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Abstract. Pipelines transporting solid-liquid mixtures are of practical interest to the oil and pipe 

industry throughout the world. Such pipelines are known as slurry pipelines where the solid 

medium of the flow is commonly known as slurry. The optimal designing of such pipelines is of 

commercial interests for their widespread acceptance.  A methodology has been evolved for the 

optimal sizing of a pipeline transporting solid-liquid mixture. Least cost principle has been used in 

sizing such pipelines, which involves the determination of pipe diameter corresponding to the 

minimum cost for given solid throughput. The detailed analysis with regard to transportation of 

slurry having solids of uniformly graded particles size has been included. The proposed 

methodology can be used for designing a pipeline for transporting any solid material for different 

solid throughput. 

1. Introduction 

In case of mineral processing, the ore is generally available in remote areas. At such sites, rail and road 

facilities are usually non-existent. For such situations it is usually worthwhile to consider the possibility of 

hydraulic transportation of solids which can help in relocation of the processing plants at more convenient 

locations. Slurry pipelines are used in various industries for transporting solids in crushed form along with 

the carrier liquid. These pipelines have proven to be cost effective as compared to other modes of 

transportation of solids in bulk form. Some other advantages associated with slurry pipe line system over 

other modes are: 

 

1. Economy of scale 

2. Few traffic and accidental hazards 

3. Eco-Friendliness etc. 

 

The conventional techniques that are used for hydraulic pipelines for analysis and optimization are also 

applicable to hydraulic slurry pipelines. Working within the limits of technical and operational constraints, 

the objective is to arrive at the most economical solution. To achieve this, the different variables involved 

have to be optimized as per the procedure discussed below: 



Nomenclature 

 
C1 Levelized net annual cost of pumping energy per watt [£/W] 

C2 Levelized net annual cost of pipe per unit weight of pipe material [£/N] 

Cc Constant of proportionality dependent on expected pressure and diameter range of Pipe [-] 

CD Coefficient of Drag [-] 

Cv Volume fraction of solids in slurry [-] 

D Diameter of Pipe [m] 

d Diameter of Particles [m] 

g Acceleration due to gravity [m/sec2]  

∆hS Head loss due to slurry [m‘water’/m‘pipe’] 

∆hw Head loss due to water [m‘water’/m‘pipe’] 

Q         Total volumetric flow rate [m
3
/sec] 

Qw Volumetric flow rate of liquid phase (m
3
/sec) 

QS Solid Throughput [Kg/sec] 

Re Reynolds number [-] 

ρ Density [Kg/m
3
] 

γ Specific Weight [N/m
3
] 

S Specific Gravity [-] 

t Pipe wall thickness [m] 

Vo Settling velocity [m/s] 

VD Deposition velocity [m/s] 

µ Dynamic viscosity [Pa-sec] 

η Pump’s efficiency [%] 

 

Subscripts 

 

L Carrier fluid 

m Mixture 

p Pipe material  

 

 

1. Particle size distribution on the basis of slurry preparation, transportation and utilization costs. 

2. Slurry concentration on the basis of transportation and dewatering cost. 

3. Pipeline diameter on the basis of pumping power costs. 

4. Pipe thickness and number of pumping stations on the basis of operational constraints. 

 

In each case the cost of transportation of the solids for the total pipeline system is worked out 

considering both the capital and operating expenses. Slurry pipelines are generally designed on the basis 

of specific energy consumption. Thus, for a given solid throughput pressure drop characteristics are 

calculated based on models available and pilot plant test loop data for various combinations of flow 

velocities, solid concentrations and pipe diameters. Parameters corresponding to minimum specific energy 

consumption are taken as optimum.  

Several investigators have suggested methods for sizing a pipeline carrying fluids based on minimum 

cost. These methods with suitable modifications can be applied to slurry pipelines with reasonable 

accuracy. Albertson [1] considered initial investment cost of pipes and pumps, the annual operational and 

maintenance costs for the life of the pipes and pumps and the salvage value of the pipeline for sizing a 



pipeline of minimum cost. Hathoot [2] and Cheremisinoff [3] describe the optimal size of the pipeline as 

the one for which the total annual cost of the pipe, pumps and power is minimum. Daugherty and Franzini 

[4] found that the total annual cost C of a pipeline carrying fluid is given by: 

 

� = 	��. �� + 
�
�
                                                                 (1) 

 

where a1 and b1 are constants. Later on it was realized that b1 is not constant as it is a function of friction 

factor, which further is a function of Reynolds number and pipe roughness. 

 

Swamee [5] suggested a methodology by which a sediment transporting pipeline could be optimally 

sized using the method of geometric programming. He considered pumping cost as well as the cost of 

piping system. In this method flow is assumed to be taking place at the deposition velocity. However in 

actual practice, flow velocity is always kept suitably higher than the deposition velocity. Mishra and 

Agarwal [6] have suggested a method for optimal sizing of powder handling capsule pipelines by taking 

suitable models for pressure drop, piping cost and capsule cost. They proposed a methodology for 

computing optimal size corresponding to least total cost. A similar methodology can be developed for 

sizing a pipeline handling solid-liquid mixture. 

 

2. Theory 
The design procedure for slurry flow pipelines comprises of determination of the pipeline diameter such 

that the total annual cost is minimum. In a slurry transport pipeline, the total cost is the sum of pumping 

energy cost and the cost of pipes. 

 

Following assumptions are made towards developing a model for the cost of pumping energy and cost 

of pipe: 

 

• Particles are uniformly graded. 

• Durand’s equation [7] for a uniformly graded solid-liquid mixture is reasonably accurate for the 

prediction of head loss calculations. 

• The friction factor can be obtained with reasonable accuracy by Wood’s equation [8]. 

 

 

3. Cost of Pumping Energy 
In a slurry transport pipeline the pumping energy should be sufficient enough to overcome the losses 

taking place in the pipeline. 

 

The losses in a pipeline comprises of two parts: 

 

• Major losses  

• Minor losses 

  

The major losses in the pipeline are due to the friction between solid and liquid phases. The minor 

losses are because of the presence of valves, bends and other flow obstruction devices. Major losses are 

quite high as compared to minor losses because the total length of the pipelines is higher than to be 

compared with the number of pipe fittings being installed in the system. Here, only the major losses are 

considered since it is assumed that overall length of the pipeline is sufficiently high. 



The friction loss for slurry flow through pipes can be estimated by Durand’s equation [7] with 

reasonable accuracy. Durand, based on his data (pipe diameter varying from 0.02 m to 0.6 m, particle sizes 

from 0.0001 m to 0.025 m and pipe velocity from 0.6 m/s to 6 m/s) proposed the following equation for 

the prediction of head loss per unit pipe length in heterogeneous solid-liquid flow: 

 

∆ℎ� = ∆ℎ� + ��	���	������.
	��	�
�	��		�. 
                                                           (2) 

 

Where the head loss due to the carrier liquid alone is expressed as: 

 

∆ℎ� = ��!
���                                                                         (3) 

 

We assume that the slurry flow in pipeline is turbulent. According to Wood’s equation, friction factor 

is given by: 

 " = 4�� + $	%&�'�                                                                  (4) 

 

Here; 

� = 0.0235 ,-�.
�.��/ + 	0.1325,-�.                                                    (5) 

 

$ = 22 ,-�.
�.��

                                                                  (6) 

 

1 = 1.62 ,-�.
�.�3�

                                                                (7) 

 

Furthermore, the Reynolds’s number can be found by: 

 

%& = 45	�	�
6                                                                     (8) 

 

Various parameter used in Durand’s equation [7] have been chosen keeping in view the operational 

requirements of slurry flow through pipelines. The velocity of flow has been fixed at a value slightly 

higher than the deposition velocity.  The deposition velocity of a given solid (known density and size) for 

low solid concentration can be calculated using Wick’s equation [8]: 

 

7� = 1.87 ,:�.
�; <�	�	�	�4=�45�45 >�./                                                   (9) 

 

Flow velocity is assumed to be: 

 7 = 7� + 0.2                                                                (10) 

 

The solid concentration is calculated from the known value of solid throughput using the equation: 

 

?� = @�!��A4B
�                                                              (11) 



Volumetric flow rate of carrier fluid can be computed as: 

 

?C = @�!
�                                                                        (12) 

 

Furthermore, total volumetric flow rate in the pipeline is the sum of the individual flow rates of the 

carrier fluid and the solid phase in the pipeline. This can be computed as: 

 

? =	DB4B +	?C                                                                  (13) 

 

The drag coefficient to be used in Durand’s equation [7] can be calculated for the known values of 

particle size, density and fluid velocity using table 1 as shown below: 

 

Table 1. Expressions for drag coefficient at different Re. 

 

 Settling Velocity Drag Coefficient Condition 

 (m/s) (-)  

1 7� = EF�G� − GI�J�18	KI L �� = M24%&N Re < 1 

2 7� =
0.2J�.�O PF�G� 	− GI�GI Q�.R�

,KIGI.
�.�/  �� = 30%&��.S�/ 1< Re <1000 

3 7� = P4	F	J T G�−GI3 × 0.44GIVQ
�./

 
�� = 0.44	

 
1000< Re < 2x10

5
 

4 7� = P4	F	J T G�−GI3 × 0.1GIVQ
�./

 �� = 0.1 Re > 2x10
5
 

 

The volume fraction of the solid phase can be found using equation (11) as: 

 

�A = �	DB
@	�	�!4B                                                               (14) 

4. Pumping Energy 
The power required per meter length of the pipe, in terms of the total head loss in the pipeline, is given by: 

 

W = XY	D	Z[B
\                                                                 (15) 

 

Where the specific gravity of the slurry can be computed as: 

 ]̂ = 	G^	F                                                                (16) 



The specific gravity of the solid-liquid mixture can be calculated as a function of the volume fraction of 

the solid phase in the pipeline as: 

 G^ = ��A	G�� + �1 − ��A	GC��                                                (17) 

 

The levelized net annual cost of pumping energy per unit pipe length Cpower can be computed as: 

 �_`�ab = W × ��                                                          (18) 

 

Where C1 is the cost of energy consumption per unit watt by the pumping unit installed.  

 

5. Cost of Pipes 
The levelized net annual cost of pipe per unit pipe length Cpipe is given by Chermisinoff [3] as a function 

of levelized net annual cost of pipe per unit weight of pipe material C2: 

 �_c_a = π	�	e	]_	��                                                      (19) 

 

Mishra and Agrawal [6] have taken the pipe wall thickness t in terms of pipe diameter D and the 

coefficient Cc for reasonable pressure range as: 

 

 e = �' 	�                                                                (20) 

 

Hence, the cost of the pipe would be: 

 �_c_a = π	��	�' 	]_	��                                                     (21) 

   

6. Total Cost of Pipeline 
 

The levelized total annual cost of the pipeline per unit length Ctotal is given by: 

 �f`fgC =	�_`�ab + �_c_a                                                    (22) 

 

7. Optimal Sizing of Pipeline 
The diameter corresponding to total minimum cost is the optimal diameter for a given solid throughput. It 

has been seen that both the pumping cost and piping cost are functions of diameter of the pipeline.  Hence 

the total cost, as a function of diameter of pipe D, can be written as: 

 �f`fgC =	"���� + "����                                                     (23) 

 

Figure 1 depicts the variations in maintenance, manufacturing and total costs of the hydraulic slurry 

pipeline as a function of the pipeline diameter at a solid throughput of 50 Kg/s for aluminium particles of 

size 2mm. The maintenance cost is the cost associated with the pumping requirements as discussed in 

section 4. The manufacturing cost is the cost of the pipes as discussed in section 5. The total cost as a 

function of pipeline diameter hence is the sum of these two costs. It can be seen that as the pipeline 

diameter increases, the maintenance cost decreases due to the fact that for the same solid throughput rate, 



increasing the size of the pipeline results in the decrease of the flow velocity. Hence, the maintenance cost 

decreases with increase in the pipeline diameter. 

 

 
Figure 1. Variation of various costs involved in slurry pipelines for solid throughput of 50 Kg/s. 

 

Furthermore, increase in the pipeline diameter increases the cost of the pipes i.e. manufacturing cost. 

The cost values shown in the Y-axis of the plot corresponds to the current market price for PVC pipes. It 

can be clearly seen that the point of intersection of the maintenance and the manufacturing cost curves 

reflect the optimum diameter for the hydraulic slurry pipeline. At this point of intersection, the total cost 

curve is at its minimum value. This methodology has been adopted for the optimisation of the slurry 

pipelines. 

 

8. Design Example 
Find optimal size of a pipeline transporting aluminium ore slurry with particles of size 2mm in the solid 

throughput range from 50Kg/sec to 250Kg/sec. 

 

Computations have been made for Q=50kg/sec up to 250kg/sec for the given design example. Table 2 

shows that for particles of diameter 2mm and a throughput of 50 kg/sec of solids, the optimal diameter of 

the pipeline is 0.14 m. The corresponding values of the flow velocity and solid concentration are 3.17 



m/sec and 21.3 % respectively. With increasing solid throughput rate it can be seen that the optimal 

diameter increases and flow velocities also show an increasing trend. Furthermore, increase in the solid 

throughput in the pipeline decreases the volume fraction of the solid phase. The average value of the solid 

phase volume fraction is 20.1%. 

 

Figure 2 shows the variations in optimal diameter and flow velocity with respect to the solid 

throughput. This plot can be used as a design chart for optimal sizing of pipeline transporting aluminium 

ore slurry if the required solid throughput rates are known. 

 

 
Table 2. Variations in optimal diameter for various solid throughputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Conclusions 

The methodology evolved in the present study for optimizing the diameter of the pipeline is found to be 

applicable over wide range of data for aluminium ore slurry. The optimal size of the pipeline has been 

calculated from the least cost principle for throughput ranging from 50kg/sec to 250kg/sec for particles of 

size 2mm. The flow parameters corresponding to the optimal size of the pipeline are in the normal range 

of operations. 

 

 

Throughput 
Optimal 

diameter 

Velocity of 

flow 

Volume 

fraction of 

solid phase 

(Kg/sec) (m) (m/s) (%) 

50 0.14 3.17 21.3 

100 0.19 3.49 21 

150 0.23 3.71 20.2 

200 0.27 3.9 19 

250 0.29 3.99 19 



 
Figure 2. Variation of optimal diameter and flow velocity with solid throughput. 
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