Review of control strategies used in modern railway vehicles

Student - Roy W. Ngigi
Supervisors - Dr C. Pislaru, Prof A. Ball, Dr F. Gu
The Centre for Diagnostic Engineering, Computing and Engineering

ABSTRACT
Control systems are being developed in the railway industry to maintain good steering, stability and comfort. Although, these systems are in operational, there are prospects of fully implementing mechatronic principles through an integrated control system. This poster is intended to provide various aspects of control system technology that are incorporated in modern railway vehicles and to give illustrative examples of where particular control objectives have been met. Its main contribution is to identify opportunities for further research in this field.

INTRODUCTION
The use of railway vehicles worldwide has increased and thus, more and more trains are being produced. This trend is unlikely to change anytime soon. Therefore, there is a need to develop trains that provide safe and comfortable transportation, and at the same time have minimal impact on the environment. The challenge is to develop vehicles that can satisfy these conflicting requirements. One of the steps in achieving this is the use of mechatronic subsystems that employ sensors, actuators and control systems. There are several control strategies which have been developed to automate various operations within the railway vehicle. Only the ones that are well established will be reviewed.

CONTROL STRATEGIES

1. Tilt control
 - Maximizes the use of poorly run tracks.
 - Wheel and rail contact point.
 - One of the avenues for further research in establishing if it is feasible.
 - The level of integration of various aspects (traction, braking, suspension) is high, thereby more sophistication in designing a controller.

2. Active lateral suspension control
 - Improved ride quality and steering
 - Increased dynamic performance which is scarce when trains had only passive elements.

3. Active primary suspension control
 - skyhook damping control [1]
 - A remarkable contribution (railway vehicles).
 - The benefits of incorporating such systems in an ‘asset’ (railway vehicles) has been remarkable. One of the key contributions is the increased dynamic performance which was scarce when trains had only passive elements.

4. Wheel slip control
 - Adhesion force control based on field oriented vector control [4]
 - The difficulty in accommodating all of the dynamical features.

REFERENCES