
University of Huddersfield Repository

Shoeeb, S and McCluskey, T.L.

On Comparing Planning Domain Models

Original Citation

Shoeeb, S and McCluskey, T.L. (2011) On Comparing Planning Domain Models. In: The 29th 
Workshop of the UK Planning and Scheduling Special Interest Group PlanSIG 2011, 8-9 Dec 2011, 
University of Huddersfield, UK. 

This version is available at http://eprints.hud.ac.uk/id/eprint/12717/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



On Comparing Planning Domain Models

S. Shoeeb and T.L.McCluskey,
Department of Informatics,

School of Computing and Engineering,
University of Huddersfield

Abstract

Whereas research into the characteristics and proper-
ties of AI planning algorithms is over-whelming, a sim-
ilar science of domain model comparison and analysis
is underdeveloped. It has long been acknowledged that
there can be a range of different encodings for the same
domain, whatever coding language used, but the ques-
tion of which is the “best” encoding is an open one, and
partly dependent on the requirements of the planning
application itself. There is a growing need to measure
and compare domain models, however, in particular to
evaluate learning methods. In this paper we motivate
the research by considering the challenges in evaluat-
ing domain model learning algorithms. We describe an
ongoing doctoral research project which is exploring
model classifications for comparing domain models.

Introduction
The importance of the knowledge formulation process
to the success of planning applications, and to make
planning engines more accessible and open to commu-
nity use, is now well established. The task of creating
the domain models is accepted as difficult and time con-
suming, requiring an engineering process. This has in-
creased the need to investigate the properties of the end
product of this process - the planning domain model. It
has long been acknowledged that there can be a range
of different encodings for the same domain, whatever
coding language used, but the question of which is the
“best” encoding is an open one, and partly dependent
on the requirements of the planning application itself.

The advances made in automated domain model cre-
ation, in particular, have focused effort on such ques-
tions as what makes an accurate or efficient domain
model. In this area, domain models may be learned
from examples (Cresswell, McCluskey, and West 2011;
Wu, Yang, and Jiang 2005), learned from one example
plus a partial domain model (McCluskey, Richardson,
and Simpson 2002; McCluskey et al. 2010) or generated
from a formal model using a translation process (Ferrer
2011; Bartak, Fratini, and McCluskey 2010).

Domain analysis techniques can of course be used
to inform on the quality of a domain model, and in
particular whether the model is self-consistent. They

are well developed for AI planning, and can be used to
check certain desirable static features such as operator
reversibility: that is whether at any state, an operator’s
application can be reversed by another operator to re-
sult in the original state (Wickler 2011). Another use is
to analyse the likely efficiency of a model when paired
with a state of the art state progression planner. We
may be interested in knowing the “landscape” of the
key heuristic used in planning, such as investigated in
Hoffman’s recent research (Hoffmann 2011).

The steady increase in the development of domain
model learning tools and the need to extract a healthy
domain model from such tools requires the develop-
ment of measurement techniques to evaluate a domain
model. One way to do this is to quantify certain fea-
tures that can easily be calculated and compared: the
number of objects, the number of action instances, the
degree of arity of operators names, the degree of arity
of predicates and the average number of preconditions
and postconditions in each operator.

In our research, we consider that the quality of au-
tomatically produced domain models needs to be eval-
uated in order to provide validation and comparison
between competing automated approaches. This is of
key significance for researchers attempting to evaluate
their research in a rigorous fashion. Of course the qual-
ity of a model can be measured in a dynamic way, that
is by running the models with a planner, and check-
ing performance and output plans. This is a reason-
able approach, but has a major flaw: performance is of
course dependent on the planner as well as the model,
and the results may be due to a planner rather than a
model. Ideally, we would also like to measure and com-
pare domain model in a planner-independent way. In
this paper we motivate the reader as to why compar-
ison techniques are important, and make some initial
definitions of equivalence between domain models.

Motivating Examples
LOCM is an operator schema learning system (Cress-
well, McCluskey, and West 2011) which automatically
induces a set of operator schema from sets of example
plan scripts. LOCM assumes that each plan is a se-
quence of ordered actions, and each action is composed



of a name and a list of objects. The system differs from
related systems in that it requires no other knowledge to
be provided (i.e no predicate structures, or initial and
intermediate states, are required for LOCM to func-
tion). LOCM works well under the assumption that
objects in a domain can be modelled as going through
transitions in a object-centered state machine, and from
inducing these state machines LOCM produces PDDL
domain models.

One method of evaluation of LOCM is as follows: us-
ing existing hand crafted models, generate sets of plan
traces. Feed these plan traces into LOCM and use it
to output a domain model, then compare this output
model with the original hand crafted.

The first challenge in this form of evaluation is to
create a mapping between parts of the two models (the
original and the learned). LOCM learns predicates, so
that the ‘anonymous’ predicates in the learned model
have to be matched up with those in the original model.
A consistent mapping has to be made from the names
in the learned model to the (meaningful) names in the
original. In some domains, LOCM may generate do-
main models that, under such a name mapping, be-
haviourally seem equivalent to the hand-crafted model.

For example, consider the case when LOCM at-
tempts to learn the “tyre domain” model using the
original hand crafted model from which to generate
plan script examples. Under the correct name map-
ping, a task (goal and initial state) in the notation
of the original domain model can be mapped to the
learned model notation; given to a planner, the output
produced will be the same as if the original model
was used. But consider the predicate definitions in
the fragment below, which shows part of the hand-
crafted model concerning “jack” related predicates,
and the corresponding predicates in the induced model:

Hand Crafted:

(jack_in_use ?jack1 - jack ?hub1 - hub)
(have_jack ?jack1 - jack)
(jack_in ?jack1 - jack ?boot1 - boot)

Induced:

(jack_state0 ?v1 - jack ?v2 - hub)
(jack_state1 ?v1 - jack ?v2 - hub)
(jack_state2 ?v1 - jack ?v2 - hub)
(jack_state3 ?v1 - jack)
(jack_state4 ?v1 - jack ?v2 - boot)

The induced model contains 3 variations of “jack X
in use on hub Y” predicate. Each variation records
a different state of the hub assembly: when it is
jacked up with the hub free, or with a loose wheel
attached, or with a wheel fastened on. In this case, the
learned model is certainly “close” to the original —
behaviourally the two models appear the same, though
the induced model is more fine grained; it may even
be argued the induced one is better. The problem

is, how can we compare and measure systematically
such differences, and hence evaluate the learning
mechanism?

LAMP (Zhuo et al. 2010) is a successor of the ARMS
algorithm (Wu, Yang, and Jiang 2005), and designed
to learn complex structured domain models containing
quantifiers and logical implications. LAMP requires as
input a set of observed plan traces, a list of actions
composed of names and parameters, and a list of pred-
icates with their corresponding parameters. It is aimed
at learning in a mixed initiative fashion: the authors
acknowledge that a model learned by LAMP needs to
be refined by experts in order to produce a final domain
model.

In the evaluation of LAMP, the authors use a very
simple metric: they define the error rates of the their
algorithm as the number of different predicates in either
the preconditions or the effects of an operator schema,
as a proportion of the total number of predicates. In
the LOCM tyre example, this would result in a non-
zero error rate, since there are 2 extra predicates differ-
ent in the induced model (under some reasonable name
mapping), and these appear in several of the operator
schema.

If for example, it was required to show that with
more examples, LAMP would be more accurate, then
it would be necessary to show that one model was
“nearer” the hand crafted version than another. Even
with predefined predicates, it could be argued that the
evaluation of LAMP is problematic in that is it not ob-
vious how “near” the models it produces are using such
syntactic distinctions. As the example in LOCM shows,
this measure does not seem appropriate in the situation
where the system learns predicates. We need measures
that obey certain rules — for example a measure that is
monotonic in the sense that as the error rate was lower,
the domain created was “nearer” the original domain.

As well as comparing domain models for evaluation,
we may want to compare or evaluate domain models
as an aid to learning a new model. In the LAWS sys-
tem (H.H.Zhuo, Q.Yang, R.Pan and L.Li 2011), the
idea is to use a pre defined domain model from which
to learn a model of a similar domain, in much the same
way as a human might re-use an old model and adapt it
to a new domain. Here again the concept of comparing
models for their similarity is an important one, as the
source domain has to be close to the target domain in
some sense.

Model Comparison Definitions

The research we are carrying out is exploring prop-
erties and classifications to use in comparisons of do-
main models. We are utilising the wealth of past re-
search on domain (model) analysis, and basing our ideas
on our earlier investigative work (McCluskey 2003;
McCluskey, Richardson, and Simpson 2002).



Strong Equivalence
We define strong equivalence where two domain
models are strongly equivalent iff they are logically
identical up to naming. To establish such an equiv-
alence, a 1-1 mapping must exist which maps all the
names in one domain to another (names of predicates,
variables, operator schema, types). After a mapping
has been performed, it is assumed that ordering of dec-
larations of types, predicates and actions does not mat-
ter. “Logically Identical” here means that for each ac-
tion A1 in one domain that maps to an action A2 in the
other domain, A1.pre is logically equivalent to A2.pre,
and A1.effects is logically equivalent to A2.effects. A
good example is a translation of names in a domain
model from English to French. The resulting model
with names in the French language is strongly equiv-
alent to the one in English, and vice-versa. We could
perform further changes to the domain model by chang-
ing the order of declaration of types and predicate, or
changing the logical conditions in the domain model us-
ing properties of logical connectives etc. In these cases
the two domains would remain strongly equivalent.

Weak Equivalence
We can define weak equivalence for models analo-
gous to “weak equivalence” in grammars — meaning
two grammars generate the same language. The gram-
mars may not be structurally the same, but they share
the same behaviour. Thus, we say two domain mod-
els A and B are weakly equivalent iff there is a domain
model B’ which is strongly equivalent to B, such that:

• any task (I,G) that can be posed in A can be posed
in B’, and vice-versa

• for any task (I,G), any complete and corrent plan that
can solve it using model A is a correct and correct
plan according to B’, and vice-versa.

Weak equivalence in domain models therefore means
that the functional behaviour of the domain is the same
for both models – the same tasks can be formulated, and
the same solutions can be generated. In the LOCM
example, the two domains are not weakly equivalent
as the mapping between predicates in not 1-1. In this
case, any tasks posed in the original can be solved in
the induced model, but not the other way round.

Summary
In this paper we have highlighted the need to research
into sound methods for comparing and measuring do-
main models. We have used two compelling examples
of systems that learn domain models to illustrate the
problem, and have started to develop a framework for
model comparison.

The research questions we are investigating include
(a) what are useful classifications of similarity of do-
main models? (b) can we produce support tools for
checking similarity? (c) what are good metrics for do-
main models, and are they useful for comparing domain
models?

References
Bartak, R.; Fratini, S.; and McCluskey, L. 2010. The
third competition on knowledge engineering for planning
and scheduling. AI Magazine, Spring 2010.

Cresswell, S.; McCluskey, T.; and West, M. M. 2011. Ac-
quiring planning domain models using LOCM. Knowledge
Engineering Review (To Appear).

Ferrer, A. G. 2011. Knowledge Engineering Techniques for
the Translation of Process Models into Temporal Hierarchi-
cal Planning and Scheduling Domains. Ph.D. Dissertation,
Universidad de Granada.

H.H.Zhuo, Q.Yang, R.Pan and L.Li. 2011. Cross-Domain
Action-Model Acquisition for Planning Via Web Search.
In Proceedings of ICAPS.

Hoffmann, J. 2011. Analyzing search topology without
running any search: on the connection between causal
graphs and h+. J. Artif. Int. Res. 41:155–229.

McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2010. Action Knowledge Acquisition with
Opmaker2. In Agents and Artificial Intelligence, volume 67
of Communications in Computer and Information Science.
Springer Berlin Heidelberg. 137–150.

McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An Interactive Method for Inducing Operator De-
scriptions. In The Sixth International Conference on Arti-
ficial Intelligence Planning Systems.

McCluskey, T. L. 2003. PDDL: A Language with a Pur-
pose? In Proc. PDDL Workshop, ICAPS, Trento, Italy.

Wickler, G. 2011. Using planning domain features to fa-
cilitate knowledge engineering. In Proc. KEPS Workshop,
ICAPS.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical impli-
cations. Artificial Intelligence 174(18):1540–1569.


