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COMPARISON BETWEEN MILTIOBJECTIVE OPTIMIZATION 
ALGORITHMS 

 
H. E. Radhi1, and S. Barrans1 

1 University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK 
 

ABSTRACT 
 
The first aim of this study was to perform a complete comprehensive comparison between multi-
objective optimization methods by using the commercial modeFRONTIER software to solve the 
standard test problem SCH and FON and examining the efficiency of each method. Two numerical 
performance metrics and one visual criterion were chosen for qualitative and quantitative comparison 
: (1) Spacing metric (S) which indicates the distribution of the Pareto front in the objective space. (2) 
the ratio between the number of resulting Pareto front members and the total number of fitness 
function calculations, and lastly (3) graphical representation of the Pareto fronts for discussion. These 
metrics were chosen to represent the quality, as well as speed of the algorithms by ensuring well 
distributed solution.  
 
Keywords Multi-objective optimization, Genetic algorithms, MOSA. 
 
 

1     INTRODUCTION 
 

Unlike single criterion optimization, in multiobjective problems it is not possible to have a single 
solution that optimizes all objectives, there usually exists a set of non-dominated solutions or Pareto 
optimal solutions. The mathematical multiobjective optimization statement can be defined as follows 
Deb (2001). 
 

                     Minimize/ Maximize    )](.,),........(2),(1[)( xfnxfXf Txf =                                              (1) 
                                                    
                                                   Subject to     0)(0)( =≤ xhxg           
                                                    
                                                   nix Hix ix Li ,.....,3,2,1,, =≤≤         
 
Where f(x) is the set of objective function, n the total number of objective functions, g and h are 
vectors of inequality and equality constraint respectively and x is the set of design variables. Fig. 1 
shows representative solutions of a multiobjective optimization problem. The dotted line represents the 
Pareto optimal solutions which are not dominated by any other solution, since no other solution in the 
set are equal or better for both objective functions. Note that solution 1 has a small value of f1 but a 
large value of f2. Solution 5 has large value of f1 but small value of f2; one cannot decide that solution 
1 is better than solution 5, or vice-versa, if the goal is to minimize both objective functions. It is evident 
that solution 6 is not a good solution since it is dominated by 5. Deb (2001) used the concept of 
domination (and non-domination) to describe the Pareto front.  
The solution x1 dominates a solution x2 if and only if: 
 

• The solution x1 is not worse than x2 in any of the objectives. 
• The solution x2 is strictly better than solution x2 in one objective at least. 

 
Sedenko and raida (2010) performed a comparison between particle swarm optimization and genetic 
algorithms. Several multiobjective evolutionary algorithms (MOEA) were developed and compared by 
Deb (2001). Deb et al (2002) proposed a newer version of Non-dominated Sorting Genetic Algorithms 
NSGA-II and compared with a Pareto-Archived Evolution Strategy (PAES) and Strength-Pareto 
Evolutionary algorithm (SPEA). 
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2     BENCHMARK PROBLEMS 
 
In the literature wide range of different benchmark problems with varying parameters are used to 
investigate the performance of multiobjective optimization algorithms. In this study two different 
benchmark problems were used. The Schaffer (SCH) and Fonesca (FON) problems are widely used in 
the field of multiobjective optimization.  
The following parameters were used during this study initial population size, 100; crossover 
probability, 0.65; mutation probability, 0.1; and number of generation, 10. Each algorithm was allowed 
to run1000 function evaluation. 
 

A. SCH problem (n=1)  
 
This is a low dimensional convex problem suggested by Schaffer (1987). 
 
                                          )2,1( ffMinimizeSCH =                                                                              (2) 
 

                                             xxf 2)(1 =                                                                                                 (3) 

 

                                          )2( 2)(2 −= xxf                                                                                     (4) 

 

                                        ]103,103[−∈x  
B. FON problem ( n=3) 
 

This is a problem used by Fonesca and Fleming (1998). It is characterizes by having a non-convex 
Pareto front and non-linear objective functions with their value concentrated around f1 f2 = (-1, 1). 
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3     PERFORMANCE METRICS 

 
 As mentioned before, in order to facilitate the quantitative assessment of the performance of a 
multiobjective optimization algorithm, the hit rate metric and spacing metric suggested by Schott 
(1995) were used , which measure the extent of diversity of an approximation set. The two metrics are 
summarized as follows. 
 

A. Hit rate metric (HR %) 
  

Different classifiers are used to describe the results, the number of resulting Pareto front point is given 
by PF, while the parameters FFC denotes the total number of fitness calculation. The final hit rate HR 
is computed according to the following equation 
 

                                           [%]100
FFC

PF
HR =                                                                                (8) 

 
A higher hit rate indicates that fewer time consuming fitness computations were used to find the 
Pareto optimal solutions. The relationship between the size of the feasible design space and the ideal 
Pareto front should be considered in order to create a universal hit quantifier. 
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B. Spacing metric (S).  

 
This metric as used by Schoot (1995), indicates how uniformly the points in the approximation set are 
distributed in the objective space as a variance S: 
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 Where d  is the average of all di, k is the number of objective functions and PA represents the 
Pareto optimal set. A zero value of this metric indicates all members of Pareto front are equidistantly 
spaced. 
 

4     modeFRONTIER SOFTWARE 
 

One of the aims of this paper was to design, optimize and compare different multiobjective 
optimization algorithms. For this purpose, a benchmark problem was designed in modeFRONTIER 
.This software package is a multiobjective optimization and multidisciplinary design optimization code 
written to allow easy coupling to different commercial computer aided engineering (CAE) tools. 
ModeFRONTIER allows optimization analysis to be performed to modifying the values assigned to the 
input variables of various CAE tools, such as Finite Element Analysis (FEA), Computational Fluids 
Dynamics (CFD) and CAD software. The output from these CAE tools can then be described as the 
objectives and constraints of the design problem. 
modeFRONTIER provides a GUI driven wrapper around the CAE tools. The user manual of this 
software illustrates how a variety of problems can be handled modeFRONTIER (2008). Handling the 
analysis tool within the modeFRONTIER framework is relatively straight forward with direct interfaces 
for Matlab and Simulink, Excel, CATIA, ANSYS Workbench and ABAQUS. 
 

5    RESULTS AND DISCUSSIONS 
 
 Six multiobjective population-based optimization algorithms were introduced for comparison of the 
effectiveness of each. The six algorithms examined in this study were: Multiobjective Genetic 
Algorithm (MOGA-II) Silivia (2003), Adaptive range Multiobjective Genetic Algorithm (ARMOGA) 
Daisku (2005), Fast Multiobjective Genetic Algorithm (FMOGA-II), Non-dominated Sorting Genetic 
Algorithm (NSGA-II) Deb et al. (2000), Multiobjective Particle Swarm Optimization (MOPSO) Sanaz 
(2004) and Multiobjective Simulated Annealing (MOSA) Suppapinarm Sefan and Parks (2000). 
To illustrate the performance of the six algorithms, the values obtained for the two comparison metrics 
are included in Table 1. For the SCH problem the solutions obtained by FMOGA-II and MOGA-II are 
the best regarding the spacing metric, while the solution sets obtained by NSGA-II and MOPSO are 
the second best with the same value of spacing metric. 
In second problem (FON), it is clear that FMOGA-II is still the best with the highest hit rate and lowest 
value of spacing metric, MOGA-II is the second best, while MOSA is the worst case in terms of the two 
metrics. From the above results, it is concluded the FMOGA-II and MOGA-II algorithms are suitable for 
solving convex problems, whilst FMOGA-II outperforms all other algorithms regarding both spacing 
and hit rate for non-convex problem. 
In the following section Figures 2 and 3 present the graphical results for all algorithms in the order 
MOGA-II, ARMOGA-II, NSGA-II, FMOGA-II, MOSA and MOPSO. This graphical representation of the 
Pareto optimal curve found by the six methods can be used to compare their performance. For the 
SCH problem Fig. 2, can be seen that the FMOGA-II and MOGA-II algorithms performed equally well. 
They both displayed an even distribution of points along the Pareto front. NSGA-II gave the second 
best results, whilst ARMOGA gave a poor distribution at one end of the curve. 
For the FON problems shown in Figure 3, FMOGA-II shows a uniform distribution of points on the 
Pareto optimal curve. However other methods gave a poor distribution at one end of the curve such as 
ARMOGA, MOGA-II, NSGA-II and MOPSO or at both ends such as MOSA.  
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6    CONCLUSION  
 
In this study we have performed an experimental comparison between six algorithms for multi-objective 
optimization. To evaluate the performance of the algorithms two well-known two objectives benchmark 
problems (SCH) and (FON), two quality indicators and one visual criterion are used. 
According to experiments done with test functions and the parameter settings used, it can be conclude that  

•  In convex problem (SCH) the FMOGA-II significantly outperforms 5 other algorithms in terms of hit 
rate and spacing metric. 

• In concave problem (FON) the performance of FMOGA-II is still very well in both metrics and has a 
well-distributed solution over the Pareto front. 

On the whole, the FMOGA-II outperforms all other types of algorithms and suitable to use in convex concave 
multiobjective optimization problems. 
 
Note: this study is a part of Ph D project (Optimization of welded joints under fatigue loading). So it is evident to 
classify the multiobjective optimization algorithms according to their performance and convergence for the 
future work of this project. 
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Figure 1:  Main concept of Pareto dominance in a two objectives problem 
 
 

 
 

Algorithm 

 
Metrics 
 

 
SCH Problem 
 

 
FON Problem 
 

MOGA-II 
HR [%] 22.13E-03 92.8E-03 

Spacing(S) 4.098E-08 12.805E-03 

ARMOGA 
HR [%] 19.37E-03 61.7E-03 
Spacing(S) 1.64705 17.261E-03 

NSGA-II 
HR [%] 18.69E-03 110.9E-03 
Spacing(S) 0.25298 16.584E-03 

FMOGA-II 
HR [%] 29.89E-03 388E-03 
Spacing(S) 4.098E-08 2.101E-03 

MOSA 
HR [%] 5.33E-03 13E-03 
Spacing(S) 1.04307 64.871E-03 

MOPSO 
HR [%] 10.21E-03 42.3E-03 
Spacing(S) 0.26666 16.467E-03 

 
 

Table 1: Performance measures of MOGA-II, ARMOGA, NSGA-II, FMOGA-II, MOSA and MOPSO for test problems 
considered in study showing the value of spacing (S) and hit rate metric (HR) 
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Figure 2: The evaluated front from MOGA-II, ARMOGA, NSGA-II, FMOHA-II, MOSA and MOPSO from SCH problem. 
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Figure 3: The evaluated front from MOGA-II, ARMOGA, NSGA-II, FMOHA-II, MOSA and MOPSO from FON problem. 
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