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Abstract. A capsule pipeline transports material or cargo in capsules propelled by fluid flowing 

through a pipeline. The cargo may either be contained in capsules (such as wheat enclosed inside 

sealed cylindrical containers), or may itself be the capsules (such as coal compressed into the shape 

of a cylinder or sphere). As the concept of capsule transportation is relatively new, the capsule 

pipelines need to be designed optimally for commercial viability. An optimal design of such a 

pipeline would have minimum pressure drop due to the presence of the solid medium in the 

pipeline, which corresponds to minimum head loss and hence minimum pumping power required to 

drive the capsules and the transporting fluid. The total cost for the manufacturing and maintenance 

of such pipelines is yet another important variable that needs to be considered for the widespread 

commercial acceptance of capsule transporting pipelines. To address this, the optimisation 

technique presented here is based on the least-cost principle. Pressure drop relationships have been 

incorporated to calculate the pumping requirements for the system. The maintenance and 

manufacturing costs have been computed separately to analyse their effects on the optimisation 

process. A design example has been included to show the usage of the model presented. The results 

indicate that for a specific throughput, there exists an optimum diameter of the pipeline for which 

the total cost for the piping system is at its minimum.  

1. Introduction 
In the third generation of transport pipelines, hollow capsules of spherical (or cylindrical) shapes are used 

to transport materials such as minerals, powders, medicines etc. These capsules are injected into the 

pipeline and are carried to the desired pumping station where special facilities are installed to filter out 

these capsules from the pipeline. Advantages of capsule pipelines listed by Agarwal and Mishra [1] are as 

given below: 
 

• Separation of fluid and solid medium is not required 

• Fluid is not contaminated 

• Material reaches the destination in a dry state  

• There are no traffic jams or accidents involved 
 



Nomenclature 

 
A Sum of the coefficients of head loss in pipe fittings (1/m) 

C1 Levelized net annual cost of power consumption per unit watt (£/W) 

C2 Levelized net annual cost of pipes per unit weight of pipe materials (£/N) 

C3 Levelized net annual cost of the capsules per unit weight of the capsule material (£/N) 

D  Pipe/Bend Diameter (m) 

d  Capsule Diameter (m) 
g  Acceleration due to gravity (m/s

2
) 

H        Head Loss (m) 

k  Capsule to Pipe diameter ratio (-) 

ρ  Density (kg/m
3
) 

L  Length of the test section (m) 

N  Number of Capsules (-)   

n  Number of pipe bends (-) 

η  Pump efficiency (%) 

Qc Solid Throughput (m
3
/sec) 

Q  Total discharge rate (m
3
/s)  

∆P Pressure drop (Pa) 

Re Reynolds number (-)  

γ  Specific weight (N/m
3
) 

µ  Dynamic viscosity (Pa.s) 

V  Flow velocity (m/s) 

tc   Thickness of Capsule (m) 
θ  Bend Angle (°) 

 

Subscripts 
 

p  Pipe      w Water 

b Bulk      m Mixture 

  

 

Numerous experimental studies have recently been carried out by Ulusarslan and Teke [2-4] where 

they have developed empirical models for the prediction of pressure drop in spherical capsule transporting 

straight pipes and pipe bends. The capsule diameter being analysed by Ulusarslan and Teke was kept 

constant to 80% of the pipeline diameter. Furthermore, Asim et. al. [5] has developed a semi-empirical 

model for the pressure drop calculations in a straight pipeline carrying spherical capsules. The range of 

diameters of the capsules analysed by Asim et al. [5] were 60% to 80% of the pipeline diameter. This 

study incorporates the effect of the diameter of the capsules on the pressure drop in the pipe bends using 

Computational Fluid Dynamics techniques. Based on least-cost principle, a methodology has been 

developed to optimise the pipeline. 

 

2. Optimisation Methodology 
The design procedure for a spherical capsule transporting pipeline comprises the determination of that 

diameter of the pipeline and the associated fittings such as bends etc., for which the total cost is minimum. 

The total cost of the pipeline is the sum of the maintenance and manufacturing costs of the system. The 

step-by-step procedure of this methodology is discussed hereafter: 



2.1. Discharge Rates 

Capsule throughput (Qc) and the total discharge rate (Q) can be computed by the following expressions: 

 
                                     

Capsule throughput; 
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Total Discharge rate; 
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2.2. Major Head Loss 

Asim et. al. [5] developed a relationship for the determination of the pressure drop in a spherical capsule 

transporting horizontal pipeline. The relationship is: 
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Major head loss in a capsule transporting pipelines is due to the friction force between the capsule and 

the fluid and also between the adjacent layers of the fluid. It also accounts for the friction forces present 

between the pipe material and the fluid. Major head loss per unit length in terms of Qc can be computed 

using equation (4) as: 
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2.3. Minor Head Loss 

Using the results from the numerical simulations, a rigorous correlation has been developed for the 

pressure drop per unit length in spherical capsule carrying bends. 
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Where the friction factor can be expressed as: 
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Minor losses are present in the pipelines due to different factors such as pipe bends etc. Minor head 

loss per unit length in terms of Qc can be computed from equation (1) as: 
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2.4. Total Head Loss 

Total head loss in the capsule pipeline is the sum of the head loss due to pipes (major head loss) and the 

pipe fittings (minor head loss). The total head loss thus can be expressed as: 

 

O =	 ./0123
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� 	                                                          (8) 

Figure 1 shows the variation of total head loss as a function of a 45⁰ bend’s diameter for two spherical 

capsules with k=0.8. The result indicates that as the diameter of the pipeline increases, the total head loss 

decreases. The drop in the total head loss from D = 0.08 to 0.09 m is 65% as compared to D = 0.18 to 0.2 

m which is 40%. The sharp decrease in the slope of the plot suggests that although the head loss decreases 

with increasing pipeline diameter, the change in the decrease of the head loss becomes smaller at higher 

high pipeline diameters. 

 

2.5.  Pumping Power 

The power required per pumping unit can be computed using the following expression: 

 

     PQR*S = 	 T/5U
V                                                             (9) 

Where the specific gravity of the mixture can be computed as: 

 

W� =	X�	Y                                                                  (10) 

 

Note that the capsules under consideration have the same density as that of the carrier fluid. 

 
Figure 1.  Variation of total head loss in a spherical capsule carrying 45⁰ hydraulic bend for a solid 

throughput of 50 kg/sec, or Qc=0.05 m3/sec, for capsule to pipe diameter ratio of k = 0.8. 



2.6. Maintenance Cost 

Maintenance cost corresponds to the cost involved in pumping the capsules and the carrier fluid in the pipe 

and the bends. Pumping power based on levelized net annual cost of power consumption per unit watt can 

be expressed as follows: 

 

                                              Z�[\�] =	Z� ∗ PQR*S                                             (11) 

 

2.7. Manufacturing Cost  

The manufacturing cost for the capsule pipeline consists of the cost involved in the manufacturing of the 

pipeline (including bends) and the cost of the capsules. 

 

2.7.1. Cost of Pipes. Cost of the pipes based on C2 and Cc, where Cc is a constant of proportionality 

dependent on expected pressure and diameter ranges of pipe, can be computed from the following 

expression: 

    Z�;^� = 	_`�XYZ�Z�                                                          (12) 

 

2.7.2. Cost of Capsules. Cost of N number of capsules, having a wall thickness of tc, based on levelized 

net annual cost of the capsules per unit weight of the capsule material can be computed using the 

expression: 

  Zab^cde� = 	_B,`XYf�Z$                                       (13) 

 

2.8. Total Cost 

The total cost is the sum of the maintenance cost and the manufacturing cost of the pipeline. 

 

Zg[hbe = 	Zib;8h�8b8�� +	Zib8djb�hd];86                                (14) 

 

The maintenance cost corresponds to the cost of pumping power whereas the manufacturing cost 

accounts for the manufacturing of the pipe and the capsules. Hence, the total cost can also be expressed as: 

 

    Zg[hbe =	Z�[\�] + "Z�;^� +	Zab^cde�(                            (15) 

 

                          Zg[hbe =	 T/5Uak
V + 	_`�XYZ�Z� + 	_B,`XYf�Z$                (16) 

 

Equation (16) accounts for the total cost of the capsule transporting pipeline system which includes the 

pipes and the associated fittings. Figure 2 shows the variations in various costs involved in the capsule 

transporting pipeline w.r.t. pipeline diameter for the case where Qc=0.05 m3/s, number of spherical 

capsules is 2, diameter of the capsules is 80% of the pipeline diameter and a single bend of 45º. The 

maintenance cost has a trend similar to that of the total head loss i.e. as the pipeline diameter increases the 

maintenance cost decreases. This is due to the fact that for the same solid throughput in a pipeline an 

increase in the pipeline diameter will result into the decrease of the flow velocity inside the pipeline. As it 

can be clearly seen from equation (3) that the pressure drop, and hence the head loss, in a capsule 

transporting pipeline has a direct relation with the flow velocity, a decrease in the flow velocity will result 

in decrease in the total head loss. 

 



Figure 2 further suggests that the manufacturing cost increases as the pipeline diameter increases. This 

is due to the fact that the pipes and associated pipe fittings of larger diameters are more expensive. The 

results presented here are in accordance with the current market price of PVC pipes and fittings. It can be 

seen that at a particular pipeline diameter, the total cost of the capsule transporting pipeline is at its 

minimum. This pipeline diameter corresponds to the optimal diameter of the pipeline for which the total 

cost involved is minimum. 

 

 
Figure 2. Variations in pipeline costs w.r.t pipeline’s diameter. 

 

3. Design Example 
Find out the optimum diameter of the pipeline consisting of a horizontal pipe and a 45° bend for a solid 

throughput of 5, 10, 15, 20 and 25 Kg/sec. Use the following data to calculate total head loss as well: 

 

Pump Efficiency = 60%    C1 = 1.1 £/W     

Capsule’s thickness = 10mm   C2 = 1.1 £/N 

k = 0.8      C3 = 1.1 £/N 

Number of Capsules = 2    Cc = 0.2 

 

 

The values for the cost coefficients have been taken from different sources. However, the current market 

values should be used in designing the pipeline. 



3.1. Solution 

Using the methodology described the results in figure 3 and table 1 show the variations in the optimal 

diameter of the pipeline and flow velocity for various solid throughputs. Figure 3 shows that as the solid 

throughput in the capsule transporting pipeline increases, the optimal diameter increases. Furthermore, as 

the solid throughput increases, the flow velocity increases. These results can be used as a design chart for 

the optimal designing of a spherical capsule transporting hydraulic pipeline consisting of the pipes and the 

associated pipe fittings. 

 

 
Figure 3. Variation in optimal diameter and flow velocity w.r.t. the solid throughput. 

 

Table 1. Optimal diameter and the total cost variations. 

 

Qc D V 

(Kg/s) (m) (m/sec) 

   

5 0.14 0.7 

10 0.18 0.9 

15 0.22 0.95 

20 0.25 0.98 

25 0.28 0.99 

 



4. Conclusions 
A versatile and robust methodology for the optimisation of capsule transporting pipelines has been 

presented here. Pressure drop correlations developed for equi-density spherical capsules in a hydraulically 

smooth pipeline and its associated bends have been used as the inputs to the model. Head losses, both 

major and minor, were then calculated based on these correlations. The individual costs involved in the 

manufacturing and the maintenance of the capsule transporting pipelines were calculated. The outputs of 

this model are the optimum diameter of the pipeline and the total cost involved. A design study has also 

been included to show the effectiveness of the model. 
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