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Report outline 

The outline of the report will include the following sections. 

• Introduction 

• Literature review 

• Measurement system  

• Experiments and empirical analysis 

• Future  work 

 

Section 1 (Introduction): a brief introduction to Artificial Intelligence Planning. AI 

applications and techniques which are related to this research area such as machine learning, 

automated planning and other related techniques. 

Section 2 (Literature review): this section summarizes the related previous work. Through 

this section a set of planning domain model and tools will be presented supported by 

examples. 

Section 3 (Metric algorithms): this section describes in details the domain model metric that 

is being developed in terms of components, input, and output. 

Section 4 (Experiments and empirical analysis): this section illustrates the performance of 

our domain model metrics. The domains are mainly from the International Planning 

Competitions (IPC). This section also include a comparative evaluation based on IPC 

database resource (handcrafted and systematic domain models) to shows the complexities, 

differences and similarities of the domain models at hand in terms of number of states, 

number of operators/actions, A degree of arity of operators, A degree of arity of predicates 

and average number of preconditions and postconditions in each operator. 

Section 5 (future work): this section includes the future direction of the domain model 

metric tool. Finally, a brief description of the paper we aim to publish in PlanSig 2011 – 

University of Huddersfield will be attached to this report as an appendix. 
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1 Section one: introduction 

1.1 Abstract 
 

Over the past decade, there have been substantial advances in knowledge representation (KR) 

techniques for AI planning. Typically, planners search a space of solution to find a suitable 

and most accurate sequence of actions to achieve a specific task from a set of initial and goal 

states. However, the progress in this field still cannot cope with the ever increasing of the 

complexities of modern systems, which makes knowledge representation an expensive and 

error prone process. Planning is considered as one of artificial intelligence fields where 

knowledge representation (KR) is extremely critical. However, a little work has been aimed 

at “measuring” domain models; the aim of this research is to develop a set of criteria and 

metrics to assess the accruing and complexity of a particular classical planning problem 

domain model.  To reach that point the system has to have enough knowledge and knowledge 

has to be well represented for the problem at hand. In this report, we have outlined the 

prototype the system and design planning domain model metric tools.  

1.2 Introduction 
 

The prevalent view in the Automated Planning community is that the logical separation of 

planning engine and domain model representing the application and problem at hand is 

advantageous in that algorithmic and representational concerns can be dealt with relatively 

independently. The separation between planning engine (planner) and domain model in much 

of the research in AI planning brings into focus the role and nature of the domain model. 

Whereas properties of, comparisons between, and analysis of AI planning engines is well 

developed, similar science of domain model analysis is underdeveloped.  

 

Domain models, in particular those used for the AI planning competition (IPC), have been 

predominantly hand crafted, and this can be seen as a limiting factor on the use of planning 

engines. As far as we are aware, all the domain models used in the International Planning 

Competitions (1996 - present) have been hand crafted. The importance of this knowledge 

formulation process to the success of applications, and to make planning engines more 

accessible and open to community use, has led to the establishment of the international 

competition on knowledge engineering for AI planning (ICKEPS).  
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It has long been acknowledged that there can be a range of different encodings for the same 

domain, but this has not been seen to be a problem, as it is a particular encoding that is used 

as a benchmark, not the domain itself. These concerns are independent of coding language 

used, as whatever is used there are always choices to be made in modelling. 

 

The need to investigate the properties of a planning domain model has become more accurate 

given the advances made in domain model acquisition. In this case, quality of the learned 

domain model has to be measured in terms of the reliability. On other hand, pair of domain 

models for the same planning problem have to be measured in terms of their specification. 

Generally, a comparative technique is used as a main component of measuring the domain 

models of the problem at hand. From the point of view of modelling planning domain 

,comparative technique means how close to one model M is another M'.  

 

Differences and similarity of particular domain models can be easily mapped from 

specification such as, states, actions, predicates, and effects. Some other specification, such as 

semantics features can be measured to provide overview of the complexity of one domain 

model from the other. It is expected to find many similarities and differences between the two 

planning domain models for the same problem, especially when using different methods in 

describing a particular planning problem (i.e. hand crafted GIPO[1] and autonomic systems 

LOCM[2]).  

1.3 Basic definition 

 

The aim of this research is to address a set of metrics to evaluating planning domain models 

in terms of their specifications. The first step towards this goal is to make some intuitive 

definitions to be used during the research. 

  

Definition: � model of some reality � is a mathematical or logical abstraction � of that 

reality, where 	: � � �  is the interpretation function mapping the abstraction to the reality. 
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Let us consider changes to the reality - call them plans, made up of sequences of actions. Let 

assume we have an operator in the model which maps through the interpretation function I to 

an action in the reality. We say that a state S' in the model is consistent with a real state S if 

the assertions made in �
��� are true is S. For example, if the model is 

�����
�, ����� �������
�� 

then the (obvious) interpretation of this is consistent with a reality where a is on top of b, and 

b is on a table. Note this notion of consistency can never be formally "proved", because the 

reality is not itself a formal system! We use the symbol "�"  : so �
��� � � means  �
��� is 

consistent with S. In the area of formal modelling, this leads to a notion of model validation.  

 

As well as states, we can use the interpretation function to map operator applications in a 

model to real actions, in an obvious way. 

 

Definition: a model is valid if for any plan in the model X', where X is the interpretation of 

that plan in the real world, then ��� � ����.  

 

In short, this means that given any state (S) in the model, if we interpret it and observe a plan 

being carried out to produce a real state of the world (W), then applying Cm to S and taking 

an interpretation of the resulting state will produce a state of the world not inconsistent with 

W. Of course, something could change the operation of the plan in the real world that is not 

modelled in the abstraction. 

 

Definition: A model is adequate, if for any real problem (initial state S, goal state G, solution 

plan X) that is required in the reality, there are corresponding structures S', X' in the model 

such that   �
��� � �, and   �
��� � �, and the formal operation of X' on S' results in a state 

G' such that �
��� � �. 

 

Hence, validity is saying that the model where it applies is consistent with reality, and 

adequacy is saying that the model capture all the foreseen requirements of the problem area. 

These are informal notions, however, as we are matching formal behaviour against the 

informal world of requirements. In the same way, the validity of any piece of software is not 

open to complete formal analysis. 
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1.4 Planning Problem 

 

Plan is denoted as 3-tuple of P= (O, s0, g) where O, s0, g refer to a set of operators, initial 

state, and goal state respectively. Plans are produced by searching a space of actions until a 

sequence of feasible actions are reached that can carry out the given tasks. In other word, an 

planning problem comprises a world description: initial, goal states and a domain theory. A 

domain theory defines a transition state, the way in which the applicable actions change a 

state of the domain to a new state and their relations with resource. Based on these inputs, 

planners produce a sequence of executable actions that can reach the goal state from the 

initial state. 

 

Mainly, one of the keys design philosophy of planning system is domain-independence. In 

principle, a domain-independent planner works with any planning domain. However, 

developing domain independent algorithms in many types of problem domains is not 

reasonable.  As a solution of this, some restrictive assumptions were made [3]: 

• System has a finite set of state. 

• Problem domain fully observable (complete knowledge) 

• The outputs of actions are deterministic. 

• The system is static (no dynamics events that can change the problem domain) 

• Goals are restricted (planner handles only specified goals) 

• A solution plan is a linearly ordered finite sequence of actions. 

• Actions have no duration 

• Change is not allowed during the plan time (off-line planning) 

 

Such planning techniques that accept these assumptions are formally recognized as classical 

planning. Unluckily, these attempts to improve the domain independence have decreased the 

usability of planning systems because they brought many restrictions that are infeasible for 

real world applications. 

 

Classical planners are based on semantic descriptions (i.e., preconditions of actions) provided 

by a domain model. Recently, an additional expert knowledge are required by planning 

problems which is may not be fully accessible due to the limitation and complexities of the 
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domains for the experts to provide such knowledge. Hence, it is difficult to develop learning 

systems in order to learn knowledge as human contributions are restricted[4]. 

A typical example of a classical planning problem is a Dock Worker Robot (DWR). This 

problem involves a number of cranes, locations, robots, containers, and piles. Robot starts 

moving out from one of the locations. The goal is to transport each container to its final 

destination in a desired order. Consider, for example, an instance of a simple DWR problem 

with only one robot, two container, two crane and two locations 1 and 2 as given in Figure 1. 

 

Figure 1.1 Dock Worker Robot Domain 

In this particular example the robot at location 2 and the containers at location 1 in the initial 

state and the goal is to have the containers to location2. The actions in the DWR domain 

describe driving the robot from location 2 to location1,take a container off of the location1 by 

the crane1, loading a container into the robot at that location1, driving the robot from 

location1 to location2, unloading a container from the robot by crane2, and put a container on 

location2. These actions are given in their standard planning domain description language 

(PDDL) [5] in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 Figure 1.2: DWR Domain model in PDDL 

The assumptions of classical planning, and the usual mechanisms for solving it, are rather 

restrictive, and most real problems are neoclassical. The main differences between classical 
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and neoclassical planning techniques are:  in classical planning, for any problem domain 

consists of group of nodes (search space), every node mapped a partial plan, whereas in 

neoclassical planning node considered as a set of several partial plan[3] 
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Many well-known approaches to relax classical planning assumptions have been made, 

including HTN planning[4, 6-7], MDPs(Markov decision processes) [8], temporal planning 

[9], and so on. Nonetheless, classical planning algorithms are still restricted to limited 

categories of planning domains as most of practical planning problems do not satisfy the 

early mention assumptions of classical planning [3]. 

1.5 Structure of planning domain model  

 

Generally, a domain model is denoted by  � !", #$. 

− P: a set of predicate includes variables, atoms, predicates, and constants. 

− O: a set of applicable operators. Operator is composed of action preconditions and 

effects. 

Each of which enclosed set of features: a degree of arity of each operator, number of ground 

and ungrounded terms over the entire domain. This report concentrates on investigation of 

such features. In PDDL, a domain model can be described in two terms, problem definition 

and domain definition, see figure 1.1. Problem part consists of a problem name, a domain 

name, objects, and initial and goal state. Problem can be defined either separate or combined 

together with the domain definition. Domain includes a domain name, predicates and actions 

list. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Planning problem in PDDL 

  

define (problem tower10) 

   (:domain blocksworld) 

   (:objects a b c d e f g h i j ) 

   (: init (on-table a) (on-table b) (on-table c) (on-table d) (on-table e)  

          (on-table f) (on-table g) (on-table h) (on-table i) (On-table j)  

          (clear a)  (clear b) (clear c) (clear d) (clear e) (clear j)  

          (clear f)  (clear g) (clear h) (clear i) (arm-empty)) 

   (:goal (and (on a b) (on b c) (on c d) (on d e) (on e f) (on f g) 

               (on g h) (on h i) (on i j) ))) 

 

 

(define (domain blocksworld) 

(:predicates (clear ?x) 

             (on-table ?x) 

             (arm-empty) 

             (holding ?x) 

             (on ?x ?y)) 

 (: action pickup 

  :parameters (?ob) 

  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty)) 

  :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))  

               (not (arm-empty)))) 

(:action putdown 

  :parameters  (?ob) 

  :precondition (holding ?ob) 

  :effect (and (clear ?ob) (arm-empty) (on-table ?ob)  

               (not (holding ?ob)))) 

(:action stack 

  :parameters  (?ob ?underob) 

  :precondition (and (clear ?underob) (holding ?ob)) 

  :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob) 

               (not (clear ?underob)) (not (holding ?ob)))) 

(:action unstack 

  :parameters  (?ob ?underob) 

  :precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty)) 

  :effect (and (holding ?ob) (clear ?underob) 

               (not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty))))) 
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1.6 Objective 

 

Given the great interest in developing the automated planners, domain model interest is still 

very modest. This research focuses on developing a set of metrics to measure the planning 

domain models that are cratered in PDDL format. For this purpose, the domain model 

structure and specification represent the fulcrum in this research. The aim of the research is to 

develop measurement tools to measure one planning domain model for a particular problem 

to another. Complexity of one planning domain models can be determined by the similarity 

and the differences to another, for the same problem. 

 

Figure 1.1 shows a very simple classical hand crafted domain model (Block World) where 

features such as states, predicates, actions and others can be easily identified and calculated. 

 

The idea of developing planning domain model metrics comes from the usage of deferent 

technique to create and design a domain model for a particular planning problem. Techniques 

mention in section 2 part 2.3 are the most used ones to create the domain models. By running 

a comparative study on some domain model produced by different techniques for the same 

problem, extra details are found with some of them, see figure 1.4. the complete domain 

models in appendix A. 

 

(:action 

   do_up 

   :parameters 

   (?Nuts1 - nuts ?Hub2 - hub ?Wrench4 - wrench ?Jack3 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (nuts_state0 ?Nuts1) 

      (hub_state0 ?Hub2 ?Jack3) 

      (wrench_state1 ?Wrench4) 

      (jack_state0 ?Jack3 ?Hub2)) 

 

   :effect 

   (and 

      (nuts_state1 ?Nuts1 ?Hub2) 

      (not (nuts_state0 ?Nuts1)) 

      (hub_state2 ?Hub2 ?Jack3) 

      (not (hub_state0 ?Hub2 ?Jack3)) 

      (jack_state2 ?Jack3 ?Hub2) 

      (not (jack_state0 ?Jack3 ?Hub2))) 

) 

 

Produced by LOCM 

(:action do_up 

       :parameters ( ?W - wrench ?H - hub ?J - jack ?N - nuts) 

       :precondition (and  

            (have_wrench ?W) 

            (unfastened ?H) 

            (jacked_up ?H ?J) 

            (have_nuts ?N) 

       ) 

       :effect (and  

            (not (unfastened ?H)) 

            (not (have_nuts ?N)) 

            (fastened ?H) 

            (loose ?N ?H) 

        ) 

    ) 

 

 

 

 

 

 

 

Produced by GIPO 

 

Figure 1.4 Parts of tyre domain produce by different techniques 

  



Investigation into the Theoretical Properties of, and the Relationship Between, AI Planning Domain Models. 

10 

 

2 Section Two: Literature Review 
 

2.1 Planning modelling language 

2.1.1 Planning Domain Definition Language - PDDL 

 

Planning Domain Definition Language (PDDL) [10] has become a de-facto standard for 

specifying STRIPS-like planning domains and problems with various extensions. 

 

The creation of a planning domain models require a formal method to define all related 

features of the domain within the desired class of problems. Presently, the most used 

language for describing planning domains is PDDL (Planning Domain Definition Language). 

PDDL supports defining parameterized planning operators, objects in each instance of the 

planning problem, the initial and the goal state of the world, and associated conditions. 

 

Since 1971, the PDDL developed rapidly with the passage of time. In the standard version of 

PDDL, the state of the problem is defined by a list of facts; properties are hold either true or 

false at the time. 

 

Operators compose of preconditions and effects (postcondition) lists that have to be true or 

false for an action to be executed STRIPS-like[11]. Effects are responsible for which 

propositions that will be added and removed at the time of the action execution. Another 

version of PDDL provides an optional support for ADL[12] domain preconditions 

(conjunctions, alternatives and quantified statements). Later version has been updated to meet 

probabilistic, temporal or metric features expression of the problem worlds. The latest version 

of this language is PDDL3.1. 

2.1.2 Action Description Language (ADL) 

 

This part, briefly describes an important planning description language, the Action 

Description Language (ADL). The ADL [5] relaxed some of the restrictions assumptions in 

the STRIPS language and provided some flexibility to encode more realistic world domains. 

The Problem Domain Description Language [3]] was introduced as a standardized syntax for 

representing ADL, STRIPS, and other languages 
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2.1.3 Object-Centred Language (OCL) 

 

OCL has been developed by (Donghong Liu and T.L.McCluskey) at the University of 

Huddersfield. [13] Described OCL as a tool-supported language for domain developers. OCL 

aims to provide a language that representing the domain models in the classical tradition of 

AI Planning considering the structure and dynamics of domains.  

 

2.1.4 New Domain Description Language (NDDL) 

NDDL is a robust planning language devolved by NASA Ames [14] in support of the 

spacecraft (Vehicles and Habitats). NDDL aims to simplify knowledge representation of 

planning problems, such as power management or automated rendezvous in future manned 

spacecraft.  

2.2 Types of planning domain models 

 

Based on a set of planning problem specification and assumptions, domain models can be 

subdivided into several different types.  Varieties of criteria are identified by the International 

Planning Competition (IPC). Firstly, whether the output of a particular action fully 

predictable (Classical domain) by the planning algorithm or not (non-predictable-

probabilistic domains)? In the case of probabilistic domains, planning algorithms have either 

prepare alternative plans (contingency plans), if an action should fail, or they have to be 

ready to re-plan (plan repair).  

 

Some more criterions are depended on the actions’ features’ complexity such as temporal 

feature (e.g., actions have durations or are continuous processes, which can be executed in 

parallel). The simple domain models use propositional or first-order logic to encode and 

describe a planning problem at hand (classical domain).  

 

In this research particularly focus on the classical domain models that are defined in PDDL 

format. 
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2.3 Domain Model Acquisition 

 

Within the AI Planning area, we can categorize methods of producing domain models 

containing actions, ready for use in a planning engine, into three areas: 

 

− Hand crafted: perhaps with the use of knowledge acquisition tools such as GIPO 

[15] or ItSimple [16]. Virtually all domain models used in applications or research are 

hand crafted. The hand crafted method mainly based on the abilities of experts to 

define and describe their experiences formally and completely, which is difficult 

sometimes. Additionally, creating a domain model using this method is time and 

effort consumed. 

 

− Translation: produced using a translator from another formal model [17-19] as 

was the subject of ICKEPS-09  

 

− ML methods: learned from examples [2, 20-22] : In respect of the reasons mention 

at the beginning of this section, researchers have started to develop and explore a new 

tools using ML notations to create domain models with less time, effort and in 

complete form by learning from a set of example or plan traces (observable 

environment) such as(i.e [21, 23] ), some others, such as LOCM[2] ,LAMP[24]  have 

presented to learn with no knowledge provided(non-observable environment). 

 

 Given the problems of dynamically changing worlds, domain model maintenance, and the 

aims of autonomy, learning from examples is appealing, but up to now has seen relatively 

little research. 

 

There has been a series of systems which learn domain models from examples [20-30]. 

Characteristic of all this work is that (a) the output of learning is action representations that 

can be input to planning engines (such as PDDL) and used immediately as a domain theory 

for planning (b) input to the process is a set of plan scripts and some planning oriented 

knowledge, such as state information, predicate descriptions, plan goals and initial state, etc. 
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The minimal input information required by learning algorithms is a set of plan scripts carried 

out in a domain. 

Some recent work on learning action theories has concentrated on learning with little or no 

supplied domain knowledge. The ARMS system [25] can form STRIPS-type domain theories 

from example plan scripts and associated initial and goal states only. 

 

The ARMS system inputs object types, predicate specifications, and action headings, and 

from plan scripts taken from planning solutions, it learns a domain model. The domain model 

is synthesised using a constraint solver, inputting two sets of constraints: one set is based on 

assumed physical, consistency and teleological constraints - for example, every action in the 

example plan script adds at least one precondition for a future action, actions must have non-

empty effects, and so on. The other set of constraints is generated using a type of associative 

classification algorithm which uses each plan script as an itemset, and extracts frequent 

itemsets to make up constraints. 

 

While ARMS [25] and LAMP [24] are aimed squarely at helping knowledge engineers create 

a new domain model, and requires types, predicates states and scripts as input, LOCM is an 

algorithm learns from plan scripts only. As with ARMS, it outputs a planning domain theory 

in a PDDL format  but it inputs only plan scripts - it does not require representations of initial 

and goal states, or any descriptions of predicates, object classes, states etc. Rather, it assumes 

objects referenced in the plan scripts maybe acted on by actions - actions either change the 

object's state, or leave it where it is. Objects are assumed to be instances of sorts, where sorts 

behave the same when acted on by actions. Using the example above we illustrate LOCM's 

assumptions as follows: 

 

• Different instances with the same action name induce classes of objects: so for 

example c1 and c2 are in the same class, as they appear in the same position (1st) after 

the same action name (open). 

 

• Consecutive actions acting on the same object help form behaviour machines for all 

objects in a sort: for example, it can be assumed that the output state of c2 after action 

"open" is the same as the input state of action "putaway wrench" 
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• Where consecutive actions act on the same set of (2,3 or more) objects, LOCM 

induces relations between the object's classes: for example, if in all examples of 

actions put away jack(x,y); .. ;fetch jack(x,z); ..., where x is not referred to between 

the two actions, have y = z, then LOCM induces that a relational predicate between 

the sort of x and the sort of y is true at the state of x after put away jack. 

 

• Where subsets of a sort's objects appear in certain slots of actions, then a "static 

relation" is added to the state on the object. 
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3 Section Three: Measurement System 

3.1 Generic Measurements  

 

In 1790, the French Academy of Sciences has devolved an invariable standard for all the 

measures and the weights system. Originally, the system is based on metre for length and the 

kilogram for mass. Most of other metric units were derived from this notion, for example:  

weight is measured by gram and capacity measured by litre.  In the 20th century, the metric 

system became the basis for the International System of Units, which is now used officially 

almost worldwide. In like manner, the notion of measurement has been extended to cover 

most of the areas affecting the human being life: industry, education, health care, production 

and others.  For example, the area of a rectangle is measured by multiplying its breadth by 

length in metres. For more complex shapes, the area may be determined by calculating the 

areas of a collection of rectangles that form a covering of the shape. 

 

In the physical sciences and engineering, units of measurement provided a valuable 

assistance to assess the quality of physical systems. Additionally, they provide an error 

checking tools comparable to static type checking commonly found with programming 

languages. It said that units of measurement can provide similar advantages in the computer 

systems (specification and design of software). 

3.2 Software measurement 

 

Goodman [31] defines software metrics as: "The continuous application of measurement-

based techniques to the software development process and its products to supply meaningful 

and timely management information, together with the use of those techniques to improve 

that process and its products" . Figure 3.1, illustrates of this definition to emphasize that 

software metrics provide the information needed by engineers for technical decisions. If the 

metric is to provide useful information, everyone involved in designing, implementing, 

collecting data for and utilizing a software metrics must understand its definition and 

purpose.  
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Figure 3.1What are software metrics? 

 

Goodman [31] introduced seven steps to clarify the meaning of designing software metrics. 

1. Objective Statement  

Metrics aid developer to understand more about:  

− Software products, processes and services.  

− Evaluate our software products, processes and services against established 

standards and goals.  

− Provide the necessary information to control resources and processes used to 

produce software.  

− Predict attributes of software entities in the future.  

 

2. Clear Definitions  

This step in designing a metric is to agree to a standard definition for the entities and their 

attributes being measured. Using terms like size, state, and even planning can be 

interpreted differently based on the context area. These interpretation differences increase 

when more ambiguous terms like quality, maintainability and user-friendliness are used. 

3. Define the Model 

Derive a model for the metric. Simply, the model defines a way in which metric 

calculated. Measuring metrics is depended on their complexity. Simple metrics (called 

metric primitives) are measured directly and their model typically consists of a single 

variable. Other more complex metrics are modeled using mathematical combinations of 

metrics primitives or other complex metrics. 
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4. Establish Counting Criteria 

This defines the measurement mapping system of each metric primitive. Decompose the 

model into lowest level metric primitives and define the counting criteria used to measure 

each primitive. 

5. Decide What's Good  

From the previous steps, questions such as what to measure and how to measure must be 

answered; through this step a key question like what to do with the results need to be 

answered. For example, is 10 too few or 100 too many? Should the trend be up or down? 

What do the metrics say about whether or not the product is ready to ship? 

6. Metrics Reporting 

This step is to decide how to report the metric, includes: 

− Report format: what does the report format, is the metric included in a table with 

other metrics values for the period? 

− Data extraction and reporting cycle: how often the data snap-shot(s) are 

required and available for use to calculating the metric. The reporting cycle 

mostly answers two questions: how often the report generated? When is it due for 

distribution? 

7. Additional Qualifiers: 

Determining the additional metric qualifiers, a good metric is a generic one. In other 

word, metric is valid for an entire hierarchy of additional extraction qualifiers, for 

example period of unplanned outages of the entire product line, a specific product or a 

release of that product. One could look at outages by customer, business segment or 

look at them by type or cause. 

3.3 Metrics Domain model 

 

Measurement for planning knowledge (domain model) has not yet reached the maturity of 

other automated planning areas for example, benchmark domain models (i.e block world) are 

considered as a best way to evaluate planning algorithms (Planners). 

 

At this stage that has emerged in which the need for intelligent systems which are used 

knowledge-base system has increased the need for a standard to measure quality of this 

Knowledge. Basically, the need for planning domain measurements comes for the following 

reasons 
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• Determine the quality of the current planning domain model or process 

• Predict qualities of a domain model 

• Improve quality of a domain model 

 

Briefly, a set of metrics integrated into one framework in such a way that each specification 

of the domain model can be measured independently. Measurement involves comparing two 

separate domain models’ specifications in order to confirm that they describe the same 

planning problem. To do this assumes that the specifications can be given a common 

semantics and syntaxes, so that the meaning of the different specifications can be usefully 

compared. 

3.3.1 Metrics Domain Model Motivation 

 

The motivation behind developing domain model metric tools goes back to a paper of S. N. 

Cresswell and T. L. McCluskey and M. M [2]. In their empirical study they take a closer look 

at Tyre-World domain models that induced by LOCM and constructed in GIPO. The induced 

domain is shown extra states in some sorts (i.e jack sort)].  

 

Another motivating example comes from a paper presented by Hoffmann [32]], in the 

organization of IPC-4. A set of real-world applications of planning (airport ground traffic 

control, oil derivative transportation in pipeline networks, model-checking safety properties, 

power supply restoration, and UMTS call setup) are exploited to assess the performance of 

planners. Typically, planners’ performance is measured by testing them agonist benchmark 

example instances of the planning problem.  It said that a planner is high quality performance 

if at any time, solves these examples most perfectly. Hoffmann defined the AI planning as a 

hard problem and computational no system can work properly in all problem examples. 

Therefore, the kinds of chosen example are crucial for planners testing. 

 

Benchmarking should answer questions such as, how do the planning systems and 

performance comparing to the standard instances? What are the main reasons for the 

differences? What could be learned from others that would improve planning domain and 

performance? 
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As mention early that there is no specific scientific definition for deciding whether a set of 

benchmarks are useful or not. However, Hoffmann [32] presented some accepted criteria of 

how the benchmarks should be: 

1. Oriented at applications (an application of the technology should reflected by 

the benchmark). 

2. Diverse in structure (different kinds of structure should be covered by a set of 

benchmarks, not only restate similar tasks). 

3. Accessible for a large number of competing systems (formulated in a language 

that is understood by the systems). 

 

In ICAPS  2011, Wickler [33] presented four planning domain model features in terms of its 

characterization: domain types, relation fluency, inconsistent effects and reversible actions. 

These features can be exploited as additional criteria to measure the performance of the 

planning domain models.   

 

In this work, Wickler aimed to support the domain model designers during formulation 

process by inferring these features’ value from the operator schemes.  For example, typing 

feature (allows declaring the related objects, constants and variables in predicate and 

operators as well) can be used to limit the number of possible values for variables, or a 

ground backward searcher may use this information to similar effect in case the planner needs 

to propositionalize the planning domain. 
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3.4 Terms and vocabularies 

 

Practically, this report concentrate on the representation of the planning domain models 

generated in PDDL formalism by both hand and automated planning techniques in terms of 

their features. Therefore, necessary semantics and vocabularies must be identified. Therefore, 

We have extended the automated planning (AP) dictionary to include the terms and 

vocabulary of the planning domain model metrics, including states, operators, predicates, pre 

and post-conditions, objects, and variables that define states.  Table 3.1 introduces such terms 

and vocabulary to be used during the research. 

 

%  % is a domain 

&  ' is a set of states 

'(  )* is an initial state 

+  , is a goal state  

-  - is an action 

./0  ��1 is a physical object  

.  . is an operator 

2  2 is a predicate 

3-  3- is a number of action  

32  32 is a number of predicate 

3'  3' is a number of predicate 

Figure 3.2 Domain Metrics, Terms and Vocabulary 

3.4.1 Definition 1: planning problem 

A planning problem is donated by � !��1, )*, ,$ . It is typified by being closed world 

problem, composed of set of physical objects, each of which does different task. A particular 

object may exist in different states.   

3.4.2 Definition 2: domain model – � � !�,�$ 

Generally, a domain model can be described as a formal representation to model a particular 

class of tasks in reality (e.g., logistic tasks, fire fighting). The domain model composes of a 

set of predicates P, and a set of planning operators O. The planning problem is encoded in a 

specific domain description language. 
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Let  � 4�5 , … . , �89 be a set of  �
 � domains associated with a feature �
#�  where # a 

set of operators donated by # � 4�5 , … . , �89. Each domain model consists of set of operator 

named action schema. Operator can be considered as 3- tuple, denoted as #!�,?@,A@$ where 

+c and -c referred to pre and post conditions respectively. 

3.4.3 Definition 3: Action 

 

A planning operator associated with set of values of its parameters. This means that all given 

values of preconditions and post-conditions have variables grounded. From the set the 

planning operators O, a set of actions A in a planning problem P is calculated by applying all 

possible variable instantiations. All applicable actions in a particular state of the world s 

applicable are denoted A
s� � 4a C A: DE C EFGHIJK
L�s M  p} 

 

Practically, this research aims to develop a set of metrics to evaluate the performance of the 

planning domain models. Various types of planning domain model description language such 

as OCL, ADL, PDDL, and others are being used to create and design planning domain 

models. The metrics we intend to develop are to evaluate the planning domain models that 

designed in PDDL formulism. Normally, the PDDL domain description can be paired with 

number of problem descriptions to create different plans.  

 

In the domain description, actions are described at an abstract level. In addition to 

preconditions and effects, actions also have parameters which are assigned values when the 

actions are applied. The preconditions and effects are logical propositions, objects and logical 

connectives. In this part, basic definitions of the PDDL terminologies are highlighted:  

 

• Definition 1: Predicate. 

A boolean-variable function whose values may or may not assigned. Formerly, the 

predicate is called grounded; in the latter, ungrounded. A predicate may represented 

as: symbol, consisting of a single atom, or complex, consisting of one or more less 

complex predicates and logical operators (e.g., negation, conjunction, disjunction, 

quantifiers). 

• Definition 2: Atom. 

The simplest predicate does not contain any negations, logical connectives or 

quantifiers. 

• Definition 3: Precondition of Planning Operator. 
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All predicates have to be fully grounded, and their logical value in the current state of 

the world has to be true for the operator to be applied. In other words, they have to be 

true facts in the state of the world. 

 

• Definition 4: Post-Condition of Planning Operator. 

A logical statement describes a transition manner of mapping a current state into a 

new state of the domain.  

 

PDDL is considered as a general planning language. Consequently, different planners support 

different parts of it. In a domain description, from requirements parts, planners can easily 

recognize whether they can handle it or not. Below are the most commonly-used 

requirements:  

 

:strips 

Domain consists of STRIPS syntax only. 

:typing 

Domain uses types, to declare types of objects and their parameters. 

:adl 

parts or the entire domain are defined in ADL syntax, e.g. actions have quantified and 

conditional effects, disjunctions and quantifiers in preconditions and goals. 

:equality 

Domain uses "=" predicate as equality 

 

3.5 Domain Model Characterization 

 

From the definition of the domain model, we emphasize a set of general features in which the 

domain model can be measured in. The Following attributes can be considered as most 

important generic characteristics: 

− Number of objects 

− Number of states in domain 

− Number of operators/actions in domain 

o A degree of arity of operators 

o A degree of arity of predicates 

− Average number of preconditions and postconditions in each operator 

 

There are many problem Challenging planning domain model engineers: a domain model 

must be abstractions of reality. Therefore, it is natural that a domain model consists of 

ignorance and uncertainty. The standard method of assigning a unique probability distribution 
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over possible outcomes is poor in the presence of abstraction because many unmodelled 

variables are not governed by random chance. 

3.6 Modelling Metrics 

 

For the purposes of explaining this part (modelling Metrics), a set of basic specifications to 

provide the domain model structure in terms of measurement. 

3.6.1 Metric 1: No_of_Objects 

Let D a domain model consist of n object. obj a set of objects. This metric is 

responsible for the quantity of objects involved in a particular domain model. 

3.6.2 Metric 2: No_of_states 

D is a domain model and S a set of states involved. Metric 2, is the one to calculate 

the number of states. 

3.6.3 Metric 3: No_of_opretors/No_of_action 

 Let D a domain model and O/A is a set of operators/actions. 

3.6.4 Metric 4: Degree of operators 

Calculating a degree of operators (opr), actions or predicates is depended on number 

of arguments or operands that function takes. Let O an operator and arg a set of 

argument involved. 
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3.7 Algorithm Description 

Figure 3.2 is a prototype implementation diagram of the domain model metrics, illustrates 

and explains the mechanism of our ongoing tool. The empirical work is divided into three 

stages: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Algorithm Architecture 
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3.7.1 Stage 1: 

This stage can be logically described as having three components: 

Planner: FF planner(FAST-FORWARD) [34], independent-domain planner works with any 

planning domain.  

 

Inductive tool: LOCM [2], an ML tool that automatically generate a planning domain model 

from example training plans. In this experimental, the required examples are provided by FF 

planner.   

 

Parser: to collect, reformat and translate literal from the output of the planner (FF planner) 

into OCL notation. Figure 4.1 describe the operation of the parser component. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Parser Psedocode 

  

Run FF 

 Problem file 

 Domain file 

 For every domain 

  Print:  domain (domain name). 

  Print:  sequence_task (#,[ 

 End 

Read x 

 If x is an action & not the last action then 

  Print:  name of action ( parmeter1, par2,…,parn ), 

 Else 

  Print :  ], 

   _,_). 

 End if 

Save (domain name.pl). 

Run LOCM : filename.pl 
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The following diagram illustrates the mechanism of creating sample plan in OCL [13] format 

by using a planner (i.e. FF) planning inductive tool such as LOCM [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Operation of converting PDDL into OCL structure 

 

This stage inputs a planning domain model in PDDL notation (left side of the diagram). The 

output is a plan in OCL notation (right side of the diagram). The result of this stage is used as 

input for LOCM to create new domain model (inductive domain model). The research 

focuses on developing a domain model metrics to find out the complexity in terms of 

differences and similarity between two models for the same problem. 

3.7.2 Stage 2: 

A parser is used to reform a PDDL domain into prolog structure. The output of the parser 

consists of extra details. Therefore, the output is passed to the domain model metric tool to 

refine and reform it in terms of ignoring some extra details considering the way in which 

prolog work in. The final result of the algorithms will is considered as a standard database of 

the metric tool. 
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3.7.3 Stage 3: 

Develop new algorithm using the domain model database, the algorithm should be able to 

evaluate the domain model in terms of its: 

• Number of states in domain 

• Number of operators/actions in domain 

• A degree of arity of operators 

• A degree of arity of predicates 

• Average number of preconditions and postconditions in each operator 
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4 Section Four: Experiments and Empirical Analysis 
 

We have run three empirical experiments through this report: 

1. GIPO-III to design planning domain model[15]. GIPO supports the planning domain model 

engineers to describe a particular planning problem formally. GIPO is considered as a 

handcrafted planning tool.  

2. Formulation a plan example in OCL notation. 

Tools: planner (FF), planning domain model inductive tools (LOCM), and converter 

tool.  

Input: handcrafted domain model, plan example in OCL format. 

Output: plan example in OCL format and inductive domain model. This experiment 

starts by first collecting the set sequence of actions for a particular problem by passing 

a planning problem domain model to FF planner.  Secondly, reforming the set of 

actions into OCL format to be acceptable as input by LOCM. Finally, the output of 

LOCM is considered as inductive planning domain model. 

 

Let assign some basic symbols to inputs and outputs of the experiment: Dh denotes a 

handcrafted domain model, Aocl  refers to a set of planning actions in OCL, and Di Indicates  a 

inductive planning domain model. The following diagram shows the mapping system of this 

experiment. See figure 3.5, section 3. 

 

 

 

 

Figure 4.1 Input/output mapping system of the experiment  

 

3. Creating planning knowledge base. 

Tools: parser (PDDL to Prolog format)  

Input: PDDL domain model, see figure 1.1 

Output: planning knowledge base composes of planning operator’s schema (set of actions, 

preconditions, and effects) 

  

Di Inductive Tool Aoc

Dh Planne Aoc
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Example of the result of this experiment: 

Figure 4.2 shows Gripper’s domain model. The output of the parser is not fully reformed in 

the structure of the used programming language (prolog). The final result of parser is 

included some extra symbols, for example “?o” means “o” a variable in PDDL where it is 

represented by “O” in prolog. Consequently, we wrote a program to maintain and reform the 

parser’s output to be acceptable and manipulated by prolog program see figure 4.2. In this 

report, the maintained output is considered as a planning domain knowledge base, figure 4.3. 

The planning domain knowledge base is aimed to be used with the domain model metrics to 

measure their features. 

 

 

 

 

 

 

Figure 4.2 Parser PDDL formulation to Prolog 

 

 

 

 

 

 

 

Figure 4.3 Planning domain knowledge base  

 

  

domain(gripper, [strips], _G3058, _G3059, [room(?r), ball(?b), gripper(?g),at-

robby(?r), at(?b, ?r), free(?g), carry(?o, ?g)], _G3061, _G3059, [action(move, 

[?from, ?to], [room(?from), room(?to), at-robby(?from)], [at-robby(?to)], [at-

robby(?from)], []), action(pick, [?obj, ?room, ?gripper], [ball(?obj), 

room(?room), gripper(?gripper), at(?obj, ?room),at-robby(?room),free(?gripper)], 

[carry(?obj, ?gripper)], [at(?obj, ?room), free(?gripper)], []), action(drop, 

[?obj, ?room, ?gripper], [ball(?obj), room(?room), gripper(?gripper), carry(?obj, 

?gripper),at-robby(?room)], [at(?obj, ?room), free(?gripper)], [carry(?obj, 

?gripper)], [])]) 

action(move,[From,To],[room(From),room(To),at-robby(From)],[at-robby(To)],[at-

robby(From)],[]), 

 

action(pick,[Obj,Room,Gripper],[ball(Obj),room(Room),gripper(Gripper),at(Obj,Room)

,at 

robby(Room),free(Gripper)],[carry(Obj,Gripper)],[at(Obj,Room),free(Gripper)],[]), 

 

action(drop,[Obj,Room,Gripper],[ball(Obj),room(Room),gripper(Gripper),carry(Obj,Gr

ipper),at- robby(Room)],[at(Obj,Room),free(Gripper)],[carry(Obj,Gripper)],[])]) 
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5 Section Five: Conclusion and Future Work: 

5.1 Conclusion 

This report introduces a novel technique of measuring domain model for AI planning 

problem. This technique has a set of metrics as a method of AI planning for measuring the 

domain model specification based on PDDL description. These metrics give a comparative 

report for pair domain model for the same problem, included statistical value of the domain 

model features such as number of states, actions and others. In our ongoing project we have 

shown that domain metric is possible and can be a great benefit to the planning community.  

Moreover, this report introduces a whole new area of research on the domain models’ 

structure and automated planning based modelling problem. The PhD thesis will concentrate 

on the complete set of domain metrics with a set of structural characteristics and properties 

for domains with a complete Domain Metric Tool (DMT). 

 

5.2 Future work:  
 

Definition of planning domain model includes number of features which can be used to 

characterize planning domain models, in PDDL definition: types allow decelerating and 

specifying the types of variables in predicates and operators. Types are aimed to increase the 

readability of the domain models. However, it is not compulsory required for most planning 

system. Another example of features which is useful to measure a domain model is relation 

fluenc, predicates are usually divided into two categories static/rigid and fluent/dynamic 

relation. Some more features will be measured such as inconsistent effects and reversible 

actions. These features can only utilised based on their definition language. 

5.2.1 Year Three Plan 

Sept to Dec 2011 

Metrics implementation and Design:  

• Figure 3.2 shows the main components of our prototype implementation. At this 

point we success to create planning knowledge-base that consists of actions 

schema parsed into our platform language (prolog). The next step is to design and 

run prototype for each metric mention in section 3.6 

• Extending the work to include investigating other PDDL specification mention in 

future work, section 5. 
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• Submit a conference paper on PlanSig 2011conference 

• Preparing paper for the school and ICAPS conference 

• Test both STRIPS and HTN version of domain model with different existing 

planner  

Jan to Apr 2011  
• Prepare final version of  planning domain model metrics system  

• Test the performance  

• Submit a journal paper  

• Develop thesis  structure  

May to August 2011  

• Start Writing thesis  

• Thesis draft(s)  Submission 

• Thesis submission  
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6 Appendix A 

6.1 GIPO Tyre Domain 
 

(define (domain tyre) 

  (:requirements :strips :equality :typing) 

 

  (:types  container nuts hub pump wheel wrench jack) 

 

 

  (:predicates 

    (closed ?container1 - container) 

    (open ?container1 - container) 

    (tight ?nuts1 - nuts ?hub1 - hub) 

    (loose ?nuts1 - nuts ?hub1 - hub) 

    (have_nuts ?nuts1 - nuts) 

    (on_ground ?hub1 - hub) 

    (fastened ?hub1 - hub) 

    (jacked_up ?hub1 - hub ?jack1 - jack) 

    (free ?hub1 - hub) 

    (unfastened ?hub1 - hub) 

    (have_pump ?pump1 - pump) 

    (pump_in ?pump1 - pump ?container1 - container) 

    (have_wheel ?wheel1 - wheel) 

    (wheel_in ?wheel1 - wheel ?container1 - container) 

    (wheel_on ?wheel1 - wheel ?hub1 - hub) 

    (have_wrench ?wrench1 - wrench) 

    (wrench_in ?wrench1 - wrench ?container1 - container) 

    (have_jack ?jack1 - jack) 

    (jack_in_use ?jack1 - jack ?hub1 - hub) 

    (jack_in ?jack1 - jack ?container1 - container) 

  ) 

  (:action open_container 

       :parameters ( ?C - container) 

       :precondition  

            (closed ?C) 

       :effect (and  

            (not (closed ?C)) 

            (open ?C) 

        ) 

    ) 

  (:action close_container 

       :parameters ( ?C - container) 

       :precondition  

            (open ?C) 

       :effect (and  

            (not (open ?C)) 

            (closed ?C) 

        ) 

    ) 

  (:action fetch_jack 

       :parameters ( ?C - container ?J - jack) 

       :precondition (and  

            (open ?C) 

            (jack_in ?J ?C) 
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       ) 

       :effect (and  

            (not (jack_in ?J ?C)) 

            (have_jack ?J) 

        ) 

    ) 

  (:action fetch_wheel 

       :parameters ( ?C - container ?W - wheel) 

       :precondition (and  

            (open ?C) 

            (wheel_in ?W ?C) 

       ) 

       :effect (and  

            (not (wheel_in ?W ?C)) 

            (have_wheel ?W) 

        ) 

    ) 

  (:action fetch_wrench 

       :parameters ( ?C - container ?W - wrench) 

       :precondition (and  

            (open ?C) 

            (wrench_in ?W ?C) 

       ) 

       :effect (and  

            (not (wrench_in ?W ?C)) 

            (have_wrench ?W) 

        ) 

    ) 

  (:action fetch_pump 

       :parameters ( ?C - container ?P - pump) 

       :precondition (and  

            (open ?C) 

            (pump_in ?P ?C) 

       ) 

       :effect (and  

            (not (pump_in ?P ?C)) 

            (have_pump ?P) 

        ) 

    ) 

  (:action putaway_wheel 

       :parameters ( ?C - container ?W - wheel) 

       :precondition (and  

            (open ?C) 

            (have_wheel ?W) 

       ) 

       :effect (and  

            (not (have_wheel ?W)) 

            (wheel_in ?W ?C) 

        ) 

    ) 

  (:action putaway_wrench 

       :parameters ( ?C - container ?W - wrench) 

       :precondition (and  

            (open ?C) 

            (have_wrench ?W) 

       ) 
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       :effect (and  

            (not (have_wrench ?W)) 

            (wrench_in ?W ?C) 

        ) 

    ) 

  (:action putaway_jack 

       :parameters ( ?C - container ?J - jack) 

       :precondition (and  

            (open ?C) 

            (have_jack ?J) 

       ) 

       :effect (and  

            (not (have_jack ?J)) 

            (jack_in ?J ?C) 

        ) 

    ) 

  (:action putaway_pump 

       :parameters ( ?C - container ?P - pump) 

       :precondition (and  

            (open ?C) 

            (have_pump ?P) 

       ) 

       :effect (and  

            (not (have_pump ?P)) 

            (pump_in ?P ?C) 

        ) 

    ) 

  (:action loosen 

       :parameters ( ?W - wrench ?H - hub ?N - nuts) 

       :precondition (and  

            (have_wrench ?W) 

            (on_ground ?H) 

            (fastened ?H) 

            (tight ?N ?H) 

       ) 

       :effect (and  

            (not (tight ?N ?H)) 

            (loose ?N ?H) 

        ) 

    ) 

  (:action tighten 

       :parameters ( ?W - wrench ?H - hub ?N - nuts) 

       :precondition (and  

            (have_wrench ?W) 

            (on_ground ?H) 

            (fastened ?H) 

            (loose ?N ?H) 

       ) 

       :effect (and  

            (not (loose ?N ?H)) 

            (tight ?N ?H) 

        ) 

    ) 

  (:action jack_up 

       :parameters ( ?H - hub ?J - jack) 

       :precondition (and  
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            (on_ground ?H) 

            (fastened ?H) 

            (have_jack ?J) 

       ) 

       :effect (and  

            (not (on_ground ?H)) 

            (not (have_jack ?J)) 

            (jacked_up ?H ?J) 

            (jack_in_use ?J ?H) 

        ) 

    ) 

  (:action jack_down 

       :parameters ( ?H - hub ?J - jack) 

       :precondition (and  

            (jacked_up ?H ?J) 

            (fastened ?H) 

            (jack_in_use ?J ?H) 

       ) 

       :effect (and  

            (not (jacked_up ?H ?J)) 

            (not (jack_in_use ?J ?H)) 

            (on_ground ?H) 

            (have_jack ?J) 

        ) 

    ) 

  (:action do_up 

       :parameters ( ?W - wrench ?H - hub ?J - jack ?N - nuts) 

       :precondition (and  

            (have_wrench ?W) 

            (unfastened ?H) 

            (jacked_up ?H ?J) 

            (have_nuts ?N) 

       ) 

       :effect (and  

            (not (unfastened ?H)) 

            (not (have_nuts ?N)) 

            (fastened ?H) 

            (loose ?N ?H) 

        ) 

    ) 

  (:action remove_wheel 

       :parameters ( ?W - wheel ?H - hub ?J - jack) 

       :precondition (and  

            (wheel_on ?W ?H) 

            (unfastened ?H) 

            (jacked_up ?H ?J) 

       ) 

       :effect (and  

            (not (wheel_on ?W ?H)) 

            (have_wheel ?W) 

            (free ?H) 

        ) 

    ) 

  (:action put_on_wheel 

       :parameters ( ?W - wheel ?H - hub ?J - jack) 

       :precondition (and  



Investigation into the Theoretical Properties of, and the Relationship Between, AI Planning Domain Models. 

36 

 

            (have_wheel ?W) 

            (free ?H) 

            (jacked_up ?H ?J) 

            (unfastened ?H) 

       ) 

       :effect (and  

            (not (have_wheel ?W)) 

            (not (free ?H)) 

            (wheel_on ?W ?H) 

        ) 

    ) 

  (:action undo 

       :parameters ( ?W - wrench ?H - hub ?J - jack ?N - nuts) 

       :precondition (and  

            (have_wrench ?W) 

            (jacked_up ?H ?J) 

            (fastened ?H) 

            (loose ?N ?H) 

       ) 

       :effect (and  

            (not (fastened ?H)) 

            (not (loose ?N ?H)) 

            (unfastened ?H) 

            (have_nuts ?N) 

        ) 

    ) 

  ) 

(define (problem task1) 

   (:domain tyre) 

   (:objects 

         boot - container 

         nuts_1 - nuts 

         hub0 - hub 

         pump0 - pump 

         wheel1 wheel2 - wheel 

         wrench0 - wrench 

         jack0 - jack 

        ) 

    (:init 

        (wrench_in wrench0 boot) 

        (wheel_in wheel1 boot) 

        (have_wheel wheel2) 

        (pump_in pump0 boot) 

        (tight nuts_1 hub0) 

        (have_jack jack0) 

        (on_ground hub0) 

        (fastened hub0) 

        (closed boot) 

        ) 

    (:goal 

      (and 

        (fastened hub0) 

        (jacked_up hub0 jack0) 

        (wheel_on wheel2 hub0) 

       )) 

) 
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(define (problem task2) 

   (:domain tyre) 

   (:objects 

         boot - container 

         nuts_1 - nuts 

         hub0 - hub 

         pump0 - pump 

         wheel1 wheel2 - wheel 

         wrench0 - wrench 

         jack0 - jack 

        ) 

    (:init 

        (have_wrench wrench0) 

        (have_wheel wheel1) 

        (wheel_on wheel2 hub0) 

        (pump_in pump0 boot) 

        (loose nuts_1 hub0) 

        (jack_in_use jack0 hub0) 

        (jacked_up hub0 jack0) 

        (fastened hub0) 

        (closed boot) 

        ) 

    (:goal 

      (and 

        (open boot) 

        (jacked_up hub0 jack0) 

        (loose nuts_1 hub0) 

        (wheel_in wheel2 boot) 

        (wheel_on wheel1 hub0) 

        (wrench_in wrench0 boot) 

       )) 

) 

(define (problem task3) 

   (:domain tyre) 

   (:objects 

         boot - container 

         nuts_1 - nuts 

         hub0 - hub 

         pump0 - pump 

         wheel1 wheel2 - wheel 

         wrench0 - wrench 

         jack0 - jack 

        ) 

    (:init 

        (wrench_in wrench0 boot) 

        (wheel_on wheel1 hub0) 

        (have_wheel wheel2) 

        (have_pump pump0) 

        (tight nuts_1 hub0) 

        (jack_in jack0 boot) 

        (on_ground hub0) 

        (fastened hub0) 

        (open boot) 

        ) 

    (:goal 

      (and 
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        (open boot) 

        (jacked_up hub0 jack0) 

        (jack_in_use jack0 hub0) 

        (have_nuts nuts_1) 

        (have_pump pump0) 

        (wrench_in wrench0 boot) 

       )) 

) 

(define (problem task4) 

   (:domain tyre) 

   (:objects 

         boot - container 

         nuts_1 - nuts 

         hub0 - hub 

         pump0 - pump 

         wheel1 wheel2 - wheel 

         wrench0 - wrench 

         jack0 - jack 

        ) 

    (:init 

        (wrench_in wrench0 boot) 

        (wheel_on wheel1 hub0) 

        (have_wheel wheel2) 

        (pump_in pump0 boot) 

        (have_nuts nuts_1) 

        (jack_in_use jack0 hub0) 

        (unfastened hub0) 

        (jacked_up hub0 jack0) 

        (closed boot) 

        ) 

    (:goal 

      (and 

        (closed boot) 

        (have_wheel wheel1) 

       )) 

) 
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6.2 LCOM Tyre Domain 
 

(define 

   (domain tyre) 

   (:requirements :typing) 

   (:types boot hub jack nuts wheel wrench zero) 

   (:predicates 

      (boot_state0 ?v1 - boot) 

      (boot_state1 ?v1 - boot) 

      (hub_state0 ?v1 - hub ?v2 - jack) 

      (hub_state1 ?v1 - hub ?v2 - jack) 

      (hub_state2 ?v1 - hub ?v2 - jack) 

      (hub_state3 ?v1 - hub) 

      (jack_state0 ?v1 - jack ?v2 - hub) 

      (jack_state1 ?v1 - jack ?v2 - hub) 

      (jack_state2 ?v1 - jack ?v2 - hub) 

      (jack_state3 ?v1 - jack) 

      (jack_state4 ?v1 - jack ?v2 - boot) 

      (nuts_state0 ?v1 - nuts) 

      (nuts_state1 ?v1 - nuts ?v2 - hub) 

      (nuts_state2 ?v1 - nuts ?v2 - hub) 

      (wheel_state0 ?v1 - wheel ?v2 - hub) 

      (wheel_state1 ?v1 - wheel) 

      (wheel_state2 ?v1 - wheel ?v2 - boot) 

      (wrench_state0 ?v1 - wrench ?v2 - boot) 

      (wrench_state1 ?v1 - wrench) 

      (zero_state0)) 

 

   (:action 

   close_container 

   :parameters 

   (?Boot1 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (boot_state0 ?Boot1)) 

 

   :effect 

   (and 

      (boot_state1 ?Boot1) 

      (not (boot_state0 ?Boot1))) 

) 

 

   (:action 

   do_up 

   :parameters 

   (?Nuts1 - nuts ?Hub2 - hub ?Wrench4 - wrench ?Jack3 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (nuts_state0 ?Nuts1) 

      (hub_state0 ?Hub2 ?Jack3) 

      (wrench_state1 ?Wrench4) 

      (jack_state0 ?Jack3 ?Hub2)) 
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   :effect 

   (and 

      (nuts_state1 ?Nuts1 ?Hub2) 

      (not (nuts_state0 ?Nuts1)) 

      (hub_state2 ?Hub2 ?Jack3) 

      (not (hub_state0 ?Hub2 ?Jack3)) 

      (jack_state2 ?Jack3 ?Hub2) 

      (not (jack_state0 ?Jack3 ?Hub2))) 

) 

 

   (:action 

   fetch_jack 

   :parameters 

   (?Jack1 - jack ?Boot2 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (jack_state4 ?Jack1 ?Boot2) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (jack_state3 ?Jack1) 

      (not (jack_state4 ?Jack1 ?Boot2))) 

) 

 

   (:action 

   fetch_wheel 

   :parameters 

   (?Wheel1 - wheel ?Boot2 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (wheel_state2 ?Wheel1 ?Boot2) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (wheel_state1 ?Wheel1) 

      (not (wheel_state2 ?Wheel1 ?Boot2))) 

) 

 

   (:action 

   fetch_wrench 

   :parameters 

   (?Wrench1 - wrench ?Boot2 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (wrench_state0 ?Wrench1 ?Boot2) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (wrench_state1 ?Wrench1) 

      (not (wrench_state0 ?Wrench1 ?Boot2))) 
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) 

 

   (:action 

   jack_down 

   :parameters 

   (?Hub1 - hub ?Jack2 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (hub_state2 ?Hub1 ?Jack2) 

      (jack_state2 ?Jack2 ?Hub1)) 

 

   :effect 

   (and 

      (hub_state3 ?Hub1) 

      (not (hub_state2 ?Hub1 ?Jack2)) 

      (jack_state3 ?Jack2) 

      (not (jack_state2 ?Jack2 ?Hub1))) 

) 

 

   (:action 

   jack_up 

   :parameters 

   (?Hub1 - hub ?Jack2 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (hub_state3 ?Hub1) 

      (jack_state3 ?Jack2)) 

 

   :effect 

   (and 

      (hub_state2 ?Hub1 ?Jack2) 

      (not (hub_state3 ?Hub1)) 

      (jack_state2 ?Jack2 ?Hub1) 

      (not (jack_state3 ?Jack2))) 

) 

 

   (:action 

   loosen 

   :parameters 

   (?Nuts1 - nuts ?Hub2 - hub ?Wrench3 - wrench) 

   :precondition 

   (and 

      (zero_state0) 

      (nuts_state2 ?Nuts1 ?Hub2) 

      (hub_state3 ?Hub2) 

      (wrench_state1 ?Wrench3)) 

 

   :effect 

   (and 

      (nuts_state1 ?Nuts1 ?Hub2) 

      (not (nuts_state2 ?Nuts1 ?Hub2))) 

) 

 

   (:action 
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   open_container 

   :parameters 

   (?Boot1 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (boot_state1 ?Boot1)) 

 

   :effect 

   (and 

      (boot_state0 ?Boot1) 

      (not (boot_state1 ?Boot1))) 

) 

 

   (:action 

   put_on_wheel 

   :parameters 

   (?Wheel1 - wheel ?Hub2 - hub ?Jack3 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (wheel_state1 ?Wheel1) 

      (hub_state1 ?Hub2 ?Jack3) 

      (jack_state1 ?Jack3 ?Hub2)) 

 

   :effect 

   (and 

      (wheel_state0 ?Wheel1 ?Hub2) 

      (not (wheel_state1 ?Wheel1)) 

      (hub_state0 ?Hub2 ?Jack3) 

      (not (hub_state1 ?Hub2 ?Jack3)) 

      (jack_state0 ?Jack3 ?Hub2) 

      (not (jack_state1 ?Jack3 ?Hub2))) 

) 

 

   (:action 

   putaway_jack 

   :parameters 

   (?Jack1 - jack ?Boot2 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (jack_state3 ?Jack1) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (jack_state4 ?Jack1 ?Boot2) 

      (not (jack_state3 ?Jack1))) 

) 

 

   (:action 

   putaway_wheel 

   :parameters 

   (?Wheel1 - wheel ?Boot2 - boot) 

   :precondition 
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   (and 

      (zero_state0) 

      (wheel_state1 ?Wheel1) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (wheel_state2 ?Wheel1 ?Boot2) 

      (not (wheel_state1 ?Wheel1))) 

) 

 

   (:action 

   putaway_wrench 

   :parameters 

   (?Wrench1 - wrench ?Boot2 - boot) 

   :precondition 

   (and 

      (zero_state0) 

      (wrench_state1 ?Wrench1) 

      (boot_state0 ?Boot2)) 

 

   :effect 

   (and 

      (wrench_state0 ?Wrench1 ?Boot2) 

      (not (wrench_state1 ?Wrench1))) 

) 

 

   (:action 

   remove_wheel 

   :parameters 

   (?Wheel1 - wheel ?Hub2 - hub ?Jack3 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (wheel_state0 ?Wheel1 ?Hub2) 

      (hub_state0 ?Hub2 ?Jack3) 

      (jack_state0 ?Jack3 ?Hub2)) 

 

   :effect 

   (and 

      (wheel_state1 ?Wheel1) 

      (not (wheel_state0 ?Wheel1 ?Hub2)) 

      (hub_state1 ?Hub2 ?Jack3) 

      (not (hub_state0 ?Hub2 ?Jack3)) 

      (jack_state1 ?Jack3 ?Hub2) 

      (not (jack_state0 ?Jack3 ?Hub2))) 

) 

 

   (:action 

   tighten 

   :parameters 

   (?Nuts1 - nuts ?Hub2 - hub ?Wrench3 - wrench) 

   :precondition 

   (and 

      (zero_state0) 

      (nuts_state1 ?Nuts1 ?Hub2) 



Investigation into the Theoretical Properties of, and the Relationship Between, AI Planning Domain Models. 

44 

 

      (hub_state3 ?Hub2) 

      (wrench_state1 ?Wrench3)) 

 

   :effect 

   (and 

      (nuts_state2 ?Nuts1 ?Hub2) 

      (not (nuts_state1 ?Nuts1 ?Hub2))) 

) 

 

   (:action 

   undo 

   :parameters 

   (?Nuts1 - nuts ?Hub2 - hub ?Wrench4 - wrench ?Jack3 - jack) 

   :precondition 

   (and 

      (zero_state0) 

      (nuts_state1 ?Nuts1 ?Hub2) 

      (hub_state2 ?Hub2 ?Jack3) 

      (wrench_state1 ?Wrench4) 

      (jack_state2 ?Jack3 ?Hub2)) 

 

   :effect 

   (and 

      (nuts_state0 ?Nuts1) 

      (not (nuts_state1 ?Nuts1 ?Hub2)) 

      (hub_state0 ?Hub2 ?Jack3) 

      (not (hub_state2 ?Hub2 ?Jack3)) 

      (jack_state0 ?Jack3 ?Hub2) 

      (not (jack_state2 ?Jack3 ?Hub2))) 

) 

) 
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