in
several cases, the study remained at a theoretical level
without proposing specific algorithms [45]. In addition,
many results were negative, i.e., it was shown that
certain belief revision approaches cannot be applied to
many ontological languages, including RDF/S [46]. An
algorithm inspired by belief revision for DL ontologies
appears in [47], but it deals only with the data part.
In [48], a similar belief-revision-inspired algorithm for
changing RDF/S KBs is presented; however, in that set-
ting, no integrity constraints are considered, so additions
are trivial and the focus is on deletions, which are non-
trivial due to the RDFS inference rules. Our work did not
try to adapt any existing belief revision algorithm for the
RDF/S setting, but was inspired by ideas presented in
that context, such as the principles of Success, Validity
and Minimal Change.

The field of database repairs addresses the problem
of maintaining the integrity of data whenever some
abnormal situation (e.g., a failed transaction) leads to
an integrity violation [21], [33], [49]. Various terms have
been used to describe this field, like minimal-change
integrity maintenance [28], data reconciliation [50] or
data cleaning [51]. In the context of database repairing,
the invalidity is not necessarily caused by a change in
the data (e.g., it could be caused by a change in the
integrity constraints, a disk crash, an aborted transaction,
or some other reason) and the focus is on repairing, i.e.,
the cause of the invalidity is not considered; as a result,
the Principle of Success is irrelevant. In addition, even
though several useful types of constraints (subsets of
DEDs) have been identified (see [21] for a list), most
works deal with primary and foreign key constraints
only.

In many works related to database repairing, there are
no guarantees on the distance of the resulting database
from the original one (i.e., the Principle of Minimal
Change does not apply), but others consider some dis-
tance metrics (e.g., symmetric difference [21]). Using
such a metric, a repair is defined as a database instance
which satisfies the integrity constraints and has minimal
distance (according to said metric) from the original
inconsistent database. Different metrics are important
for different contexts (e.g., in the data warehousing
context, subset-repairs are used [21]). Repair checking
techniques [28] can be used to determine whether a given
database is a repair of another. An extensive complexity
analysis for these problems under various assumptions
appears in [21], [28].

On the other hand, only a few efforts have been made

in the direction of computing repairs. In [52], repair check-
ing algorithms are adapted to non-deterministically com-
pute repairs. Another algorithm for computing repairs,
based on a cost model, appears in [53], but it is sensitive
to the order in which invalidities are considered and
resolved. In [54], an algorithm which uses a flexible dis-
tance model to compute repairs is presented; however,
the types of constraints used there are only a subset of
DEDs.

An approach similar to database repairing advocates
the introduction of an extra layer that allows reasoning
and consistent querying over the invalid database with-
out explicitly repairing it. This approach is called consis-
tent query answering [55] and could be used for invalid
ontologies as well [56], [57]. However, this method is
more useful when we have no control over the data (so
we cannot repair it), which is not the case in our setting.
Furthermore, it is restrictive, because it considers only
common knowledge over all possible repairs associated
with the original data: a tuple is an answer to a given
query over a database iff it is an answer in every repair
of said database. As a result, we cannot set any preferred
repairs, or prevent certain repairs from being considered.

The field of ontology debugging addresses the prob-
lem of resolving invalidities in ontologies [14]. Like
with database repairs, the cause of the invalidity is not
considered during ontology debugging, so the Principle
of Success is irrelevant. Ontology debugging consists
of ontology diagnosis (identifying inconsistencies and
other modeling errors) and ontology repair (repairing
such modeling errors). Most works in the field deal with
the former problem (diagnosis). In addition, ontology
debugging usually deals with inconsistencies or inco-
herencies only (see [58] for a definition of inconsistency
and incoherency), i.e., general integrity constraints are
not considered. Surveys of existing ontology debugging
approaches can be found at [14], [59]. Our work can be
applied for ontology diagnosis and repair if we drop
the Principle of Success from our requirements and
adapt our algorithm accordingly; we plan to explore this
research path as a future work.

The problem of updating databases through
views [34], [35], [60] addresses the problem of updating
a database view on which updates cannot be issued
directly (because, e.g, the view is virtual). In this case,
the underlying database needs to change in a way that
the evaluation of the view on the new database will
give the updated view instance per the user’s intention.
This is similar to our work in the sense that it requires
changing the database in a way that the end result
satisfies a certain condition (in this case, the changing of
the view in a certain way; in our case, the satisfaction of
the integrity constraints). Initial studies have focused on
the characterization of “side-effect-free” updates [35],
[61], which are not always possible. For example, we
might want to delete a tuple from a view instance,
which comes from a join of two tuples in the base
tables. Unless we change the join attribute or delete one

18

of the latter tuples, the update cannot be implemented.
This led researchers to restrict the kinds of updates
supported [35], to develop frameworks to detect and
present side-effects to the user [62], let the user encode
some kind of ad-hoc resolution rules in the face of
alternative side-effects [63], or relax the constraint that
the view should materialize only the user’s update and
nothing more [64] (this is equivalent to implementing
not the user’s update but another one which is “close”
to it). To the best of our knowledge, there is no approach
related to the field of updating databases through views
that enforces all updates (adhering to our Principle
of Success), or that parameterizes the system with
some “preference” mechanism in order to automatically
resolve ambiguity.

12 CONCLUSION
We studied the problem of evolving KBs in the face
of new information, while respecting the associated in-
tegrity constraints. We applied our work to RDF/S KBs
with integrity constraints, considering schema and data
change requests, as well as change requests involving
any mixture of schema and data operations. We pro-
posed a formal framework to describe such changes and
their effects, as well as a general-purpose algorithm that
identifies the effects and side-effects of a change request
and implements a change operator. Our methodology is
inspired by the general belief revision principles of Suc-
cess, Validity and Minimal Change [15]. The end result
is a general-purpose algorithm that is parameterizable,
both in terms of the application context (language and
validity model) and in terms of the implementation of
the Principle of Minimal Change (selection mechanism).
Using our framework, the knowledge engineer only
needs to specify the change request, and does not need to
address how any potential invalidities will be resolved;
the system will automatically identify and apply any
necessary side-effects, depending on the parameteriza-
tion.

Our algorithm avoids resorting to the error-prone, per-
case reasoning of other systems, as all the alternatives
regarding the side-effects of a change request can be
derived from the integrity constraints themselves, in an
exhaustive and provably correct manner. In addition, it
can support all imaginable operations, including opera-
tions not considered at design time. Finally, it can handle
quite complex types of constraints (DED 6= [16]).

We applied our ideas on RDF/S, using a specific
validity model inspired by [3]. This allowed us to de-
velop simpler, special-purpose variations of the general-
purpose algorithm, which provably return the same re-
sult for specific change requests in a much more efficient
manner. Note that the general-purpose algorithm can
be still relied upon for change requests that are not
considered by the special-purpose ones.

Our approach was recently implemented in a large
scale real-time system, as part of the ICS-FORTH Se-
mantic Web Knowledge Middleware (SWKM), which

includes a number of web services for managing RDF/S
KBs8. Future work includes experimental evaluation of
the algorithms’ performance and the incorporation of
heuristics for improving their efficiency.

REFERENCES

[1] F. Manola, E. Miller, and B. McBride, “Rdf primer,”
www.w3.org/TR/rdf-primer, 2004.

[2] D. Brickley and R. Guha, “Rdf vocabulary description language
1.0: Rdf schema,” www.w3.org/TR/2004/REC-rdf-schema-
20040210, 2004.

[3] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen, “Contain-
ment and minimization of rdf/s query patterns,” in Proceedings of
the 4th International Semantic Web Conference (ISWC-05), 2005.

[4] B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between
owl and relational databases,” in Proceedings of 17th International
World Wide Web Conference (WWW-07), 2007, pp. 807–816.

[5] G. Lausen, M. Meier, and M. Schmidt, “Sparqling constraints for
rdf,” in Proceedings of 11th International Conference on Extending
Database Technology (EDBT-08), 2008, pp. 499–509.

[6] W. Drabent and J. Maluszynski, “Hybrid rules with well-founded
semantics,” Knowledge and Information Systems (KAIS), vol. 25, pp.
137–168, 2010.

[7] A. Cali, G. Gottlob, and T. Lukasiewicz, “Datalog±: A unified
approach to ontologies and integrity constraints,” in Proceedings
of the International Conference on Database Theory (ICDT-09), 2009.

[8] J. Tao, E. Sirin, J. Bao, and D. McGuinness, “Extending owl
with integrity constraints,” in Proceedings of the 23rd International
Workshop on Description Logics (DL-10). CEUR-WS 573, 2010.

[9] A. Calı̀, G. Gottlob, and A. Pieris, “Advanced processing for
ontological queries,” Proceedings of VLDB Endowment, vol. 3, pp.
554–565, 2010.

[10] T. Groza, G. Grimnes, S. Handschuh, and S. Decker, “From raw
publications to linked data,” Knowledge and Information Systems,
pp. 1–21, 2011.

[11] B.-W. On, I. Lee, and D. Lee, “Scalable clustering methods for
the name disambiguation problem,” Knowledge and Information
Systems, pp. 1–23, 2011.

[12] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker,
“Towards dataset dynamics: Change frequency of linked open
data sources,” in Proceedings of the WWW2010 Workshop on Linked
Data on the Web (LDOW2010), 2010.

[13] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, “User-
driven ontology evolution management,” in Proceedings of the
13th European Conference on Knowledge Engineering and Knowledge
Management (EKAW-02), 2002.

[14] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and
G. Antoniou, “Ontology change: Classification and survey,” The
Knowledge Engineering Review, vol. 23, no. 2, pp. 117–152, 2008.

[15] P. Gärdenfors, Belief Revision. Cambridge University Press, 1992,
ch. Belief Revision: An Introduction, pp. 1–28.

[16] A. Deutsch, “Fol modeling of integrity constraints (dependen-
cies),” in Encyclopedia of Database Systems, 2009, pp. 1155–1161.

[17] G. Konstantinidis, G. Flouris, G. Antoniou, and V. Christophides,
“A formal approach for rdf/s ontology evolution,” in Proceedings
of the 18th European Conference on Artificial Intelligence, 2008.

[18] L. Stojanovic and B. Motik, “Ontology evolution within ontology
editors,” in Proceedings of OntoWeb-SIG3 Workshop, 2002.

[19] K. Kotis and A. Vouros, “Human-centered ontology engineering:
The hcome methodology,” Knowl. Inf. Syst., vol. 10, pp. 109–131,
July 2006.

[20] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity
of sparql,” in Proceedings of the 5th International Semantic Web
Conference (ISWC-06), 2006, pp. 30–43.

[21] F. Afrati and P. Kolaitis, “Repair checking in inconsistent
databases: Algorithms and complexity,” in Proceedings of the 12th
International Conference on Database Theory (ICDT-09), 2009.

[22] W. Akhtar, A. Cortés-Calabuig, and J. Paredaens, “Constraints in
rdf,” in Proceedings of the 4th International Conference on Semantics
in Data and knowledge bases, ser. SDKB’10, 2010, pp. 23–39.

8. http://athena.ics.forth.gr:9090/SWKM

19

[23] T. Berners-lee and D. Connolly, “Delta: an ontology for the dis-
tribution of differences between rdf graphs,” RDF Graphs, World
Wide Web, http://www.w3.org/DesignIssues/Diff, 2004.

[24] M. Volkel, W. Winkler, Y. Sure, S. Kruk, and M. Synak, “Semver-
sion: A versioning system for rdf and ontologies,” in Proceedings
of the 2nd European Semantic Web Conference (ESWC-05), 2005.

[25] L. Ding, T. Finin, Y. Peng, P. Da Silva, and D. McGuinness, “Track-
ing rdf graph provenance using rdf molecules,” in Proceedings of
the 4th International Semantic Web Conference (Poster), 2005.

[26] D. Zeginis, Y. Tzitzikas, and V. Christophides, “On computing
deltas of rdf/s knowledge bases,” ACM Transactions on the Web
(TWEB), 2011.

[27] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, and
V. Christophides, “On detecting high-level changes in rdf/s kbs,”
in Proceedings of the 8th International Semantic Web Conference
(ISWC-09), 2009.

[28] J. Chomicki and J. Marcinkowski, “On the computational com-
plexity of minimal-change integrity maintenance in relational
databases,” Inconsistency Tolerance, pp. 119–150, 2005.

[29] G. Konstantinidis, “Belief change in semantic web environments,”
Master’s thesis, University of Crete, 2008.

[30] G. Flouris, “On the evolution of ontological signatures,” in Pro-
ceedings of the Workshop on Ontology Evolution, 2007.

[31] J. Pan and I. Horrocks, “Rdfs(fa): Connecting rdf(s) and owl dl,”
IEEE Transactions on Knowledge and Data Engineering, pp. 192–206,
2007.

[32] T. Wang, “Gauging ontologies and schemas by numbers,” in
Proceedings of the 4th International EON Workshop, 2006.

[33] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query an-
swers in inconsistent databases,” in Proceedings of the 18th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS-99), 1999, pp. 68–79.

[34] F. Bancilhon and N. Spyratos, “Update semantics of relational
views,” ACM Transactions on Database Systems (TODS), vol. 6,
no. 4, pp. 557–575, 1981.

[35] A. Keller, “Algorithms for translating view updates to database
updates for views involving selections, projections, and joins,” in
PODS, vol. 85, 1985, pp. 154–163.

[36] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, “Oiled: A
reason-able ontology editor for the semantic web,” in Proceedings
of Advances in AI: Joint German/Austrian Conference on AI, 2001.

[37] T. Gabel, Y. Sure, and J. Voelker, “D3.1.1.a: Kaon-ontology man-
agement infrastructure,” SEKT informal deliverable, 2004.

[38] N. Noy, R. Fergerson, and M. Musen, “The knowledge model
of protégé-2000: Combining interoperability and flexibility,” in
Proceedings of the 12th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW-00), 2000.

[39] Y. Sure, J. Angele, and S. Staab, “Ontoedit: Multifaceted inferenc-
ing for ontology engineering,” Journal on Data Semantics, vol. 1,
no. 1, pp. 128–152, 2003.

[40] M. Klein and N. Noy, “A component-based framework for on-
tology evolution,” in Proceedings of the Workshop on Ontologies and
Distributed Systems, 2003.

[41] U. Lusch, S. Rudolph, and D. Vrandecic, “Tempus fugit - towards
an ontology update language,” in Proceedings of the 6th European
Semantic Web Conference (ESWC-09), 2009, pp. 278–292.

[42] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis,
“Rul: A declarative update language for rdf,” in Proceedings of the
4th International Semantic Web Conference (ISWC-05), 2005.

[43] R. Chirkova and G. Fletcher, “Towards well-behaved schema
evolution,” in 12th International Workshop on the Web and Databases,
WebDB, 2009.

[44] C. Gutierrez, C. Hurtado, and A. Mendelzon, “Foundations of se-
mantic web databases,” in Proceedings of the 2004 ACM Symposium
on Principles of Database Systems (PODS-04), 2004, pp. 95–106.

[45] G. Flouris, “On belief change and ontology evolution,” Ph.D.
dissertation, University of Crete,Greece, 2006.

[46] G. Flouris, D. Plexousakis, and G. Antoniou, “On applying the
agm theory to dls and owl,” in Proceedings of the 4th International
Semantic Web Conference (ISWC-05), 2005, pp. 216–231.

[47] G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati, “On
instance-level update and wrasure in description logic ontolo-
gies,” Journal of Logic and Computation, vol. 19, no. 5, 2009.

[48] C. Gutierrez, A. Vaisman, and C. Hurtado, “Rdfs update: from
theory to practice,” in Proceedings of the Extended Semantic Web
Conference, ESWC-11, 2011.

[49] B. Ludscher, W. May, and G. Lausen, “Referential actions as logical
rules,” in Proceedings of the 16th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS-97), 1997.

[50] S. Embury, S. Brandt, J. Robinson, I. Sutherland, F. Bisby, W. Gray,
A. Jones, and R. White, “Adapting integrity enforcement tech-
niques for data reconciliation,” Information Systems, vol. 26, no. 8,
pp. 657–689, 2001.

[51] W. Fan, F. Geerts, and X. Jia, “A revival of integrity constraints
for data cleaning,” Proceedings of the VLDB Endowment (PVLDB),
vol. 1, no. 2, pp. 1522–1523, 2008.

[52] J. Chomicki and J. Marcinkowski, “Minimal-change integrity
maintenance using tuple deletions,” Information and Computation,
vol. 197, no. 1/2, pp. 90–121, 2005.

[53] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based
model and effective heuristic for repairing constraints by value
modification,” in Proceedings of the 2005 ACM SIGMOD Interna-
tional Conference on Management of Data, 2005, pp. 143–154.

[54] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data
quality: Consistency and accuracy,” in Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB-07), 2007.

[55] L. Bertossi and J. Chomicki, “Query answering in inconsistent
databases,” Logics for Emerging Applications of Databases, 2003.

[56] P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and
Y. Sure, “A framework for handling inconsistency in changing
ontologies,” in Proceedings of the 4th International Semantic Web
Conference (ISWC-05), 2005, pp. 353–367.

[57] P. Alexopoulos, M. Wallace, K. Kafentzis, and D. Askounis,
“Ikarus-onto: a methodology to develop fuzzy ontologies from
crisp ones,” Knowledge and Information Systems, pp. 1–29, 2011.

[58] G. Flouris, Z. Huang, J. Pan, D. Plexousakis, and H. Wache, “In-
consistencies, negations and changes in ontologies,” in Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI-06),
2006, pp. 1295–1300.

[59] P. Haase and G. Qi, “An analysis of approaches to resolving incon-
sistencies in dl-based ontologies,” in Proceedings of the International
Workshop on Ontology Dynamics (IWOD-07), 2007, pp. 97–109.

[60] U. Dayal and P. Bernstein, “On the updatability of relational
views,” in Proceedings of the 4th International Conference on Very
Large Data Bases, 1978, pp. 368–377.

[61] ——, “On the correct translation of update operations on re-
lational views,” ACM Transactions on Database Systems (TODS),
vol. 7, no. 3, pp. 381–416, 1982.

[62] C. Medeiros and F. Tompa, “Understanding the implications of
view update policies,” Algorithmica, vol. 1, no. 1, pp. 337–360,
1986.

[63] H. Shu, “Using constraint satisfaction for view update,” Journal
of Intelligent Information Systems, vol. 15, pp. 147–173, 2000.

[64] Y. Kotidis, D. Srivastava, and Y. Velegrakis, “Updates through
views: A new hope,” in Proceedings of the 22nd International
Conference on Data Engineering (ICDE-06), 2006.

APPENDIX: PROOFS OF PROPOSITIONS

Proof of Prop. 1. By the construction of Res(σ(~a)), a
constraint instance σ(~a) can be written as the disjunction
of the conjunction of the elements in each S ∈ Res(σ(~a)).
Thus, the result follows from standard reasoning and
our semantics.�

Proof of Prop. 2. By Definition 1, it follows that
K + S ` S , so by Proposition 1, K + S ` σ(~a). For
the second part, by Proposition 1 it follows that
there is some S ∈ Res(σ(~a)) such that K + S ′ ` S.
So take some (possibly negated) ground fact g ∈ S.
Given that K + S ′ ` S it follows that K + S ′ ` g; using
Definition 1 it is trivial to conclude that K ` g or g ∈ S ′.�

Proof of Prop. 3. Since K is valid, there is some
S ∈ Res(σ(~a)) such that K ` S . By our hypothesis,
K+ C 0 σ(~a) so K+ C 0 S. Thus, there is some (possibly

20

negated) ground fact g ∈ S such that K + C 0 g; on
the other hand, K ` g. Combining these facts and the
definition of raw application, it is trivial to show the
result.�

Proof of Prop. 4. Take some KB K and change request
C. Suppose initially that K is valid and C is feasible.
Since C is feasible, there is some valid KB K such that
K ` C, i.e., Ω 6= ∅. By wellfoundedness of ≤K, Ω has
at least one minimum; by totality and antisymmetry,
this minimum is unique. We conclude that whenever
K is valid and C is feasible there is exactly one result
that satisfies the conditions of Definition 5; the same
is obviously true if K is not valid, or C is not feasible.
Thus, there is a unique rational change operator with
respect to Σ, �.�

Proof of Prop. 5. According to Algorithm 1, each
recursive call can return at lines 2, 5, 13 or 15. If any
specific call returns through line 15, it means that it had
spawned at least one new call to Change (in line 10). If
any call returns through lines 2 or 13, then it does not
spawn a new call and it returns ∆∞. If any call returns
through line 5, then it does not spawn a new call and it
returns some ∆ 6= ∆∞. We will call the recursive calls
returning through line 15 “intermediate” calls, the calls
returning through lines 2 or 13 “rejected”, and the calls
returning through line 5 “accepted”.
Moreover, we set ∆min = ∆(K,K • C).
For presentation clarity, we will show some intermediate
conclusions before showing the proposition. The
proposition follows from conclusions #5, #6 below.
Conclusion #1: If ∆out 6= ∆∞ is returned, then there is
at least one accepted call.
Proof. If all the calls are either rejected or intermediate,
then all executions of line 10 in intermediate calls will
compare ∆∞ with ∆∞; thus all intermediate calls will
also return ∆∞. Thus, the algorithm will return ∆∞, a
contradiction by our hypothesis. Therefore, there is at
least one accepted call.
Conclusion #2: If an accepted call returns ∆out, then
∆out 6= ∆∞, K + ∆out ` C, K + ∆out ` Σ, and
∆min ≤K ∆out.
Proof. In any given accepted call, the condition
of line 4 is true and the returned delta will be
∆out = ∆(K,K + Crem) 6= ∆∞. It is trivial to show that
K+∆out = K+Crem. Thus, by the fact that the condition
of line 4 is true, we conclude that K + ∆out ` Σ.
Moreover, note that we never remove ground facts
from Crem, thus, given that the initial value of Crem
(in the first recursive call) is C, we conclude that in
any recursive call, it holds that Crem ⊇ C. Thus, by
our hypotheses and the definition of raw application,
K+ ∆out = K+ Crem ` C. Given the above facts and the
definition of the rational change operator, the condition
∆min ≤K ∆out, holds.
Conclusion #3: If ∆out 6= ∆∞ is returned, then
K + ∆out ` C and K + ∆out ` Σ. Furthermore,

∆min ≤K ∆out.
Proof. By conclusion #1, there is at least one accepted
call. If the first call to Change is an accepted one, then
the result is obvious by conclusion #2. If the first call to
Change is a rejected call, then there is no accepted call
(a contradiction). If the first call is an intermediate call,
then it will return the preferred of all deltas returned
through line 10. Given that all deltas are preferred over
∆∞, it follows that the returned delta is a delta returned
by one of the accepted calls, so the result follows from
conclusion #2. Thus, the conclusion holds in all cases.
Conclusion #4: If C is feasible, then there is at least one
accepted call which returns ∆min.
Proof. If the first call is a rejected call, then the condition
of line 1 is true. Note that, since ∆pref = ∆∞, it cannot
be the case that ∆pref ≤K0

∆(K0,K0 + Crem). Thus there
is some g such that g,¬g ∈ Crem = C, i.e., C is infeasible,
a contradiction.
If the first call is an accepted call, then for the returned
delta (∆out), it holds that ∆out = ∆(K,K + C). Take
some ground fact g ∈ ∆out; then g /∈ K, but g ∈ K + C,
so g ∈ C, i.e., by the Principle of Success, g ∈ K • C,
thus, by definition, g ∈ ∆min. Using similar arguments,
we can show that if ¬g ∈ ∆out, then ¬g ∈ ∆min. Thus,
∆out ⊆ ∆min, so ∆out ≤K ∆min, by the monotonicity of
≤K. By conclusion #3, ∆min ≤K ∆out. By antisymmetry
of ≤K, we conclude that ∆out = ∆min.
If the first call is an intermediate call, then it will pass
through line 7. Suppose that line 7 selected ground fact
g1 ∈ C for which there is a constraint instance σ1(~a1),
such that ¬g1 ∈ S1 for some S1 ∈ Res(σ1(~a1)) and
K + C 0 σ1(~a1).
Given that K•C ` σ1(~a1), there is some S ′1 ∈ Res(σ1(~a1))
such that K • C ` S ′1. Suppose that S1 = S ′1. Then
K • C ` S1. But ¬g1 ∈ S1, so K • C ` ¬g1. On the
other hand, g1 ∈ C (by line 7), which is a contradiction
because K • C ` C (by the Principle of Success). Thus
S1 6= S ′1, so the algorithm will pass through line 10 for
S ′1.
Let us consider the new recursive call to Change which
uses S ′1; for this call, it holds that Crem = C ∪ S ′1. Take
some g ∈ ∆(K,K + Crem). Then, g /∈ K so g ∈ Crem. If
g ∈ C, then g ∈ ∆min (because K+∆min = K•C ` g by the
Principle of Success and g /∈ K); similarly, if g ∈ S ′1 then
g ∈ ∆min (because, by construction, K+∆min = K•C ` g
and g /∈ K). Thus g ∈ ∆min; using similar arguments we
can show that if ¬g ∈ ∆(K,K + Crem) then ¬g ∈ ∆min.
It follows that ∆(K,K + Crem) ⊆ ∆min. Consequently,
∆(K,K + Crem) ≤K ∆min.
Suppose that in this call, g,¬g ∈ Crem. Then, since C is
feasible to begin with, and the construction of Crem it
holds that g ∈ C and ¬g ∈ S ′1 (or vice-versa). But this
is impossible by the definition of S ′1. Similarly, suppose
that ∆pref ≤K ∆(K,K+Crem) ≤K ∆min. Note that ∆pref

is either equal to ∆∞ (a contradiction), or it has been
returned by an accepted call, so by Conclusion #2, it
follows that ∆min ≤K ∆pref . Thus, ∆min = ∆pref and
∆pref has been returned by some accepted call, so the

21

conclusion has been proven. Thus, let us suppose that
the condition of line 1 is not true.
If the condition of line 4 is true, then the call is accepted
and ∆(K,K + Crem) will be returned, so by Conclusion
#2 ∆min ≤K ∆(K,K+ Crem), and by the fact above (i.e.,
∆(K,K + Crem) ≤K ∆min) and antisymmetry, it follows
that ∆(K,K+ Crem) = ∆min, so the conclusion has been
proven. Thus, let us suppose that the condition of line
4 is not true either.
Then, the algorithm will pass through line 7. As
above, suppose that line 7 selected ground fact
g2 ∈ Crem for which there is a constraint instance σ2(~a2),
such that ¬g2 ∈ S2 for some S2 ∈ Res(σ2(~a2)) and
K + Crem 0 σ2(~a2).
Given that K•C ` σ2(~a2), there is some S ′2 ∈ Res(σ2(~a2))
such that K • C ` S ′2. Suppose that S2 = S ′2. Then
K • C ` S2. But ¬g2 ∈ S2, so K • C ` ¬g2. On the other
hand, by line 7, g2 ∈ Crem = C ∪ S ′1. If g2 ∈ C, then we
have a contradiction because K • C ` C (by the Principle
of Success). If g2 ∈ S ′1, then by the definition of S ′1,
K • C ` S ′1. So, in both cases, K • C ` g2, a contradiction.
Thus, S2 6= S ′2, so the algorithm will pass through line
10 for S ′2.
Therefore, this call is an intermediate call, and consider
the new recursive call to Change (spawned through line
10) which uses S ′2 (as in the previous case). Repeating
the same arguments as above, we conclude that the new
call is either a rejected call (in which case the conclusion
is proven, because there is some other accepted call
returning ∆min – see above), or it is an accepted call
that returns ∆min, or it is an intermediate call; in the
latter case, there is one spawned call for which the
above properties hold, so we can repeat the above
argumentation. Given that the algorithm terminates,
there will be a finite number of intermediate calls; thus,
repeating the argument a finite number of times, we
will eventually reach an accepted or rejected call, so the
conclusion is proved.
Conclusion #5: If C: feasible, then ∆out 6= ∆∞ and
K + ∆out = K • C.
Proof. By conclusion #4, there is at least one accepted
call which returns ∆min. For any other accepted call, it
holds (by Conclusion #2), that the produced delta is less
preferable (according to ≤K) than ∆min, so it will be
eventually rejected when compared with ∆min (either
in line 1 or in line 10). Thus, ∆out = ∆min. The result
now follows easily.
Conclusion #6: If C: infeasible then ∆out = ∆∞.
Proof. Suppose that there is an accepted call which
returns ∆out. Then, by Conclusion #2, K + ∆out ` Σ,
K + ∆out ` C, so by Definition 2, C is feasible, a
contradiction. So, there is no accepted call, i.e., all calls
are either intermediate or rejected. Therefore, it is easy
to see that the algorithm will return ∆∞.
Conclusions #5, #6 show the proposition.�

Proof of Prop. 6. Firstly, we note that the shortlex
order (≤UL) is obviously total, transitive, antisymmetric

and wellfounded9 (i.e., a wellorder). The same is true
for ≤P . Given these, and the definition of ≤G through
Table 6, it is trivial to see that ≤G is also total, transi-
tive and antisymmetric. For wellfoundedness, consider
a set of (possibly negated) ground facts G = {gi} and
suppose that G has no minimal. By antisymmetry, it
follows that there is an infinite sequence g1, g2, . . . such
that g1 >G g2 >G Since there is a finite number
of predicates, there will be some index, say n1, such
that all gi for i > n1 use the same (possibly negated)
predicate. Furthermore, K is finite, as well as valid, so
the subsumption relationships are acyclic (R10.2, R11.2);
thus all distances are finite. Therefore, there will be some
index, say n2, such that all gi for i > n2 use the same
(possibly negated) predicate, and the constant(s) used
in this predicate has (have) the same Dist. Thus, the
comparison boils down to comparing the constants using
≤UL, which is wellfounded, so there is a minimum.
Concluding, ≤G is a wellorder.
Now consider some valid RDF/S KB K. To show that �
is a selection mechanism, we need to show that ≤K is
change-generating.
Totality: consider ∆1,∆2. If there is some (possibly
negated) predicate q such that |∆q

1| 6= |∆
q
2| then the result

is obvious. If |∆q
1| = |∆

q
2| for all q, then, if ∆1 = ∆2, the

result is obvious. So suppose that |∆q
1| = |∆q

2| for all q
and ∆1 6= ∆2. Then, set ∆ = (∆1 \ ∆2) ∪ (∆2 \ ∆1). It
follows that ∆ 6= ∅. Given that ≤G is a wellorder, there
is exactly one minimum (according to ≤G) in ∆, say g.
If g ∈ ∆1 \∆2, then ∆1 <K ∆2, whereas if g ∈ ∆2 \∆1,
then ∆2 <K ∆1.
Antisymmetry: consider ∆1,∆2 such that ∆1 ≤K ∆2 and
∆2 ≤K ∆1, and suppose that ∆1 6= ∆2. If there is some
(possibly negated) predicate q such that |∆q

1| 6= |∆q
2|

and for all predicates q′ such that q <P q′ it holds that
|∆q′

1 | = |∆q′

2 |, then either ∆1 <K ∆2 or ∆2 <K ∆1, a
contradiction. So, |∆q

1| = |∆q
2| for all q. Consider the

set ∆ = (∆1 \ ∆2) ∪ (∆2 \ ∆1). Since ∆1 6= ∆2, it
follows that ∆ 6= ∅. Since ≤G is a wellorder, there is
exactly one minimum (according to ≤G) in ∆, say g. If
g ∈ ∆1\∆2, then ∆1 <K ∆2, whereas if g ∈ ∆2\∆1, then
∆2 <K ∆1, both of which contradict with our hypothesis.
Thus, ∆1 = ∆2.
Transitivity: consider ∆1,∆2,∆3 such that ∆1 ≤K ∆2 and
∆2 ≤K ∆3.
If ∆1 = ∆2 or ∆2 = ∆3, then the result is obvious.
Suppose that (a) there is some predicate q such that
|∆q

1| < |∆
q
2| and for all predicates q0 such that q <P q0

it holds |∆q0
1 | = |∆

q0
2 | and (b) there is some predicate q′

such that |∆q′

2 | < |∆
q′

3 | and for all predicates q′0 such that
q′ <P q′0 it holds |∆q′0

2 | = |∆q′0
3 |. Then, obviously, there

is some predicate q′′ (which is either q or q′, depending
on whether q <P q′ or q′ <P q or q = q′) such that
|∆q′′

1 | < |∆
q′′

3 | and for all predicates q′′0 such that q′′ <P q′′0
it holds |∆q′′0

1 | = |∆
q′′0
3 |. Thus, ∆1 ≤K ∆3.

9. http://en.wikipedia.org/wiki/Lexicographical order

22

Suppose now that (a) there is some predicate q such that
|∆q

1| < |∆
q
2| and for all predicates q0 such that q <P q0

it holds |∆q0
1 | = |∆q0

2 | and (b) that for all predicates q′

it holds that |∆q′

2 | = |∆
q′

3 |. Then, |∆q
1| < |∆

q
3| and for all

predicates q0 such that q <P q0 it holds that |∆q0
1 | = |∆

q0
3 |

so ∆1 ≤K ∆3.
Similarly, if we suppose that (a) for all predicates q
it holds that |∆q

1| = |∆q
2| and (b) that there is some

predicate q′ such that |∆q′

2 | < |∆
q′

3 | and for all predicates
q′0 such that q′ <P q′0 it holds that |∆q0

2 | = |∆
q′0
3 |, then we

can show that ∆1 ≤K ∆3.
Now, consider the case that for all predicates q it holds
that |∆q

1| = |∆q
2| = |∆q

3| and ∆′1 6= ∆′2 and ∆′2 6= ∆′3.
Then the comparison boils down to comparing ground
facts, and the ground facts that are relevant for the
comparison of ∆1,∆2,∆3 are those that belong to at least
one, but not all, of ∆1,∆2,∆3, so set ∆0 = (∆1 ∪ ∆2 ∪
∆3) \ (∆1 ∩ ∆2 ∩ ∆3). Since ∆1,∆2,∆3 are different, it
follows that ∆0 6= ∅. Suppose that g0 is the minimal (with
respect to ≤G) element of ∆0; then, by the construction
of ∆0, there are some i, j ∈ {1, 2, 3}, i 6= j such that
g0 ∈ ∆i, g0 /∈ ∆j , i.e., g0 ∈ ∆i \ ∆j . Given that g0 is
minimal (with respect to ≤G) in ∆0, g0 <K g′ for all
g′ ∈ ∆j \ ∆i ⊆ ∆0, so ∆i ≤K ∆j . Thus, g0 ∈ ∆i \ ∆j

implies ∆i ≤K ∆j . Given this argumentation, and the
fact that ∆1 <K ∆2,∆2 <K ∆3 (by our hypotheses and
the antisymmetry property of ≤K), it follows that:
• If g0 ∈ ∆1 then:

– If g0 /∈ ∆3 then ∆1 ≤K ∆3.
– If g0 ∈ ∆3 then g0 /∈ ∆2, so ∆3 <K ∆2, a

contradiction.
• If g0 /∈ ∆1 then:

– If g0 ∈ ∆2 then ∆2 ≤K ∆1, a contradiction.
– If g0 /∈ ∆2 then g0 ∈ ∆3, so ∆3 ≤K ∆2, a

contradiction.
Thus, ∆1 ≤K ∆3.
Wellfoundedness: consider any set of deltas Z = {∆i} and
suppose that Z has no minimal. Given the antisymmetry
property of ≤K, this can happen only if Z is infinite
and there is an infinite sequence, say ∆1,∆2, · · · ∈ Z ,
such that ∆i+1 <K ∆i for all i.
Take Cl, the least preferred predicate according to ≤P .
Given that ∆i+1 <K ∆i, it follows (by the definition of
≤K) that |∆Cl

i+1| ≤ |∆Cl
i |. Moreover, each ∆i is finite,

so each ∆Cl
i is finite also, so eventually, there will be

some index nCl for which |∆Cl
i+1| = |∆Cl

i | for all i > nCl.
Using the same argumentation for the next predicate
according to ≤P (namely Pr), and for indexes i > nCl,
we can similarly find an index nPr ≥ nCl such that
|∆Pr

i+1| = |∆Pr
i | for all i > nCS (of course, it also holds

that |∆Cl
i+1| = |∆Cl

i | for all i > nCS ≥ nCl). Repeating
the same process for all predicates, we will eventually
find some index, say n such that for all i > n and
all predicates q it holds that |∆q

i | = |∆q
i+1|, i.e., for all

i, j > n it holds that |∆i| = |∆j |. Set n∆ = |∆i| for some
i > n.
Now set ∆1 =

⋃
i>n ∆i \

⋂
i>n ∆i. Since ≤G is

wellfounded, ∆1 has a minimal, say g1. By the
definition of ∆1, there is some k > n such that g1 ∈ ∆k.
Take any m > k > n. If g1 /∈ ∆m, then ∆k <K ∆m, a
contradiction, so g1 ∈ ∆m, for all m > k. Thus, there is
some index, say n1 ≥ n for which g1 ∈ ∆i for all i > n1.
Similarly, we define ∆2 = ∆1 \ {g1}, find the minimal
of ∆2, say g2, and prove that there is some index, say
n2 ≥ n1 for which g2 ∈ ∆i for all i > n2. Continuing
this recursive process, for any k > 1, we define the
set ∆k = ∆k−1 \ {gk−1} (where gk−1 is the minimal
of ∆k−1), we find the minimal, say gk, and prove that
there is some index, say nk ≥ nk−1 for which gk ∈ ∆i

for all i > nk.
If there is some k for which ∆k = ∅, then ∆1 was finite
to begin with; given that each ∆i is finite,

⋂
i>n ∆i is

finite, thus, since ∆1 is finite it follows that
⋃
i>n ∆i

is finite also, which implies that not all ∆i can be
different, i.e., there is some index m for which ∆i = ∆j

for i, j > m, a contradiction. Therefore, this process can
be performed for all k = 1, 2,
Now set j = n∆ + 1; by construction, it follows
that for any i > nj , g1, . . . , gj ∈ ∆i (where g1, . . . , gj
selected as above), and all the g1, . . . , gj are different,
so |∆i| ≥ j > n∆ = |∆i|, a contradiction. We conclude
that there is no such sequence, i.e., we have reached a
contradiction, so Z has a minimum.
Monotonicity: consider ∆1,∆2 such that ∆1 ⊆ ∆2. If
∆1 = ∆2 then obviously ∆1 ≤K ∆2. If ∆1 ⊂ ∆2, then
for all (possibly negated) predicates q it holds that
|∆q

1| ≤ |∆
q
2| and there is at least one (possibly negated)

predicate q0 such that |∆q
1| < |∆

q
2|. Thus, ∆1 ≤K ∆2.�

Proof of Prop. 7. Take any valid KB K and feasible
change request C. Consider the sets ΓK,ΓC ⊆ U ∪ L,
which contain all the constants that appear in K, C
respectively, as well as the custom URI γ ∈ U \ Sp
such that γ is the minimum, according to ≤UL of all
constants in U \ (ΓK ∪ ΓC ∪ Sp). Set Γ = ΓK ∪ ΓC ∪ {γ}.
Now consider a constraint instance σ(~a) from Table 4,
such that ~a contains at least one constant that does
not appear in K or C. In order for K + C to violate
σ(~a) it should be the case that all the predicates
in the antecedent of the constraint must be true.
By the form of the constraints in Table 4 it follows
that all the universally quantified variables in all
constraints appear in predicates in the antecedent of
said constraint. Combining these two facts, we can
show that K + C ` σ(~a), because ~a contains at least
one constant that does not appear in K or C, so not all
antecedents of σ(~a) can be true.
Given the modification of ChangeRDF in line 9, for
all calls in ChangeRDF (Crem,K0,∆pref) it will hold
that Crem,K0,∆pref contain only constants from Γ.
Therefore, line 7 will never have to consider constraints
containing constants that are not in Γ. Moreover,
any given recursive branch cannot consider the same
constraint instance twice, because, once we consider one
constraint instance, it is resolved by adding side-effects

23

to Crem; furthermore, we only add ground facts to
Crem, and if we add contradictory ground facts, line
1 will stop the recursion, so a resolution cannot be
undone in subsequent recursive calls. Since K, C are
finite, Γ is finite also, so, even if a recursive branch
considers all possible constraint instances once, it will
still have to consider a finite number of constraint
instances, so it will have a finite length (equal to the
number of different constraint instances considered).
Similarly, due to the modification in line 9, the number
of recursive branches spawned by each call will be
finite. As a result, the total number of recursive calls is
finite. Similarly, each individual call to ChangeRDF will
terminate for the same reasons. We conclude that the
call ChangeRDF (C,K,∆∞) terminates.
It remains to show that the algorithm returns the correct
result upon termination. Using Proposition 5, it suffices
to show that the modification of line 9 (i.e., ignoring
some of the S ′ ∈ Res(σ(~a))) does not jeopardize
correctness, i.e., none of the ignored branches could
lead to the correct result. Equivalently, we need to show
that K • C contains only constants from Γ.
Suppose that this is not true, and that K • C contains
at least one constant that does not appear in Γ. Set
∆ = ∆(K,K • C), and let γ1, γ2, . . . , γm be the constants
that appear in K • C but are not in Γ. Set ∆γ the delta
that occurs from ∆ by replacing γi ∈ U\Sp by γ and by
dropping all ground facts that contain some γj /∈ U\Sp.
By definition, K + ∆ ` C. Given that ∆γ occurs from ∆
by editing the ground facts that contain γ1, γ2, . . . , γm
only, and that it replaces (some of) these constants
with γ, as well as the fact that γ, γ1, γ2, . . . , γm do not
appear in C by definition, the above fact implies that
K + ∆γ ` C.
Similarly, K + ∆ ` Σ implies that K + ∆γ ` Σ. This is
true, intuitively, because all invalidities can be resolved
using ground facts from ΓK ∪ ΓC only, except from the
invalidities that involve the existential quantifier, for
which any other custom URI can be used (but γ is
preferred, by definition). More formally, let’s assume, for
the sake of contradiction, that there is some constraint
instance σ(~a) such that K+ ∆γ 0 σ(~a). If σ(~a) = R1.1(A)
then Cl(A) ∈ K + ∆γ and A is not a custom URI. If
A ∈ ΓK ∪ ΓC then by the construction of ∆γ it follows
that Cl(A) ∈ K + ∆ as well, i.e., K + ∆ 0 R1.1(A),
a contradiction. If A = γ then γ is a custom URI by
definition, so R1.1(A) is not violated. If A /∈ Γ then it
cannot be the case that Cl(A) ∈ K+ ∆γ because A does
not appear in K or in ∆γ . We conclude that, in any case,
K+ ∆γ ` R1.1(A). We can use similar arguments for all
constraints in Table 4. Thus, K + ∆γ ` Σ.
Finally, it is easy to note that for all predicates q it
holds that |∆q

γ | ≤ |∆q|. If |∆q
γ | < |∆q| for some q, then

∆γ <K ∆, a contradiction by the definition of ∆. So
suppose that |∆q

γ | = |∆q| for all q. Then, all γi are
custom URIs. In addition, Dist(γ) = Dist(γi) = 0,
because γ, γ1, γ2, . . . , γm do not appear in K. Therefore,
the comparison between ∆,∆γ boils down to comparing

the constants using ≤UL; by the definition of γ, this
implies that ∆γ <K ∆. This is a contradiction by the
definition of ∆. We conclude that K • C contains only
constants from Γ.
The result follows from Proposition 5.�

