University of Huddersfield Repository

Morris, Gordon and Ralet, M.C.

The effect of neutral sugar distribution on the dilute solution conformation of sugar beet pectin

Original Citation

This version is available at http://eprints.hud.ac.uk/13411/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The effect of neutral sugar distribution on the dilute solution conformation of sugar beet pectin

Gordon A. Morris1,2 and Marie-Christine Ralet2

1Department of Chemical & Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK (present address)

2INRA, UR1268 Biopolymères Interactions Assemblages, Rue de la Géraudière, B.P. 71627, F-44300 Nantes, France.

*Corresponding author

Tel: +44 (0) 1484 473871

Fax: +44 (0) 1484 472182

Email: g.morris@hud.ac.uk
Abstract
A partially degraded sugar beet pectin (C) was found to be heterogeneous in composition with neutral sugar-rich fractions of both high and low hydrodynamic radii. A neutral sugar-poor fraction was found at intermediate hydrodynamic radii. In this paper we demonstrate using both conformation zoning and the global analysis method that fractions of sugar beet pectin rich in neutral sugar side chains (RG-I regions) are less flexible than those rich in galacturonic acid (HG regions).

Key words: Sugar beet (*Beta vulgaris*) pectin; neutral sugar distribution; conformation; persistence length (L_p); mass-per-unit length (M_L)
1. Introduction

Dilute solution properties of pectins such as viscosity also depend on chemical composition, degree of esterification, solvent environment (i.e. salt concentration, sugar concentration and pH) together with temperature (Oakenfull, 1991). Hydrodynamic studies based on intrinsic viscosity ([\eta]), sedimentation coefficient (s_{20,w}^0), radius of gyration (r_g) and weight average molecular weight (M_w) have focussed on qualitative/semi-quantitative methods of estimating the overall conformation based around “power law” Mark-Houwink-Kuhn-Sakurada relations which link intrinsic viscosity, sedimentation coefficient and radius of gyration with molar mass [\eta] \propto M^a, s_{20,w}^0 \propto M^b and r_g \propto M^c, where a, b and c have defined values for specific conformation types. The translational frictional ratio, f/f_o, conformation zoning (Pavlov, Rowe, & Harding, 1997; Pavlov, Harding, & Rowe, 1999) and the persistence length, L_p (Kratky and Porod, 1949) have also been used to estimate dilute solution conformation. A picture of a semi-flexible conformation for citrus pectins irrespective of degree of esterification (and charge) has emerged from these studies (Anger and Berth, 1985; Axelos, Lefebvre, & Thibault; Axelos, & Thibault, 1991, Berth, Anger, & Linow, 1977; Harding, Berth, Ball, Mitchell, & García de la Torre., 1991; Garnier, Axelos & Thibault, 1993; Malovikova, Rinaudo, & Milas, 1993; Cros, Garnier, Axelos, Imbery, & Perez, 1996; Braccini, Grasso, & Perez, 1999; Morris, Foster, & Harding, 2000, 2002; Morris, García de la Torre, Ortega, Castille, Smith, & Harding, 2008; Fishman, Chau, Kolpak, & Brady, 2001; Fishman, Chau, Hoagland, & Hotchkiss, 2006; Noto, Martorana, Bulone, & San Biagio, 2005). Sugar beet, apple and flax pectins have also been demonstrated to have semi-flexible structures (Ralet, Crépeau, Lefebvre, Mouille, Höfte, & Thibault, 2008; Axelos, & Thibault, 1991; Cros, et al., 1996; Morris, Ralet, Bonnin, Thibault, & Harding, 2010), however a purified RG-I fraction has a random coil conformation (Morris, et al., 2010). Pectin molecular weight and chain flexibility are also important in mucoadhesive interactions and pharmaceutical applications (Nafee, Ismail, Boraie, & Mortada, 2007; Morris, Kök, Harding, & Adams, 2010).

In an earlier paper (Morris & Ralet, 2012) we have demonstrated the use of size exclusion chromatography coupled to refractive index (RI) and UV detectors (SEC-RI-UV) to visualise heterogeneity in the neutral sugar content of pectin fractions. This suggests that the overall conformation approach may not be applicable to heterogeneous pectins e.g. sugar beet; apple
and flax and in this second paper in the series we will estimate the dilute solution conformation of fractions of different chemical composition.

2. Experimental
2.1. Materials and Methods
2.1.1. Acid extraction of sugar beet pulp (Pectin C)
The alcohol insoluble residue (AIR) (5 g) from sugar beet pulp was obtained as described in Levigne, Ralet, & Thibault (2002) and the resultant pectin (yield 350 mg/g) will be referred to as pectin C.

2.1.2. SEC-MALLS-RI-UV-DPV
High performance size exclusion chromatography (HPSEC) was performed at room temperature on a system consisting of a Shodex OH SB-G guard column (Showa Denko, Tokyo, Japan) followed by in series (Shodex OH-Pak SB-805 HQ and Shodex OH-Pak SB-804 HQ) eluted with 50 mM sodium nitrate buffer containing 0.02 % sodium azide as an antibacterial agent at a flow rate of 42 ml/h. The eluent was detected on-line by:

1. SpectroMonitor 3000 variable wavelength UV detector at 325 nm (LDC/Milton Roy, Paris, France)
3. T-50A differential pressure viscometer (DPV) (Viscotek, Huston, U.S.A.)
4. ERC 7515A differential refractometer (RI) (Sopares, Gentilly, France)

The refractive index increment, \(dn/dc \) was taken to be 0.146 ml/g (Chapman, Morris, Selvendran, & O’Neill, 1987).
3. Results and Discussion

3.1. Physical characterisation of pectin C

Acid extracted pectin is heterogeneous with respect to molar mass, intrinsic viscosity and composition (Oosterveld, Beldman, Schols & Voragen, 1996; Morris, et. al., 2010; Morris & Ralet, 2012) (see Figure 2 Morris & Ralet, 2012). The use of UV absorbance (325 nm) allows the visualisation of those populations of pectic molecules, which are substituted with ferulic acid i.e. the arabinan, galactan or arabinogalactan side chains present on the RG-I region of sugar beet pectin as has been shown previously (Oosterveld, et al., 1996; Morris, et. al., 2010; Morris & Ralet, 2012). In the previous paper in this series (Morris & Ralet, 2012) we demonstrated using on-line RI and UV detection how the neutral sugar composition of a pectin molecule varies during elution. We will now demonstrate how this change in chemical composition affects the physical properties (e.g. molar mass and intrinsic viscosity) of the pectin and how this impacts on conformation.

3.1.1. Molar mass and intrinsic viscosity

A molar mass and intrinsic viscosity of 270000 g/mol and 375 ml/g, respectively (Table 1) are in general agreement with previous studies on sugar beet pectins (Levigne, et al., 2002; Morris, et al., 2010). Furthermore, pectin C is polydisperse (M\textsubscript{w}/M\textsubscript{n} = 2.15, where M\textsubscript{w} and M\textsubscript{n} are the weight and number average molar masses, respectively) and there are wide range of different conformations (Figures 1 and 2). In this case the slope of this Mark-Houwink-Kuhn-Sakurada (MHKS) plot has no sensible meaning as this approach is only valid for a series of homologous (or pseudo-homologous) polymers. However what we can do is estimate the conformation at randomly selected points (indicated in red in Figure 2) and correlate this information with the chemical composition at each point.

3.1.2. Global analysis method (HYDFIT)

The linear flexibility of polymer chains can also be represented quantitatively in terms of the persistence length, L\textsubscript{p} of equivalent worm-like chains (Kratky, & Porod, 1949) where the persistence length is defined as the average projection length along the initial direction of the polymer chain. In the case of a theoretical perfect random coil L\textsubscript{p} = 0 and for the equivalent extra-rigid rod L\textsubscript{p} = \infty, although in practice limits of ~ 1 nm for random coils (e.g. pullulan) and 200 nm for a extra-rigid rod (e.g. xanthan) are more appropriate (Harding, 1997).
The persistence length, \(L_p \) and mass per unit length, \(M_L \) can be estimated using MultiHYDFIT program (Ortega, & García de la Torre, 2007) which considers data sets of intrinsic viscosity and molar mass. It then performs a minimisation procedure (see Ortega, & García de la Torre, 2007) finding the best values of \(M_L \) and \(L_p \) satisfying the Bushin-Bohdanecky (Bushin, Tsvetkov, Lysenko, & Emel’yanov, 1981; Bohdanecky, 1983) equation (equation 1).

\[
\left(\frac{M_w^2}{\eta} \right)^{1/3} = A_0 M_L \Phi^{-1/3} + B_0 \Phi^{-1/3} \left(\frac{2L_p}{M_L} \right)^{-1/2} M_w^{1/2}
\]

where \(\Phi \) is the Flory-Fox constant \((2.86 \times 10^{23} \text{ mol}^{-1})\) and \(A_0 \) and \(B_0 \) are tabulated coefficients (Bohdanecky, 1983)

\[
M_L = \frac{m}{l}
\]

m and l are the average molar mass and length of the average monomeric unit.

Flexibility can be estimated from the ratio of \(L_p/M_L \) \((\text{nm}^2/\text{mol/g})\) which decreases with increasing flexibility (Patel, Morris, Ebringerová, Vodenicarová, Velebny, Ortega, García de la Torre, & Harding, 2008; Morris, et. al., 2010). The “average” conformation for pectin C is shown in Table 1. These results are consistent with previous findings which suggest that sugar beet; apple and flax pectins have flexible structures (Axelos, & Thibault, 1991; Cros, et. al., 1996; Ralet, et. al., 2008; Morris, et al., 2010). In order to further demonstrate the differences in conformation across the elution profile we have superimposed the Mark-Houwink-Kuhn-Sakurada plot for this pectin if we were to assume the entire population had the same “average” conformation (Figure 2). The slope of the plot is 0.61 indicating a semi-flexible conformation.

When we go on to look at the pectin conformation at each of the 20 selected slices we can see that fractions rich in neutral sugars are more flexible than those richer in galacturonic acid (Table 2). This is consistent with the findings that HG–rich regions are considerably stiffer (Cros, et al., 1996; Braccini, et. al., 1999; Noto, et. al., 2005; Morris, et al., 2010).
3.1.3. Conformation zoning (Normalised scaling relations)

Pavlov, Harding & Rowe (1999) described a procedure to represent the conformation of polymers in solution based on the relationship between their molar mass, intrinsic viscosity and mass per unit length, M_L. A plot of $\log [\eta]M_L$ versus $10^8M_w/M_L$ enables an estimate of the overall solution conformation of a macromolecule in solution: where Zone A represents an extra rigid rod, Zone B a rigid rod, Zone C a semi-flexible coil, Zone D a random coil and Zone E a globular or branched structure. In this case we have taken the mass per unit length calculated previously using the HYDFIT algorithm (Ortega, & García de la Torre, 2007). As we can see from Figure 3 the pectins with higher neutral sugars are generally more flexible and those which are richer in HG fractions are less flexible this is in agreement with findings on sugar beet pectin sub-fractions (Morris, et. al., 2010), although all fractions are less flexible than we expected. This is most likely due the estimation of flexibility relying solely on the variation of intrinsic viscosity with molar mass rather than using a suite of hydrodynamic techniques (Morris, Patel, Picout, Ross-Murphy, Ortega, Garcia de la Torre, & Harding, 2008; Kök, Abdelhameed, Ang, Morris, & Harding, 2009). There also seems to be a semi-quantitative relationship between L_p/M_L (nm2/mol/g) and the conformation as estimated by conformation zoning in that the transition from rigid rod to semi-flexible coil seems to occur at ~ 0.01 nm2/mol/g (Figure 4 and Table 2). The only exception to this is shown in italics in Table 2.

4. Conclusions

In this paper we demonstrate using both conformation zoning (Pavlov, et. al., 1999) and the global analysis method (Ortega, & García de la Torre, 2007) that fractions of sugar beet pectin rich in neutral sugar side chains (RG-I regions) are more compact than those rich in galacturonic acid (HG regions). Therefore as a consequence we should be aware that any measurements on a non-fractionated material will only give the “weight-average” molar mass, intrinsic viscosity or conformation and may not necessarily be representative of the distribution of pectin molecules. This has repercussions for their functional properties.

5. Acknowledgements

We thank Mrs M-J. Crépeau and Mrs S. Daniel for their technical help and finally Gordon Morris would like to thank the Région Pays de la Loire for their financial support.
6. References

Legends to Figures

Figure 1 The change in molar mass (---) and intrinsic viscosity (---) with elution volume for sugar beet pectin C.

Figure 2 Mark-Houwink-Kuhn-Sakurada plot (▲) for sugar beet pectin C. Twenty points on this plot were chosen at random for further conformational analysis (■). We have superimposed the corresponding plot for this pectin (■) if we were to assume the entire population had the same “average” conformation. The slope of the plot is 0.61 consistent with a semi-flexible conformation.

Figure 3 Normalised scaling plot of $[\eta]M_L$ versus M_w/M_L (adapted from Pavlov, et. al., 1999) where the neutral sugar content for each pectin C fraction is indicated (in red). Zone A: extra rigid rod; Zone B: rigid rod; Zone C: semi-flexible; Zone D: random coil and Zone E: globular or branched.

Figure 4 A plot of L_p/M_L versus estimated neutral sugar content. On this plot a larger value of L_p/M_L is consistent with a less flexible conformation. Based on the conformation as estimated by conformation zoning there seems to be a semi-quantitative relationship and the transition from rigid rod to semi-flexible coil seems to occur at ~ 0.01 nm²mol/g.
Table 1 Physical and conformational properties of sugar beet pectin C

<table>
<thead>
<tr>
<th>Pectin</th>
<th>M_w, g/mol (MALLS)</th>
<th>$[\eta]_w$, ml/g (DPV)</th>
<th>M_L, g/mol nm</th>
<th>L_p, nm</th>
<th>L_p/M_L, nm2/mol/g</th>
<th>Zone (A-E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>$(2.7 \pm 0.2) \times 10^5$</td>
<td>375 ± 10</td>
<td>330 ± 30</td>
<td>3.9 ± 0.4</td>
<td>0.012 ± 0.002</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 2 Chemical, physical and conformational properties for randomly selected pectin fractions

<table>
<thead>
<tr>
<th>Elution Volume, ml</th>
<th>M_1, g/mol</th>
<th>$[\eta]$, ml/g</th>
<th>L_p, nm</th>
<th>M_L, g/mol nm</th>
<th>Neutral sugars, mol %</th>
<th>L_p/M_L, nm²/mol/g</th>
<th>Zone (A-E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.19</td>
<td>9.68×10^6</td>
<td>398</td>
<td>2.0</td>
<td>630</td>
<td>59.2</td>
<td>0.0032</td>
<td>C/D</td>
</tr>
<tr>
<td>11.22</td>
<td>7.26×10^6</td>
<td>506</td>
<td>3.4</td>
<td>810</td>
<td>60.1</td>
<td>0.0042</td>
<td>C</td>
</tr>
<tr>
<td>11.26</td>
<td>5.81×10^6</td>
<td>605</td>
<td>3.4</td>
<td>670</td>
<td>64.9</td>
<td>0.0051</td>
<td>C</td>
</tr>
<tr>
<td>11.27</td>
<td>4.85×10^6</td>
<td>707</td>
<td>1.5</td>
<td>260</td>
<td>67.6</td>
<td>0.0058</td>
<td>D</td>
</tr>
<tr>
<td>11.28</td>
<td>6.30×10^6</td>
<td>542</td>
<td>3.4</td>
<td>740</td>
<td>66.8</td>
<td>0.0046</td>
<td>C</td>
</tr>
<tr>
<td>11.39</td>
<td>3.88×10^6</td>
<td>757</td>
<td>5.4</td>
<td>750</td>
<td>66.7</td>
<td>0.0072</td>
<td>C</td>
</tr>
<tr>
<td>11.50</td>
<td>2.92×10^6</td>
<td>883</td>
<td>5.4</td>
<td>610</td>
<td>68.9</td>
<td>0.0088</td>
<td>C</td>
</tr>
<tr>
<td>11.59</td>
<td>2.43×10^6</td>
<td>935</td>
<td>8.3</td>
<td>800</td>
<td>69.4</td>
<td>0.0104</td>
<td>B/C</td>
</tr>
<tr>
<td>11.81</td>
<td>1.64×10^6</td>
<td>1042</td>
<td>9.8</td>
<td>720</td>
<td>66.5</td>
<td>0.0135</td>
<td>B</td>
</tr>
<tr>
<td>12.31</td>
<td>9.83×10^5</td>
<td>901</td>
<td>13</td>
<td>800</td>
<td>59.9</td>
<td>0.0163</td>
<td>B</td>
</tr>
<tr>
<td>12.51</td>
<td>7.83×10^5</td>
<td>873</td>
<td>16</td>
<td>820</td>
<td>56.8</td>
<td>0.0195</td>
<td>B</td>
</tr>
<tr>
<td>13.00</td>
<td>5.00×10^5</td>
<td>716</td>
<td>16</td>
<td>760</td>
<td>47.4</td>
<td>0.0209</td>
<td>B</td>
</tr>
<tr>
<td>13.04</td>
<td>4.52×10^5</td>
<td>751</td>
<td>22</td>
<td>840</td>
<td>46.1</td>
<td>0.0263</td>
<td>B</td>
</tr>
<tr>
<td>13.16</td>
<td>4.04×10^5</td>
<td>713</td>
<td>26</td>
<td>880</td>
<td>43.3</td>
<td>0.0294</td>
<td>B</td>
</tr>
<tr>
<td>13.46</td>
<td>3.08×10^5</td>
<td>636</td>
<td>4.4</td>
<td>280</td>
<td>37.8</td>
<td>0.0157</td>
<td>C</td>
</tr>
<tr>
<td>13.55</td>
<td>2.60×10^5</td>
<td>671</td>
<td>18</td>
<td>610</td>
<td>36.8</td>
<td>0.0294</td>
<td>B</td>
</tr>
<tr>
<td>14.35</td>
<td>1.30×10^5</td>
<td>467</td>
<td>11</td>
<td>430</td>
<td>31.9</td>
<td>0.0256</td>
<td>B</td>
</tr>
<tr>
<td>14.93</td>
<td>9.23×10^4</td>
<td>307</td>
<td>24</td>
<td>600</td>
<td>28.4</td>
<td>0.0397</td>
<td>B</td>
</tr>
<tr>
<td>16.09</td>
<td>7.17×10^4</td>
<td>86</td>
<td>4.9</td>
<td>520</td>
<td>33.6</td>
<td>0.0094</td>
<td>C</td>
</tr>
<tr>
<td>16.71</td>
<td>5.50×10^4</td>
<td>50</td>
<td>5.4</td>
<td>650</td>
<td>53.3</td>
<td>0.0083</td>
<td>C</td>
</tr>
</tbody>
</table>

*errors in all estimates are approximately 10%
Figure 1
Figure 2
Figure 3