University of Huddersfield Repository

Musbah, Abdurazzaq and Lucas, Gary

Wet gas flow metering technique using a venturi with conductance sensors

Original Citation

This version is available at http://eprints.hud.ac.uk/13495/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
OVERVIEW AND RESEARCH OBJECTIVES

Wet gas metering is becoming an increasingly important problem to the oil and gas industry. The aim of the research is to design a novel wet gas flow metering technique, which combines a Venturi with conductance sensors at the inlet and throat. The objectives, providing the solution to achieve the aims, are outlined below:

- Design and build a Venturi meter to enable measurement of the gas volume fraction at the inlet and the throat of the Venturi using electrical conductance techniques.
- Design and build a digital liquid level sensor to measure the liquid film thickness at the inlet of the Venturi in annular flow.
- Design and build three separate conductance electronic circuits for:
 - Two upstream ring sensors, designed to measure the film velocity by cross correlating signals between two sensors at the inlet.
 - The digital level sensor, designed to measure the liquid film thickness in annular flow.
 - The throat ring sensor, designed to measure the gas volume fraction at the throat.
- To use a data acquisition device to integrate the system measurements and to control the operation of the device:
 - The throat conductance sensor.
 - The digital level sensor.
 - The inlet conductance sensors.
 - The differential pressure sensor.

THE MEASUREMENTS

What measurements we need to make and how these measurements will be integrated into mathematical model to give the liquid and gas flow rates:

- Measuring the film velocity in wet gas flow.
- Measuring the film thickness.
- Measuring the gas volume fraction at inlet α_1.
- Measuring the water conductivity.
- Measuring the gas volume fraction at the throat α_2.
- Measuring the film velocity in wet gas flow $\Delta \rho$.
- Differential pressure in wet gas flow ΔP_{gas}.

We make the above measurements and combine them to enable the gas flow rate in annular flow to be determined and the mass flow rate of water in the film using the equation 1 and 2 respectively.

DESIGN OF THE CONDUITANCE VENTURI METER

A new Venturi with conductance sensors was designed and constructed. To determine the gas flow rate

TECHNIQUE

Measuring the film velocity in wet gas flow

Measured by cross-correlating the conductance signals between two sensors at the inlet of the Venturi, using the conductance electronic circuits of the upstream ring sensors.

The film thickness measurements

Measured using a digital level sensor at the inlet of the Venturi (upstream).

The Gas volume fraction measurement

From the conductance circuit we know feedback resistance and the excitation voltage V_{in}, we therefore have $K(\alpha_1) = \frac{V_{\text{in}}}{R_2}$ and $K(\alpha_2) = \frac{V_{\text{in}}}{R_1}$.

The cell constant $K(\alpha_1)$ vs α_1 gas volume faction at the inlet

The water conductivity measurements

We need to know how the conductivity sensor will be used with the digital level sensor in a real application to find the water conductivity σ_{wms}.

The Gas volume fraction measurement at the throat

The measurement voltage equation is $V(\alpha_i) = V_{\text{in}} \frac{R_2}{R_i} K(\alpha_i)$. We therefore have $K(\alpha_i) = \frac{V(\alpha_i)}{V_{\text{in}}}$. The cell constant $K(\alpha_i)$ vs α_2 gas volume faction at the inlet.

The water conductivity measurements

We therefore have $\sigma_{wms} = \frac{V(\alpha_i)}{K(\alpha_i)}$.

The Gas volume fraction measurement at the outlet

The measurement of the gas volume fraction at the outlet relies upon knowing the liquid conductivity under actual flowing conditions.

Differential pressure in wet gas flow

As in the figure the differential pressure will be measured by the dP cell.

$$\Delta P_{\text{gas}} = (P_1 - P_2)$$

Measuring the gas flow rate in annular flow

We make the above measurements to combine them to enable the gas flow rate in annular to be determined using the equation

$$n_g = C_m \left(\frac{\alpha_2}{\alpha_1} \left(\frac{\Delta P}{\Delta P_{\text{at}}} \right)^2 \frac{A_k}{A \mu L} \right)$$

Measuring the gas flow rate in annular flow

The mass flow rate of water in film can be obtained from the following equation

$$n_w = \frac{Q_w}{\rho_w}$$

CONDUCTANCE ELECTRONIC CIRCUITS

Experimental result of the Gas volume fraction measurement at the inlet

Experimental result of the Gas volume fraction measurement at the inlet

a.musbah@hud.ac.uk